Subject Index

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index SUBJECT INDEX Acacia, 9–10, 14 Bacillus, 102 Acid stress, 270–273 Bacteroids, 173–177, 226 Aculeiferum, 10 developmental fate of, 175–176 Acyl homoserine lactones (AHL), differentiation, 174–175 263–266 endocytosis, 173–174 Aeschynomene, 13, 331, 338 gene expression in, 266–267 Agrobacterium, 8, 129–130, 132, 139, physiology, 241–276 165, 176, 248, 256, 260–262, plant signals in, 176–177 270–272 Bean, see Phaseolus Alanine synthesis/metabolism, “β-rhizobia”, 11, 24 248, 296 Biserrula, 37, 382–383, 385 Albizia, 2 Blastobacter, 24–25 Alfalfa, see Medicago Bobgunnia, 11 Allorhizobium, 25 Bradyoxetin, 135–136, 266 Alnus, 2 Bradyrhizobium 25–26, 31–32, 37, Amide export, 303 39, 41, 60, 122, 127–130, 132, γ-aminobutyric acid, see GABA 135–136, 139, 242–251, 254–260, Ammonia assimilation/transport, 262, 266, 269–270, 273, 275, 248, 250 339, 380 Andira, 13 Brucella, 176, 256, 272 Antioxidants in nodules, 345–351 Burkholderia, 11, 24, 26, 379 Arabidopsis, 129, 163–164, 170, 203, 213–217, 307–308, 310, 312, Caesalpinioideae, 9 324, 345, 349 Cajanus, 14, 381 Arachis, 13, 176, 212–213, 217, 364 Calcium gradients, 156–159, 162, Ascorbate peroxidase, 347–348 194–197 Ascorbic acid, 346, 350–351 Calopogonium, 123 Aspalathus, 14 Calystegia, 253 Asparagine synthetase, 309–310 Campsiandra, 9 Aspartate aminotransferase, 308–309 Carbonic anhydrase, 300–301 Aspergillus, 102 CASTOR/CASTOR, 159, 196, Astragalus, 15, 379 202, 229 Ateleia, 11 Casuarina, 2 Atropa, 253 Catalase, 273, 348–349 AUX/AUX, 164–165 Cdk/CDK, 160–161, 172 Auxin, 163–165 Ceanothus, 2 Azorhizobium, 14, 25, 118, 132, 247 Cell cycle, 160–161 Azospirillum, 41, 102, 126, 263 Chaetocalyx, 13 Azotobacter, 322 Chamaecrista, 9, 16, 332 395 396 SUBJECT INDEX Chamaecytisus, 13 Evolution Chemotaxis and motility, 259–263 of apyrases, 3–6 Chlamydomonas, 203 of hemoglobins, 3–6 Cicer, 365, 367–368, 381 of legumes, 1–21 Cichorium, 371 of mycorrhizas, 3–7 Clitoria, 367, 369 of signals, 3–6 Clover, see Trifolium of symbiosis, 1–21 Colonization of roots, see Root Extracellular polysaccharides (EPS), colonization 134, 142, 162, 265–266, 343 Commercial inoculants, 92–101 Competitiveness, 38–39 Faidherbia, 10 Convolvulus, 253 Flagella, 259–263 Coriaria, 2 Flavonoids, 117–121, 140–143, Cortical-cell activation, 160–169 163–165 Cotton, 39, 384 perception by NodD, 120–121 Cupriavidus, 11, 26 Flemingia, 129 Cyathostegia, 11 Functional genomics, see Genomics cyc/Cyc, 160 Fusarium, 40–41 Cyclolobium, 12, 14 Cyclopia, 14 GABA (γ-aminobutyric acid), 246, 302 Cytokinins, 165 Genes in symbiosis, see Rhizobia or plant symbiotic genes Dahlstedtia, 14 Genome Dalea, 31, 36 conservation, 215–219 Datisca, 2 sequencing, 193, 214–215 Desmanthus, 31 Genomics, 193–194, 211–233 Devosia, 24, 26 Gleditsia, 17 Dicarboxylate metabolism and gln/Gln, 225 transport, 244–247, 251 Gluconeogenesis (rhizobia), 243–244 Dimorphandra, 9 Glutamate synthase (GOGAT), Discolobium, 331 306–308 DMI/DMI, 159–160, 173–174, Glutamine synthetase (GS), 225, 196–199, 201–204, 221, 305–306 230–232 Glutathione, 346–351 Dorycnium, 372 Glutathione peroxidase, 349 Glycine, see Soybean Ecology of root-nodule bacteria, Glycogen metabolism, 247–248 23–43 Glycyrrhiza, 369 Ecto-mycorrhizal fungi, 7, 14 GOGAT, see Glutamate synthase Endo-mycorrhizal