Bugs in Delta

Total Page:16

File Type:pdf, Size:1020Kb

Bugs in Delta Predaceous Diving Beetle Pill Bug Banded Garden Spider Acilius abbreviatus N Armadillidium vulgare I Argiope trifasciata N This brochure includes 40 insects, 2 crustaceans, A resident of freshwater ponds, the Pill Bugs are another species of woodlice, This orbweaver spider has dark bands around Bugs in 1 centipede, 1 millipede, 1 harvestman, and Predaceous Diving Beetle preys on small but without the tail-like appendages and its body, and brown and black rings on its 8 spiders. Adult insects have 3 body parts, 6 legs, water animals, its flattened back legs with the ability to roll up when disturbed. legs. The large, concentrically patterned and 2 antennae; most also have wings. Spiders paddling its streamlined body through Woodlice do not cause damage to healthy web that it makes in tall grass and shrubby have 2 body parts and 8 legs. Crustaceans have the water. An air bubble trapped under plants. They are a useful part of the vegetation is able to hold large insects, such 5 or more pairs of legs, while centipedes and the wings allows it to breathe. composting process. as wasps and grasshoppers. millipedes have many body segments and many legs. Common Water Strider Stone Centipede Zebra Jumping Spider While some bugs destroy crops and spread disease, others pollinate flowers and food Aquarius remigis N Lithobius sp. I Salticus scenicus I crops. Bugs provide food for other animals, help control plant and animal populations, Water striders have long, slender This non-insect arthropod has 15 pairs Named for its vivid black-and-white colour, and break down dead things. Factors such as climate change and insecticides are legs, allowing their body weight to be of legs. A pair of front legs are modified this spider, like other jumping spiders, does causing Earth to lose 1-2% of its insects each year. In 2020, Delta was designated distributed over a large surface area. They as fangs to deliver venom to prey. When not build a web, but instead stalks and a Bee City by Bee City Canada for committing to protect pollinators and their habitat. feed on mosquito larvae living under the threatened, it can fling sticky liquid from its pounces on its prey. Before jumping, it glues Use the iNaturalist app or inaturalist.org to identify bugs and record their locations. surface, dead insects on the surface, and last pair of legs. Its diet consists of insects, a silk thread to a surface so that if it misses, other insects that land on the water. spiders, slugs, and worms. it can go back and try again. = Pollinator N = Native I = Introduced Carolina Grasshopper Yellow-spotted Millipede Running Crab Spider Western Honey Bee Dissosteira carolina N Harpaphe haydeniana N Philodromus dispar I Apis mellifera I This is one of the largest grasshoppers The yellow spots are a warning, as this Male Running Crab Spiders are shiny and Domesticated for honey production and in North America. It is usually not noticed millipede can produce cyanide as a defence. iridescent black with white edges. Females pollination, they transport pollen between until it takes wing, when it is often Found in forests along the Pacific Coast, it are variable in colour. They do not build plants and bring it back to the hive for food. mistaken for a butterfly. It is common breaks down leaf litter, freeing its nutrients webs, but catch insects by running them The hive consists of a single queen, a few in disturbed areas, such as dykes, where for other organisms. Males have 30 pairs down. They are named for their ability to hundred male drones, and thousands of it feeds mostly on grasses. of legs, females have 31. scuttle sideways or backwards. female worker bees. Two-striped Grasshopper European Harvestman Goldenrod Crab Spider Yellow-faced Bumble Bee Melanoplus bivittatus N Phalangium opilio I Misumena vatia N Bombus vosnesenskii N Yellowish-green, with a pair of pale yellow Sometimes called “daddy-longlegs”, This spider will change its colour to match This large bumble bee is the most abundant stripes along the top of its body, the Two- harvestmen, like spiders, have 2 body the flower where it is hunting. It feeds one on the West Coast. It has a yellow face, striped Grasshopper produces a low buzzing sections and 8 legs and do not have on insects such as flies, bees, butterflies, partly yellow thorax, a black body, and a sound by rubbing its hindwings against its antennae. Unlike spiders, the body sections grasshoppers, dragonflies, and hoverflies, yellow segment on the abdomen. BC’s 32 forewings. It feeds on a variety of plants. are joined, and they do not have web- using its small fangs to paralyze its prey species of native bumble bees are critical for spinning organs or poison glands. with venom. pollinating food crops and wild plants. European Earwig Giant House Spider