CDS) Enzymes Participate in the Synthesis of Cardiolipin in Mitochondria and Phosphatidylinositol at The

Total Page:16

File Type:pdf, Size:1020Kb

CDS) Enzymes Participate in the Synthesis of Cardiolipin in Mitochondria and Phosphatidylinositol at The Different CDP-diacylglycerol Synthase (CDS) enzymes participate in the synthesis of cardiolipin in mitochondria and phosphatidylinositol at the endoplasmic reticulum Nicholas James Blunsom A thesis submitted to University College London for the degree of Doctor of Philosophy September 2019 Department of Neuroscience, Physiology and Pharmacology UCL ‘I, Nicholas James Blunsom, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' _______________________ Nicholas James Blunsom 2 Dedication For my Nan, Grandpa, and Babushka who always believed in me. 3 Abstract Cytidine diphosphate diacylglycerol (CDP-DG) is an essential liponucleotide that is crucial for the synthesis of the phospholipids phosphatidylinositol (PI) and cardiolipin (CL). It is the precursor for PI in the endoplasmic reticulum (ER) and two molecules are required for the synthesis of CL in mitochondria. CDP- DG is formed through the enzymes CDP-DG synthase (CDS) 1 and 2 in the ER; this is the rate-limiting step in the PIP2 cycle. CDS enzymes are critical for the maintenance of cellular structure, as depletion of the CDS enzymes causes a vast array of phenotypes. Upon constant stimulation of phospholipase C via chronic stimulation with arginine-vasopressin in H9c2 cells, there is a specific increase in CDS1 mRNA alongside a decrease in PI levels. PI levels decrease, presumably, due to the increased level of PIP and PIP2 synthesis; CDS1 mRNA increases to attempt to compensate for the drop in PI. This also shows that, contrary to previous studies, CDS1 is responsible for synthesising PI through the products of PIP2 breakdown in the PIP2 cycle, whereas CDS2 is most likely for de novo synthesis of PI. Furthermore, it appears that this increase of CDS1 mRNA due to chronic stimulation with arginine-vasopressin is regulated through protein kinase C and cFos. The two mammalian CDS enzymes are 69% similar and 73% identical, and have been shown to localise to the ER. A novel protein was recently discovered in yeast to have CDS activity which shares very little homology with the CDS enzymes, Tam41, which is a mitochondrial protein. We confirmed that a mammalian version of this enzyme, TAMM41, exists and is responsible for the supply of CDP-DG to the mitochondria for CL synthesis. 4 Impact Statement Due to the nature of this research, i.e. fundamental biology, the impact of this research will primarily affect academe. However, that is not to say that this will not have benefits further afield in years to come. In this thesis, it is shown that the enzyme responsible for CDP-DG production in mitochondria, and hence crucial for cardiolipin synthesis, is neither of the CDS proteins. Rather, it is due to a completely unrelated enzyme, TAMM41. This finding is important because knowing the actual lipid synthesis pathways in mitochondria for CL production will help the study of mitochondrial lipids and their associated diseases. Diseases such as Barth syndrome, which has multitudinous symptoms such as dilated cardiomyopathy, skeletal myopathy, neutropenia and short stature, are caused from a lack of mature CL. Furthermore, it is shown that the enzyme responsible for the rate-limiting step of PI synthesis in the PIP2 cycle is specifically CDS1. In addition, CDS1 is upregulated during chronic stimulation of H9c2 cells with arginine-vasopressin (a hormone known to induce hypertrophy), and that phosphoinositide levels are significantly decreased during this period. Furthermore, it is observed that CDS1 enzyme expression is regulated by cFos and PKC. These findings may open up new pathways of research into hypertrophy and cardiovascular disease in the future, both from a lipids perspective and a signalling perspective. Finally, it is clearly displayed that commercial antibodies should not be taken at face value. Antibodies need to be stringently examined and validated when being used in studies. One of the antibodies initially used had not been validated, thus causing major discrepancies between experimental results and published data. The lack of doing so will lead to incorrect data and analysis being published (which is a phenomenon more frequent than should be). Hopefully this data will encourage researchers to be more thorough whilst using antibodies and should lead to more accurate science. 5 Acknowledgements Firstly, I would like to thank Dr Tim Ashlin for his endless help in the lab, for teaching me a plethora of techniques, and for all those times troubleshooting them when things just wouldn’t work. I would also like to thank Professor Michael Duchen and Dr Will Kotiadis for their help, and for the training to use the Oroboros O2K machine. In addition, thanks to Prof. Justin Hsuan for doing the mass spectroscopy. On a personal note, I would like to thank my family and friends for their support and encouragement throughout my studies, and especially my Mum for her never-ending belief and support in me and my abilities. Finally, I would like to give a special thank you to my supervisor Professor Shamshad Cockcroft. Not only for her encouragement and help, but also for really making me think about the next step, the wider picture and the key experiments needed to get there. None of this would have been possible without the generous grant awarded by the British Heart Foundation, who funded this research. 