fungi, 3–6, 14 Grazielodendron, 13 Enod/ENOD, 162, 167–168, 195, 204, GS, see Glutamine synthetase 332–333 Gunnera, 17 Ensifer, 24, 26 Eriosema, 370 H4/H4, 161 Erythrophleum, 9, 16 HAR/HAR, 196, 204, 231, 233 Ethylene (as hormone), 165–167 HCL/HCL, 159, 222, 231, 233 SUBJECT INDEX 397 Heat stress, 274–275 selecting strains for, 88–92 Hedysarum, 371–372, 379 storage and shelf life for 99–101 Heme peroxidases, 349 technologies for, 77–109 Hemoglobins Iron uptake/use, 254–256 evolution of, 3–6 function, 345 Kalanchöe, 140 occurrence, 323–324 Kennedya, 14 Homoglutathione, see Glutathione Hormones (plant), see Plant hormones Lablab, 369 or nodulation Lactococcus, 200 Host plant, ecosystem fragmentation Lathyrus, 34 by, 36 LAX/LAX, 164–165 Host-plant sanctions, 35–36, 66–70, 176 Leghemoglobin, 323–324, 336–337, Host-symbiont cooperation 344–345 cheating symbionts, 70–71 Legumes explanations for, 61–70 acid and infertile soils, for, mixed nodules, in, 70–71 378–380 problems with, 60–61 agricultural uses of, 366–367 HRGP, 162 anti-helminthic uses of, 371–372 Hydrogenases, 257 aquaculture uses of, 373–374 Hydrogen peroxide (H2O2), 169, 273, breeding constraints of, 367–368, 322–323, 342–344 375–378 Hydroxyl radical, see Reactive oxygen evolution of, 8–17 species fishmeal, as, 373–374 Hymenocarpus, 383 future uses for, 363–386 Hymenolobium, 13 genetic analysis of, 228–230 genomics of, 211–219, 228–233, Indigofera, 14 313–315 Infection, 5, 15–16, 156–159, 191–192 health benefits of, 369–371 Infection thread hydrological stability, for, 375 formation, 156–158 maintaining the symbiosis, growth, 162 382–383 Inocarpus, 13 metabolomics of, 226–228 Inoculation new uses for, 368–380 co-inoculation with PGP pharmaceuticals from, 369–371 organisms, 102–103 production systems using, commercial inoculants for, 92–101 380–384 constraints to, 107–109 proteomics of, 223–226, 315 custom-inoculated seed, 101–102 research advances for, 384–386 formulations for, 93–98 transcriptomics of, 219–223 future prospects for, 105–107 usage patterns, 365–366 need for, 78–88 Lens, 34, 365, 367–368 predicting need for, 86–88 Lessertia, 379–380 pre-inoculated seed, 101–102 Leucaena, 123, 126, 128–129, 244, 252 quality control for, 103–107 Lipochitooligosaccharides, see Nod rhizobia numbers in soil, 81–86 factors 398 SUBJECT INDEX Lipopolysaccharides (LPS), 142–143, gluconeogenesis, 243–244 177, 343 glycogen of, 247–248 Lolium, 366 malic enzyme, 246 Lotononis, 379 malonate of, 246 Lotus, 14, 17, 63, 122–123, 128–129. metals in, 254–258 142, 162, 165–166, 170, 175, nitrogen, of, 248–251 191–194, 196, 200–201, 203–205, organic acid, of, 244–246, 251 211–223, 226–233, 297, 300, O2 regulation of, 244–245 305–306, 309, 313–314, 330, pentose-phosphate pathway, 242 332–333, 335–337, 345, 348, PHB, of, 247 371–372, 375, 385 polyols, of, 242–243 Lupinus, 13, 38, 170, 248, 300, rhizosphere-associated, 251–253 302–303, 308, 321, 328, 332, sugars, of, 242–243 337, 339–340, 344, 365, 367–368, TCA cycle, 245–246 373–374 vitamins, of, 258 LYK/LYK, 196, 201, 231–232 Metabolism (in nodules) lysR/LysR-type transcriptional allantoin formed in, 303–304 regulator, 118, 121–122, 132 asparagine formed by, 309–310 carbon, of, 296–302 Macroptilium, 123, 128, 130, 136, malate production in, 301–302 139, 244, 367 nitrogen, of, 302–310 Maize, see Zea mays oxaloacetate