Western Black Widow Common Eastern Bumble Bee Forficula auricularia I Eratigena duellica I Latrodectus hesperus N Bombus impatiens I Earwigs are slender nocturnal insects Like other spiders, this one has 8 eyes, The venom of female Black Widow Spiders Imported from eastern North America to with defensive pincers on the tip of 8 legs, and 2 appendages called pedipalps is active against a range of animals but BC as a pollinator, this bumble bee is now their abdomens. Though considered a on the front of the head, used to hold prey not fatal to humans. Symptoms are pain, established in the Lower Mainland. Like pest, they can also be seen as beneficial while eating. Its web is flat and messy, nausea, goosebumps, and localized other bees, it has long antennae, 4 wings, because they prey on agricultural pests, with a funnel at one end where it waits sweating. The female often has a red and hairy abdomen and legs. Head and including aphids. for prey to be trapped. mark on the lower abdomen. abdomen are black; thorax is yellow. Firebrat Cross Orbweaver Black-tailed Bumble Bee Thin-legged Wolf Spider N Thermobia domestica I Araneus diadematus I Pardosa sp. N Bombus melanopygus Firebrats and silverfish are similar in This common spider has a cross-shaped These predators move quickly, using their Also called Orange-rumped Bumble Bee appearance. These wingless, nocturnal marking on its back and builds a wheel- long legs to grab prey. Unlike most other because of the orange band on its abdomen, insects have 2 long antennae on their head shaped web of sticky silk. Prey insects spiders, they have excellent eyesight. This this bumble bee is unusual for sometimes and 3 long bristles at the back. Firebrats that blunder into the web are quickly female is carrying an egg sac. Once the eggs nesting above ground. Except for new prefer hot, moist areas. They like sugar and bitten, wrapped in silk, and stored hatch, the spiderlings will stay on the female’s queens, which hibernate during winter, starch, including glue in book bindings. for later consumption. abdomen for about a week before dispersing. bumble bee colonies die in late fall. Sow Bug Cross Orbweaver (spiderlings) Mason Bee Porcellio scaber I Araneus diadematus I Photos and text by members of the Osmia sp. N Like other woodlice, Sow Bugs are These tiny yellow and black spiders are Mason bees are solitary and do not produce crustaceans and breathe with gills. They newly hatched Cross Orbweavers. The female DELTA honey. Females make nest cells of mud, have armour-like shells made of 7 hard lays up to 800 eggs each autumn, covering NATURALISTS laying an egg in each cell and covering plates, 2 pairs of antennae, 7 pairs of legs, them with silk to protect them until they SOCIETY it with mud. They gather pollen for the and 2 appendages that look like tails. They hatch in spring. If disturbed, the bundle of © 2021 nests in a “brush” on the underside of their cannot roll up when they are disturbed. They spiderlings will disperse on tiny silken safety abdomen, instead of in hind-leg “baskets” feed on organic material in moist habitats. lines before forming a clump again. dncb.wordpress.com like most bees. European Wool Carder Bee Thread-waisted Wasp Spotted Asparagus Beetle Bronze Ground Beetle Anthidium manicatum I Ammophila sp. N Crioceris duodecimpunctata I Carabus nemoralis I These solitary bees have yellow stripes and/ This black wasp has a bulging abdomen This leaf beetle is orange with 12 black Beetles make up about 40% of all insect or spots. Females comb wool fibres from with an orange band near the hair-thin dots. The larvae feed only on the asparagus species, and about 25% of all animals. plants to use as nesting material. When waist. Adults feed on flower nectar berries, while adults prefer tender shoots Ground beetles have a tough shell for their “pollen brushes” are full, they are very and small insects such as caterpillars, and leaves. It is a serious pest of this plant. protection. They hunt at night. Many give yellow. Males use their abdominal spikes paralyzing them to take to their larvae The larvae are orange and slug-like with off bad-tasting chemicals. This flightless to drive off other insects. in underground nests. visible heads and legs. import preys on introduced slugs. Male Green Sweat Bee Narrow-headed Marsh Fly St John’s Wort Beetle Red Soldier Beetle Agapostemon sp. N Helophilus fasciatus N Chrysolina hyperici I Rhagonycha fulva I Although these small bees primarily feed Like other hoverflies, marsh flies mimic About the size of a lady beetle, this beetle Introduced from Eurasia, the Red Soldier on pollen and nectar, they must augment the colours of wasps and bees to ward off was introduced to control wild St John’s Beetle is shiny red with black antennae their diet with salt and moisture, which predators, but they cannot sting.