6 Publications The data from this thesis has been published in the following publications: Blunsom, N. J., Gomez-Espinosa, E., Ashlin, T. G., Cockcroft, S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids. 16 Dec 2017; 1863(3): 284-298. Blunsom, N. J., Gomez-Espinosa, E., Ashlin, T. G., Cockcroft, S. Sustained phospholipase C stimulation of H9c2 cardiomyoblasts by vasopressin induces an increase in CDP-diacylglycerol synthase 1 (CDS1) through protein kinase C and cFos. Biochim Biophys Acta Mol Cell Biol Lipids. 14 March 2019; 1864(7): 1072-1082. Blunsom, N. J., Cockcroft, S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Jan;1865(1); pii: S1388-1981(19)30089-7. 7 Table of Contents Dedication..................................................................................................... 3 Abstract ........................................................................................................ 4 Impact Statement ......................................................................................... 5 Acknowledgements ..................................................................................... 6 Publications.................................................................................................. 7 Table of Contents ......................................................................................... 8 List of Figures ............................................................................................ 12 List of Tables .............................................................................................. 14 Abbreviations ............................................................................................. 15 Chapter 1 Introduction ............................................................................ 19 Phosphatidic acid and its derivatives .............................................. 20 1.1.1 The fate of phosphatidic acid ................................................... 24 Cytidine Diphosphate Diacylglycerol Synthase ............................... 26 1.2.1 Genes and mapping ................................................................. 26 1.2.2 Structure and mechanism ........................................................ 27 1.2.3 CDS substrate selectivity and inhibition ................................... 31 1.2.4 Localisation of over-expressed protein and activity .................. 32 1.2.5 Tissue expression .................................................................... 33 1.2.6 Regulation and loss of function mutants ................................... 35 PI synthase ..................................................................................... 37 PIP2 cycle ....................................................................................... 38 Cardiac Hypertrophy ....................................................................... 44 1.5.1 Cardiomyocytes, mitochondria and phospholipids ................... 46 1.5.2 Phospholipid metabolism in cardiac physiology and pathology 47 1.5.2.1 Remodelling ....................................................................... 47 1.5.2.2 Phosphatidic acid ............................................................... 48 1.5.2.3 PI and phosphorylated derivatives ..................................... 48 1.5.2.4 Cardiolipin .......................................................................... 48 1.5.2.5 H9c2 cells: a biological system to study cardiac physiology .. ........................................................................................... 51 Thesis aims ..................................................................................... 53 Chapter 2 Methods .................................................................................. 54 Cell Culture ..................................................................................... 54 8 2.1.1 Routine growing ......................................................................
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Identification of Transcriptomic Differences Between Lower
    International Journal of Molecular Sciences Article Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens Daniel P. Zalewski 1,*,† , Karol P. Ruszel 2,†, Andrzej St˛epniewski 3, Dariusz Gałkowski 4, Jacek Bogucki 5 , Przemysław Kołodziej 6 , Jolanta Szyma ´nska 7 , Bartosz J. Płachno 8 , Tomasz Zubilewicz 9 , Marcin Feldo 9,‡ , Janusz Kocki 2,‡ and Anna Bogucka-Kocka 1,‡ 1 Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] 2 Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; [email protected] (K.P.R.); [email protected] (J.K.) 3 Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Gł˛ebokaSt., 20-612 Lublin, Poland; [email protected] 4 Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA; [email protected] 5 Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chod´zkiSt., Citation: Zalewski, D.P.; Ruszel, K.P.; 20-093 Lublin, Poland; [email protected] St˛epniewski,A.; Gałkowski, D.; 6 Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Bogucki, J.; Kołodziej, P.; Szyma´nska, Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] J.; Płachno, B.J.; Zubilewicz, T.; Feldo, 7 Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, M.; et al.