made by, 299–301 Malate dehydrogenase, 301–302 sugars, of, 294–295, 297–299 Malic enzyme, 246 Metabolomics, 226–228 Malonate metabolism, 246 Metal effects Manganese uptake/use, 258 on legumes, 351 Medicago, 4, 15, 34, 42, 64, 122–123, on root-nodule bacteria, 351 125, 134, 159, 161–162, 164–166, Metarhizium, 102 168, 170–171, 174–175, 177, 179, Methylobacterium, 13, 24, 379 191–194, 196–197, 200–201, Microsynteny, 215–219 203–205, 211–224, 228–233, 244, Mimosa, 9, 11 249–250, 297, 300–303, 306–310, Mimosoideae, 9–11 313–314, 322, 325, 331, 333–335, Moldenhauwera, 9 340, 342, 344, 346–349, 351–352, Motility, see Chemotaxis 364–365, 369, 375, 378, 381, 385 Mycorrhiza Melanoxylon, 9 dual infection with, 14, 221 Mesorhizobium, 26, 36–37, 122, evolution of AM, 3–6 128–130, 132, 142, 242, 254–259, evolution of ECM, 7 345, 380, 382–383, 385 infection pathway, 198–199 Metabolism (by rhizobia) Myrica, 2 alanine, 248–249 Myxococcus, 140, 262 ammonium of, 248 C and N linkages, 250 N2 fixation, 177–178 carbon, of, 242–248 O2 effects on, 321–324 Entner-Doudoroff pathway in, 242 NARK/NARK, 204, 231 GABA, of, 246 NCR/NCR, 177 SUBJECT INDEX 399 Nematodes, 7, 371–372 aspartate aminotransferase in, Neptunia, 15, 166, 331–332 308–309 NFP/NFP, 196–197, 198–201, autoregulation in, 204–205 231–232 development of, 3–5, 153–156 NFR/NFR, 196, 200–201, 229, 231–232 differentiation in, 169–173 NGR234, 136–140, 244, 247 endoreduplication in, 169–173 Nickel uptake/use, 258 glutamate synthase in, 306–308 Nif genes, 132–134, 225 glutamine synthetase in, 305–306 NIN/NIN, 196, 203–204, 228–229, glutathione in, 346–351 231–233 hemoglobins in, 323–324, 345 Nissolia, 13 internal O2 of, 324–327, 336–337 N2 fixation, 177–178 leghemoglobin in, 323–324, O2 effects on , 321–324 336–337, 344–345 Nitric oxide, see Reactive nitrogen metabolism in, 226–227, 293–315 species mycorrhizas and, 3–7 Nitrogen assimilation, 302–310 N2 fixation in, 177–178 Nod/noe/nol/nop genes, 105, 122–123, nematode galls and, 7 127, 130–140, 154, 200 nitric oxide in nodules, see Nod boxes, 118–120, 122–132, 135, Reactive nitrogen species 137–139, 140–141 nitrogenase in, 336–337 NodD/NodD, 118–122, 130–140 nutrient exchange in, 225–228 Nod factors, 105, 122–127 O2-diffusion barrier, 324–342 receptors, 199–201 O2 diffusion into, 324–342 signaling, 117–140, 156–160, organic acids in, 294–295 194–199 oxidative stress in, 345–351 synthesis genes, 122–125 pathways for C/N use in, 293–315 Nodulation plant hormones, role of, 163–169 autoregulation of, 204–205 plasmid transfer, 264–265 cell-cycle involvement, 160–161 pollen tubes and, 7–8 ethylene (as hormone) in, 165–167 polyamines in, 227 evolution of, 16 polyols in, 227 hydrogen peroxide (H2O2) in, 169 primitive, 15–16 induction of, 160–169, 191–192 protection from O2 in, 324–342 nitric oxide (NO) in, 169 proteins expressed in, 224–226 plant hormones in, 163–169 reactive nitrogen species (RNS) reactive oxygen species (ROS) in, 322–323,
Recommended publications
  • Fam+Fabaceae.Pdf