Recommended publications
  • Key to the Genera of Cerambycidae of Western North America
    KEY TO THE GENERA OF THE CERAMBYCIDAE OF WESTERN NORTH AMERICA Version 030120 JAMES R. LaBONTE JOSHUA B. DUNLAP DANIEL R. CLARK THOMAS E. VALENTE JOSHUA J. VLACH OREGON DEPARTMENT OF AGRICULTURE Begin key Contributions and Acknowledgements James R. LaBonte, ODA (Oregon Department of Agriculture: Design and compilation of this identification aid. Joshua B. Dunlap: Acquisition of most of the images. Daniel R. Clark: Design input and testing. Thomas E. Valente, ODA: Design input and testing. Joshua J. Vlach, ODA: Design input and testing. Thomas Shahan, Thomas Valente, Steve Valley – additional images ODA: Use of the imaging system, the entomology museum, and general support. Our appreciation to USDA Forest Service and ODA for funding this project. Introduction Begin key This identification aid is a comprehensive key to the genera of western North American Cerambycidae (roundheaded or long- horned wood borers). It also includes several genera (and species) that are either established in the region or that are targets of USDA and other exotic cerambycid surveys. Keys to commonly trapped or encountered (based on ODA’s years of wood borer surveys) indigenous species are also included. *This aid will be most reliable west of the Rocky Mountains. It may not function well with taxa found in the desert West and east of the Rockies. This aid is designed to be used by individuals with a wide range of taxonomic expertise. Images of all character states are provided. Begin key Use of This Key: I This key is designed like a traditional dichotomous key, with couplets. However, PowerPoint navigational features have been used for efficiency.
    [Show full text]
  • Honey Bees Tune Colony and Individual Foraging to Multi-Predator Presence and Food Quality
    Fearful Foragers: Honey Bees Tune Colony and Individual Foraging to Multi-Predator Presence and Food Quality Ken Tan1,2*, Zongwen Hu2, Weiwen Chen2, Zhengwei Wang2, Yuchong Wang2, James C. Nieh3 1 Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China, 2 Eastern Bee Research Institute, Yunnan Agricultural University, Kunming, China, 3 Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, United States of America Abstract Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller) and V. tropica (bigger) preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive) as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w), colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55–79% and residence times by 17–33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose), colony and individual foraging favored higher sugar concentrations.
    [Show full text]
  • Apis Mellifera)
    Experimental and Applied Acarology https://doi.org/10.1007/s10493-020-00525-y Electrotarsogram responses to synthetic odorants by Varroa destructor, a primary parasite of western honey bees (Apis mellifera) Michael Light1 · Dave Shutler1 · G. Christopher Cutler2 · N. Kirk Hillier1 Received: 21 September 2019 / Accepted: 8 July 2020 © Springer Nature Switzerland AG 2020 Abstract Olfaction is a key sensory modality for many arthropods and could be used as a tool in pest management through manipulation of pest behavior. Management of Varroa destructor, important parasitic mites of honey bees, could be improved through better understanding of the chemical ecology of this host-parasite relationship. We refned techniques of mount- ing mites to obtain electrophysiological recordings (electrotarsograms) of their responses to synthetic odor stimuli. Results of 271 electrotarsogram recordings from V. destructor revealed responses to 10 odorants relative to solvent controls. Electrotarsogram responses to methyl palmitate, ethyl palmitate, and 2-heptanol were highest at the lowest stimulus loading (10 ng) we tested, suggesting that V. destructor may have acute sensitivity to low concentrations of some odors. Results suggest that odorant origin (e.g., methyl oleate from honey bee larvae, geraniol from adult honey bee alarm pheromone, and α-terpineol, a plant secondary metabolite) can infuence the degree of electrophysiological response. Varroa destructor tended to be more responsive to known attractants and repellents relative to previously unexplored odorants and some repellent terpenes. Electrotarsograms ofer the potential for screening odors to determine their importance in V. destructor host detection. Keywords Acari · Apis mellifera · Electrophysiology · Electrotarsography · Semiochemicals Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1049 3-020-00525 -y) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
    AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies.