    [Show full text]
  • Full Genome Sequencing of Archived Wild Type and Vaccine Rinderpest Virus Isolates Prior to Their Destruction Simon King1, Paulina Rajko-Nenow1, Honorata M
    www.nature.com/scientificreports OPEN Full genome sequencing of archived wild type and vaccine rinderpest virus isolates prior to their destruction Simon King1, Paulina Rajko-Nenow1, Honorata M. Ropiak1, Paolo Ribeca1,2, Carrie Batten1 & Michael D. Baron1* When rinderpest virus (RPV) was declared eradicated in 2011, the only remaining samples of this once much-feared livestock virus were those held in various laboratories. In order to allow the destruction of our institute’s stocks of RPV while maintaining the ability to recover the various viruses if ever required, we have determined the full genome sequence of all our distinct samples of RPV, including 51 wild type viruses and examples of three diferent types of vaccine strain. Examination of the sequences of these virus isolates has shown that the African isolates form a single disparate clade, rather than two separate clades, which is more in accord with the known history of the virus in Africa. We have also identifed two groups of goat-passaged viruses which have acquired an extra 6 bases in the long untranslated region between the M and F protein coding sequences, and shown that, for more than half the genomes sequenced, translation of the F protein requires translational frameshift or non-standard translation initiation. Curiously, the clade containing the lapinised vaccine viruses that were developed originally in Korea appears to be more similar to the known African viruses than to any other Asian viruses. Rinderpest (RP) was one of the most severe diseases of cattle ever recorded, with high morbidity rates, and mor- tality rates of 80% to 90% in naïve populations.
    [Show full text]
  • Nutrient Limitation Inactivates Mrc1-To-Cds1 Checkpoint Signalling in Schizosaccharomyces Pombe
    cells Article Nutrient Limitation Inactivates Mrc1-to-Cds1 Checkpoint Signalling in Schizosaccharomyces pombe Jessica Fletcher 1,2 ID , Liam Griffiths 1 and Thomas Caspari 1,3,* ID 1 School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK; j.f.fl[email protected] (J.F.); lbgriffi[email protected] (L.G.) 2 Medical School, Swansea University, Swansea SA2 8PP, UK 3 Postgraduate Doctoral Studies, Paracelsus Medical University, 5020 Salzburg, Austria * Correspondence: [email protected]; Tel.: +43-662-2420-80245 Received: 11 February 2018; Accepted: 21 February 2018; Published: 23 February 2018 Abstract: The S. pombe checkpoint kinase, Cds1, protects the integrity of stalled DNA replication forks after its phosphorylation at threonine-11 by Rad3 (ATR). Modified Cds1 associates through its N-terminal forkhead-associated domain (FHA)-domain with Mrc1 (Claspin) at stalled forks. We report here that nutrient starvation results in post-translational changes to Cds1 and the loss of Mrc1. A drop in glucose after a down-shift from 3% to 0.1–0.3%, or when cells enter the stationary phase, triggers a sharp decline in Mrc1 and the accumulation of insoluble Cds1. Before this transition, Cds1 is transiently activated and phosphorylated by Rad3 when glucose levels fall. Because this coincides with the phosphorylation of histone 2AX at S129 by Rad3, an event that occurs towards the end of every unperturbed S phase, we suggest that a glucose limitation promotes the exit from the S phase. Since nitrogen starvation also depletes Mrc1 while Cds1 is post-translationally modified, we suggest that nutrient limitation is the general signal that promotes exit from S phase before it inactivates the Mrc1–Cds1 signalling component.