    Universidad del Zulia Facultad de Agronomía Departamento de Botánica Taxonomía Vegetal Familia Fabaceae Guillermo A. Sthormes-Méndez Taxonomía vegetal Familia Fabaceae Ubicación Taxonómica: • Reino: Vegetabyle • Sub-reino: Embriobionta • División: Magnoliophyta • Clase: Magnoliposida • Orden: Fabales •Familia: Fabaceae (Leguminosae) Taxonomía vegetal Familia Fabaceae Origen: Cosmopolita Número de Géneros: 180. Número de especies: Aproximadamente unas 2500 a 3000 (Heywood, 1979). Divididas en 7, 8 0 9 tribus basadas en el número de caracteres. Taxonomía vegetal Familia Fabaceae LEGUMINOSAS Grupo de gran tamaño (18.000 spp.) Orden Leguminales o Fabales; subclase Rosidae División en tres subfamilias ( Polhill et al. 1981) División en tres familias (Cronquist, 1981) Taxonomía vegetal Familia Fabaceae LEGUMINOSAS División en tres subfamilias ( Polhill et al. 1981): 1. Mimosoideae (4 tribus) 2. Caesalpinioideae (5 tribus) 3. Papilionoideae (47 tribus) Taxonomía vegetal Familia Fabaceae LEGUMINOSAS División en tres familias (Cronquist, 1981) 1. Mimosaceae 2. Caesalpiniaceae 3. Papilionaceae Taxonomía vegetal Familia Fabaceae Polygalaceae Surianaceae Fabales Quillajaceae Tribus Cercideae, Detarieae y el género Duparquetia Fabaceae Caesalpinioideae Mimosoideae Faboideae Distribución geográfica: Los miembros de esta familia se encuentran distribuidos en las zonas Tropicales y subtropicales, sin embargo pocas especies se encuentran en clima templado. (Heywood, 1979) Taxonomía vegetal Familia Fabaceae CAESALPINIACEAE Aprox. 3.500 especies; 125
    [Show full text]
  • Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
    Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm.
    [Show full text]
  • Filogenia Del Género Zapoteca (Leguminosae, Caesalpinioideae), Ingeae
    Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas Filogenia del género Zapoteca (Leguminosae, Caesalpinioideae), Ingeae Proyecto que presenta Christian Tun Tun MAESTRÍA EN CIENCIAS (Ciencias Biológicas: Opción Recursos Naturales) Mérida, Yucatán, México CENTRO DE INVESTIGACIÓN CIENTÍFICA DE YUCATÁN, A. C. POSGRADO EN CIENCIAS BIOLÓGICAS DECLARACIÓN DE PROPIEDAD Declaro que la información contenida en la sección de Materiales y Métodos Experimentales, los Resultados y Discusión de este documento proviene de las actividades de experimentación realizadas durante el período que se me asignó para desarrollar mi trabajo de tesis, en las Unidades y Laboratorios del Centro de Investigación Científica de Yucatán, A.C., y que a razón de lo anterior y en contraprestación de los servicios educativos o de apoyo que me fueron brindados, dicha información, en términos de la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, le pertenece patrimonialmente a dicho Centro de Investigación. Por otra parte, en virtud de lo ya manifestado, reconozco que de igual manera los productos intelectuales o desarrollos tecnológicos que deriven o pudieran derivar de lo correspondiente a dicha información, le pertenecen patrimonialmente al Centro de Investigación Científica de Yucatán, A.C., y en el mismo tenor, reconozco que si derivaren de este trabajo productos intelectuales o desarrollos tecnológicos, en lo especial, estos se regirán en todo caso por lo dispuesto por la Ley Federal del Derecho de Autor y la Ley de la Propiedad Industrial, en el tenor de lo expuesto en la presente Declaración. Firma: ________________________________ Nombre: Christian Emmanuel Tun Tun Este trabajo se llevó a cabo en la Unidad de Recursos Naturales del Centro de Investigación Científica de Yucatán, y forma parte del proyecto titulado Sistematica de la familia Leguminosae bajo la dirección del Dr.