    [Show full text]
  • TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List Compiled By: Harsi Parker
    COMPLETE LIST OF TERRESTRIAL ARTHROPODS 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Harsi Parker Number Species name Common name Notes Year Location Taxonomic Order 1 Gammaridae sp. scud 2016 J Amphipoda – Gammaridae 2 Hyalella sp. amphipod 2014, 2016 CH, J Amphipoda – Hyalellidae 3 Acari sp. #1 mite 2012, 2013, 2015, 2016 NP, SH, M, J Arachnida 4 Acari sp. #2 mite 2014 CH Arachnida 5 Opiliones sp. harvestman 2013, 2015 SH, M Arachnida 6 Callobius sp. hacklemesh weaver 2012 NP Arachnida – Amaurobiidae 7 Araneidae sp. orb weaver 2016 J Arachnida – Araneidae 8 Araneus diadematus Cross Orbweaver 2012, 2014 NP, CH Arachnida – Araneidae 9 Clubiona sp. leafcurling sac spider 2012 NP Arachnida – Clubionidae 10 Linyphiinae sp. sheetweb spider tentative ID 2012 NP Arachnida – Linyphiidae 11 Neriene sp. sheetweb spider tentative ID 2014 CH Arachnida – Linyphiidae 12 Pardosa sp. thinlegged wolf spider 2012 NP Arachnida – Lycosidae 13 Philodromus dispar running crab spider 2012 NP Arachnida – Philodromidae 14 Tibellus sp. slender crab spider tentative ID 2014 CH Arachnida – Philodromidae 15 Eris militaris Bronze Jumper tentative ID 2014 CH Arachnida – Salticidae 16 Metaphidippus manni jumping spider tentative ID 2014, 2016 CH, J Arachnida – Salticidae 17 Salticidae sp. #1 jumping spider 2014 CH Arachnida – Salticidae 18 Salticidae sp. #2 jumping spider 2015 M Arachnida – Salticidae 19 Salticus scenicus Zebra Jumper 2013, 2014, 2015 SH, CH, M Arachnida – Salticidae 20 Metellina sp. long-jawed orb weaver 2012 NP Arachnida – Tetragnathidae 21 Tetragnatha sp. long-jawed orb weaver 2013 SH Arachnida – Tetragnathidae 22 Theridiidae sp. cobweb spider 2012 NP Arachnida – Theridiidae 23 Misumena vatia Goldenrod Crab Spider 2013, 2016 SH, J Arachnida – Thomisidae 24 Thomisidae sp.
    [Show full text]
  • The Effects of Native and Non-Native Grasses on Spiders, Their Prey, and Their Interactions
    Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the GRADUATE DIVISION of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Rosemary G. Gillespie Professor Mary E. Power Spring 2014 © 2014 Abstract Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill Doctor of Philosophy in Environmental Science and Policy Management University of California, Berkeley Professor Joe R. McBride, Chair Found in nearly all terrestrial ecosystems, small in size and able to occupy a variety of hunting niches, spiders’ consumptive effects on other arthropods can have important impacts for ecosystems. This dissertation describes research into spider populations and their interactions with potential arthropod prey in California’s native and non-native grasslands. In meadows found in northern California, native and non-native grassland patches support different functional groups of arthropod predators, sap-feeders, pollinators, and scavengers and arthropod diversity is linked to native plant diversity. Wandering spiders’ ability to forage within the meadow’s interior is linked to the distance from the shaded woodland boundary. Native grasses offer a cooler conduit into the meadow interior than non-native annual grasses during midsummer heat. Juvenile spiders in particular, are more abundant in the more structurally complex native dominated areas of the grassland.