    [Show full text]
  • Prioritization of Metabolic Genes As Novel Therapeutic Targets in Estrogen-Receptor Negative Breast Tumors Using Multi-Omics Data and Text Mining
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 39), pp: 3894-3909 Research Paper Prioritization of metabolic genes as novel therapeutic targets in estrogen-receptor negative breast tumors using multi-omics data and text mining Dinesh Kumar Barupal1,*, Bei Gao1,*, Jan Budczies2, Brett S. Phinney4, Bertrand Perroud4, Carsten Denkert2,3 and Oliver Fiehn1 1West Coast Metabolomics Center, University of California, Davis, CA, USA 2Institute of Pathology, Charité University Hospital, Berlin, Germany 3German Institute of Pathology, Philipps-University Marburg, Marburg, Germany 4UC Davis Genome Center, University of California, Davis, CA, USA *Co-first authors and contributed equally to this work Correspondence to: Oliver Fiehn, email: [email protected] Keywords: set-enrichment; ChemRICH; multi-omics; metabolic networks; candidate gene prioritization Received: March 12, 2019 Accepted: May 13, 2019 Published: June 11, 2019 Copyright: Barupal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Estrogen-receptor negative (ERneg) breast cancer is an aggressive breast cancer subtype in the need for new therapeutic options. We have analyzed metabolomics, proteomics and transcriptomics data for a cohort of 276 breast tumors (MetaCancer study) and nine public transcriptomics datasets using univariate statistics, meta- analysis, Reactome pathway analysis, biochemical network mapping and text mining of metabolic genes. In the MetaCancer cohort, a total of 29% metabolites, 21% proteins and 33% transcripts were significantly different (raw p <0.05) between ERneg and ERpos breast tumors.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Two-Stage Mechanism for Activation of the DNA Replication Checkpoint Kinase Cds1 in Fission Yeast
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Two-stage mechanism for activation of the DNA replication checkpoint kinase Cds1 in fission yeast Yong-jie Xu,1,2 Matthew Davenport,1 and Thomas J. Kelly1,3 1Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021, USA; 2Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA The DNA replication checkpoint is a complex signal transduction pathway, present in all eukaryotic cells, that functions to maintain genomic integrity and cell viability when DNA replication is perturbed. In Schizosaccharomyces pombe the major effector of the replication checkpoint is the protein kinase Cds1. Activation of Cds1 is known to require the upstream kinase Rad3 and the mediator Mrc1, but the biochemical mechanism of activation is not well understood. We report that the replication checkpoint is activated in two stages. In the first stage, Mrc1 recruits Cds1 to stalled replication forks by interactions between the FHA domain of Cds1 and specific phosphorylated Rad3 consensus sites in Mrc1. Cds1 is then primed for activation by Rad3-dependent phosphorylation. In the second stage, primed Cds1 molecules dimerize via phospho-specific interactions mediated by the FHA domains and are activated by autophosphorylation. This two-stage activation mechanism for the replication checkpoint allows for rapid activation with a high signal-to-noise ratio. [Keywords: Cds1 autoactivation; Cds1 autophosphorylation; Cds1 dimerization; Mrc1 SQ cluster; Mrc1 TQ repeats; replication checkpoint] Supplemental material is available at http://www.genesdev.org. Received December 30, 2005; revised version accepted February 9, 2006.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0307874 A1 JAITIN Et Al
    US 20150307874A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0307874 A1 JAITIN et al. (43) Pub. Date: Oct. 29, 2015 (54) HIGH THROUGHPUT TRANSCRIPTOME Publication Classification ANALYSIS (51) Int. Cl. (71) Applicant: Yeda Research and Development Co. CI2N 5/10 (2006.01) Ltd, Rehovot (IL) CI2O I/68 (2006.01) (52) U.S. Cl. (72) Inventors: Diego JAITIN, Rehovot (IL); Ido Amit, CPC .......... CI2N 15/1065 (2013.01); C12O I/6806 Rehovot (IL); Hadas Keren-Shaul, (2013.01) Rehovot (IL); Liran Valadarsky, Rehovot (IL) (57) ABSTRACT Kits and methods for single cellor multiple cell transcriptome (21) Appl. No.: 14/795,039 analysis are provided. An adapter polynucleotide is disclosed which comprises a double-stranded DNA portion of 15 base (22) Filed: Jul. 9, 2015 pairs and no more than 100 base pairs with a 3" single stranded overhang of at least 3 bases and no more than 10 bases, Related U.S. Application Data wherein said double stranded DNA portion is at the 5' end of (63) Continuation-in-part of application No. PCT/IB2014/ the polynucleotide and wherein the sequence of said 3' single 058153 filed on Jan. 9, 2014. Stranded overhang is selected from the group consisting of s s SEQ ID NOs: 1-8 and 9, wherein the 5' end of the strand of (60) Provisional application No. 61/750,454, filed on Jan. said double-stranded DNA which is devoid of said 3' single 9, 2013. Stranded overhang comprises a free phosphate. Patent Application Publication Oct. 29, 2015 Sheet 1 of 30 US 2015/0307874 A1 Jeddin - JeMO cd Co.
    [Show full text]