    [Show full text]
  • Nahuatl Cultural Encyclopedia: Botany and Zoology, Balsas River, Guerrero
    FAMSI © 2007: Jonathan D. Amith Nahuatl Cultural Encyclopedia: Botany and Zoology, Balsas River, Guerrero Research Year : 2004 Culture : Nahuatl Chronology : Colonial Location : Guerrero, México Site : Balsas River Valley Table of Contents Introduction Biological Inventory Textual Documentation: Audio and Transcription Collaborations Granting Agencies Scientific Institutions and Individual Academic Researchers Indigenous Communities, Associations, and Individuals Community Outreach Appendices List of Figures Sources Cited Submitted 03/07/2007 by: Jonathan D. Amith Director: México-North Program on Indigenous Languages Research Affiliate: Gettysburg College, Department of Sociology and Anthropology; Yale University; University of Chicago [email protected] Introduction Although extensive documentation of Aztec natural history was produced in the colonial period (e.g., de la Cruz, 1940; Hernández, 1959; Sahagún, 1963) there has been virtually no comprehensive research on modern Nahuatl ethnobiology. Attempts (dating to the nineteenth century) to identify in scientific nomenclature the plants described in the aforementioned colonial sources have relied on library studies, not fieldwork. There exists no comprehensive study of modern Nahuatl ethnozoology to shed light on the prehispanic culture in this domain. This situation can be compared to Mayan studies, which has been pioneering and intensive and has contributed greatly to our understanding of this culture, both before and after conquest (see Alcorn, 1984, Berlin and Berlin, 1996; Berlin, Breedlove, and Raven, 1974; Breedlove and Laughlin, 1993; Hunn, 1977; Orellana, 1987; Roys, 1931; to name but the most well known). The present FAMSI award was to begin to fill this lagunae in primary data and, in addition, for the production of an electronic and written corpus of Nahuatl language materials on the natural history (botany and zoology) of the Balsas River Valley in central México.
    [Show full text]
  • Lessons from the Mesoamerican Dry Forest Dry Mesoamerican the from Lessons Use: Through Conservation
    Conservation through use: Lessons from the Mesoamerican dry forest This book examines the concept of ‘conservation through use’, using the conservation of tree species diversity in Mesoamerican tropical dry forest in Honduras and Mexico as a case study. It discusses the need to develop conservation strategies based both on a botanical determination of those species most in need of conservation and an Conservation through use: understanding of the role these trees play in local livelihoods. Based on a detailed analysis of smallholder farming systems in southern Honduras and coastal Oaxaca Lessons from the and a botanical survey of trees and shrubs in different land use systems in both study areas, the fi ndings confi rm the importance of involving the local population Mesoamerican dry forest in the management and conservation of Mesoamerican tropical dry forest. The book is directed at researchers in both the socioeconomic and botanical Adrian Barrance, Kathrin Schreckenberg spheres, policy makers at both national and international level, and members of governmental and non-governmental organisations, institutions and projects active and James Gordon in the conservation of tropical dry forest and in rural development in the region. Overseas Development Institute 111 Westminster Bridge Road London SE1 7JD, UK Tel: +44 (0)20 7922 0300 Fax: +44 (0)20 7922 0399 Email: [email protected] Website: www.odi.org.uk ISBN 978-0-85003-894-1 9 780850 038941 Conservation through use: Lessons from the Mesoamerican dry forest Adrian Barrance, Kathrin Schreckenberg and James Gordon This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries.
    [Show full text]
  • Leguminosae: Mimosoideae) Com Ênfase Em Calliandra Benth
    ELVIA RODRIGUES DE SOUZA ESTUDOS FILOGENÉTICOS NA TRIBO INGEAE (LEGUMINOSAE: MIMOSOIDEAE) COM ÊNFASE EM CALLIANDRA BENTH. E GÊNEROS AFINS Feira de Santana – BA 2007 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA ESTUDOS FILOGENÉTICOS NA TRIBO INGEAE (LEGUMINOSAE: MIMOSOIDEAE) COM ÊNFASE EM CALLIANDRA BENTH. E GÊNEROS AFINS ÉLVIA RODRIGUES DE SOUZA Tese apresentada ao Programa de Pós-Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Doutora em Botânica. ORIENTADOR: PROF. DR. LUCIANO PAGANUCCI DE QUEIROZ CO- ORIENTADOR: PROF. DR. CÁSSIO VAN DEN BERG FEIRA DE SANTANA – BA 2007 Ficha catalográfica: Biblioteca Central Julieta Carteado Souza, Élvia Rodrigues de S714e Estudos filogenéticos na tribo Ingeae (Leguminosae: Mimosoideae) com ênfase em Calliandra Benth. e gêneros afins / Élvia Rodrigues de Souza. – Feira de Santana, 2007. 110 f. : il. Orientador: Luciano Paganucci de Queiroz Co-orientador: Cássio van den Berg Tese (Doutorado em Botânica)– Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, 2007. 1. Leguminosae. 2. Mimosoideae. 3. Calliandra. I. Queiroz, Luciano Paganucci. II. Berg, Cássio van den. III. Universidade Estadual de Feira de Santana. IV. Departamento de Ciências Biológicas. V. Título. CDU: 582.736/.737 “Existe somente uma idade para a gente ser feliz, somente uma época na vida de cada pessoa em que é possível sonhar e fazer planos e ter energia bastante para realizá-los a despeito de todas as dificuldades e obstáculos. Uma só idade para a gente se encantar com a vida e viver apaixonadamente e desfrutar tudo com toda intensidade sem medo nem culpa de sentir prazer.