    [Show full text]
  • Biodiversity and Community Structure of Spiders in Saran, Part of Indo-Gangetic Plain, India
    Asian Journal of Conservation Biology, December 2015. Vol. 4 No. 2, pp. 121-129 AJCB: FP0062 ISSN 2278-7666 ©TCRP 2015 Biodiversity and Community structure of spiders in Saran, part of Indo-Gangetic Plain, India N Priyadarshini1*, R Kumari1, R N Pathak1, A K Pandey2 1Department of Zoology, D. A. V. College, J. P. University, Chhapra, India 2School of Environmental Studies, Jawaharlal Nehru University, New Delhi, India (Accepted November 21, 2015) ABSTRACT Present study was conducted to reveals the community structure and diversity of spider species in different habitat types (gardens, crop fields and houses) of Saran; a part of Indo – Gangetic Plain, India. This area has very rich diversity of flora and fauna due to its climatic conditions, high soil fer- tility and plenty of water availability. The spiders were sampled using two semi-quantitative methods and pitfall traps. A total of 1400 individual adult spiders belonging to 50 species, 29 genera and 15 families were recorded during 1st December 2013 to 28th February 2014. Spider species of houses were distinctive from other habitats it showed low spider species richness. The dominant spider fami- lies were also differs with habitat types. Araneidae, Pholcidae and Salticidae were the dominant spi- der families in gardens, houses and crop fields respectively. Comparison of beta diversity showed higher dissimilarity in spider communities of gardens and houses and higher similarity between spi- der communities of crop fields and gardens. We find that spiders are likely to be more abundant and species rich in gardens than in other habitat types. Habitat structural component had great impact on spider species richness and abundance in studied habitats.
    [Show full text]
  • Apheloria Polychroma, a New Species of Millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*
    Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*, JACKSON C. MEANS1, DEREK A. HENNEN1 1Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, Virginia 24061, U.S.A. *Corresponding author, email: [email protected] Abstract Millipedes of the genus Apheloria occur in temperate broadleaf forests throughout eastern North America and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring. Keywords: aposematic, Appalachian, Myriapoda, taxonomy, systematics Introduction Millipedes in the family Xystodesmidae are most diverse in the Appalachian Mountains where about half of the family’s species occur. In the New World, the family is distributed throughout eastern and western North America and south to El Salvador (Marek et al. 2014, Marek et al. 2017). Xystodesmidae occur in the Old World in the Mediterranean, the Russian Far East, Japan, western and eastern China, Taiwan and Vietnam. Taxa include species that are bioluminescent (genus Motyxia) and highly gregarious (genera Parafontaria and Pleuroloma); some form Müllerian mimicry rings. Despite their fascinating biology and critical ecological function as native decomposers in broadleaf deciduous forests in the U.S., their alpha-taxonomy is antiquated, and scores of new species remain undescribed.
    [Show full text]
  • Omus Audouini
    Omus audouini English name Audouin’s Night-stalking Tiger Beetle Scientific name Omus audouini Family Carabidae (Ground and Tiger Beetles) Tribe Cicindelini (Tiger Beetles) Other scientific names Omus ambiguus, O. borealis, O. californicus audouini, O. cephalicus audens, O. oregonensis, O. rugipennis, O. solidulus Risk status BC: critically imperilled (S1); Red-listed; BC Conservation Framework Highest Priority: 1 (Goal 3, Global response) Canada: may be at risk (N2); COSEWIC: not yet assessed, status report commissioned (2012) Global: secure (G5) Elsewhere: Washington – secure (S5); Oregon – secure (S5); California – apparently secure (S4) Range/Known distribution Audouin’s Night-stalking Tiger Beetle occurs in coastal western North BRITISH America from extreme southwestern COLUMBIA British Columbia to northwestern California. A few inland records are known from central southern Wash- ington and southwestern Oregon. In Canada, this species is restricted to a small area of the Georgia Basin on southeastern Vancouver Island in N and around Victoria (one recent and several historical records) and the adjacent mainland in the Boundary COMOX Bay area (one historical and several PORT recent records). ALBERNI VANCOUVER NANAIMO Field description Adults. Adult Omus are “tiger DUNCAN beetles”, part of the “ground and tiger beetle” family Carabidae. Adult Carabidae can be distinguished VICTORIA from almost all other beetles by the large fused plate covering most of Distribution of Omus audouini the first abdominal segment at the l Recently confirmed sites l Historical sites base of the hind pair of legs. Tiger beetle adults are active predators with large eyes, distinctive sickle-like mandibles, and thread-like 11-segmented antennae attached to the upper edge of the clypeus (above the mandibles).
    [Show full text]
  • AKES Newsletter 2016
    Newsletter of the Alaska Entomological Society Volume 9, Issue 1, April 2016 In this issue: A history and update of the Kenelm W. Philip Col- lection, currently housed at the University of Alaska Museum ................... 23 Announcing the UAF Entomology Club ...... 1 The Blackberry Skeletonizer, Schreckensteinia fes- Bombus occidentalis in Alaska and the need for fu- taliella (Hübner) (Lepidoptera: Schreckensteini- ture study (Hymenoptera: Apidae) ........ 2 idae) in Alaska ................... 26 New findings of twisted-wing parasites (Strep- Northern spruce engraver monitoring in wind- siptera) in Alaska .................. 6 damaged forests in the Tanana River Valley of Asian gypsy moths and Alaska ........... 9 Interior Alaska ................... 28 Non-marine invertebrates of the St. Matthew Is- An overview of ongoing research: Arthropod lands, Bering Sea, Alaska ............. 11 abundance and diversity at Olive-sided Fly- Food review: Urocerus flavicornis (Fabricius) (Hy- catcher nest sites in interior Alaska ........ 29 menoptera: Siricidae) ............... 20 Glocianus punctiger (Sahlberg, 1835) (Coleoptera: The spruce aphid, a non-native species, is increas- Curculionidae) common in Soldotna ....... 32 ing in range and activity throughout coastal Review of the ninth annual meeting ........ 34 Alaska ........................ 21 Upcoming Events ................... 37 Announcing the UAF Entomology Club by Adam Haberski nights featuring classic “B-movie” horror films. Future plans include an entomophagy bake sale, summer collect- I am pleased to announce the formation of the Univer- ing trips, and sending representatives to the International sity of Alaska Fairbanks Entomology Club. The club was Congress of Entomology in Orlando Florida this Septem- conceived by students from the fall semester entomology ber. course to bring together undergraduate and graduate stu- The Entomology Club would like to collaborate with dents with an interest in entomology.
    [Show full text]
  • Deadwood and Saproxylic Beetle Diversity in Naturally Disturbed and Managed Spruce Forests in Nova Scotia
    A peer-reviewed open-access journal ZooKeysDeadwood 22: 309–340 and (2009) saproxylic beetle diversity in disturbed and managed spruce forests in Nova Scotia 309 doi: 10.3897/zookeys.22.144 RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia DeLancey J. Bishop1,4, Christopher G. Majka2, Søren Bondrup-Nielsen3, Stewart B. Peck1 1 Department of Biology, Carleton University, Ottawa, Ontario, Canada 2 c/o Nova Scotia Museum, 1747 Summer St., Halifax, Nova Scotia Canada 3 Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada 4 RR 5, Canning, Nova Scotia, Canada Corresponding author: Christopher G. Majka ([email protected]) Academic editor: Jan Klimaszewski | Received 26 March 2009 | Accepted 6 April 2009 | Published 28 September 2009 Citation: Bishop DJ, Majka CG, Bondrup-Nielsen S, Peck SB (2009) Deadwood and saproxylic beetle diversity in naturally disturbed and managed spruce forests in Nova Scotia In: Majka CG, Klimaszewski J (Eds) Biodiversity, Bio- systematics, and Ecology of Canadian Coleoptera II. ZooKeys 22: 309–340. doi: 10.3897/zookeys.22.144 Abstract Even-age industrial forestry practices may alter communities of native species. Th us, identifying coarse patterns of species diversity in industrial forests and understanding how and why these patterns diff er from those in naturally disturbed forests can play an essential role in attempts to modify forestry practices to minimize their impacts on native species. Th is study compares diversity patterns of deadwood habitat structure and saproxylic beetle species in spruce forests with natural disturbance histories (wind and fi re) and human disturbance histories (clearcutting and clearcutting with thinning).
    [Show full text]