    [Show full text]
  • Fabaceae (Leguminosae) En La Península De Yucatán, México
    Desde el Herbario CICY 8: 111–116 (4/Agosto/2016) Centro de Investigación Científica de Yucatán, A.C. http://www.cicy.mx/sitios/desde_herbario/ ISSN: 2395-8790 Fabaceae (Leguminosae) en la Península de Yucatán, México 1 2 RODRIGO DUNO DE STEFANO & WILLIAM CETZAL-IX 1Herbario CICY, Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C. Calle 43, No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México. [email protected] 2Instituto Tecnológico de Chiná, Calle 11 entre 22 y 28, Colonia Centro, Chiná, 24050, Campeche, México. [email protected] El año 2016 fue decretado por la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) el año de las legumbres. En este sentido, deseamos presentar un primer artículo sobre la familia Leguminosae (Fabaceae). Las leguminosas son la familia de plantas con flores más diversa del planeta después de las orquídeas y compuestas, con 19,325 especies clasificadas en 727 géneros. La familia presenta una distribución cosmopolita y se desarrolla en diversos tipos de climas y ecosistemas, especialmente en las tierras bajas y medias. En la Península de Yucatán es la familia más diversa con 228 especies (casi el 10% de toda la flora), muy común en todos los tipos de vegetación presentes en el área, en especial en las selvas secas. Palabras clave: Diversidad florística, leguminosas, Yucatán. Las leguminosas son la familia de plantas por unas suturas; las semillas se colocan con flores más diversa del planeta después en una sola hilera (Lewis et al., 2005). Sin de las orquídeas (Orchidaceae) y com- embargo, muchos miembros de la familia puestas (Asteraceae); existen 727 géneros presentan otros tipos de frutos (e.g.
    [Show full text]
  • The Texas Species of Calliandra (Leguminosae, Mimosoideae)
    NUMBER3 TURNER: CALLIANDRA OF TEXAS 13 THE TEXAS SPECIES OF CALLIANDRA (LEGUMINOSAE, MIMOSOIDEAE) B. L. Turner Section of Integrative Biology and Plant Resources Center, The University of Texas, Austin, Texas, 78712, U.S.A. Abstract: The genus Calliandra is represented in Texas by five species: C. bifiora Tharp, a relatively uncommon taxon of southern Texas and Tamaulipas, Mexico; C. conferta Benth., a somewhat uncommon, species of northern Mexico, south-central and southern Texas; C. eriophylla Benth., a widespread variable species of Mexico, represented in Texas by rare outlier populations in Uvalde County; C. humilis Benth. (including C. herbacea Engelm. ex A. Gray), a very distinctive herbaceous species of Mexico, occurring in Texas in mostly montane igneous soils of the trans-Pecos, and C. iselyi B. L. Turner, sp. nov., a newly proposed species from the Big Bend region of trans-Pecos, Texas, this previously included under the descriptive parameters of C. conferta. A key to the Texas species of Calliandra is provided along with dot maps showing their distribution. Keywords: Calliandra, Leguminosae, Texas. Isely (1998) provided a treatment of 4. Leaves with mostly 2-3 pairs of pinnae Calliandra for the United States. In this he . 3. C. eriophylla 4. Leaves with mostly 1 pair of pinnae recognized six species as native to the 5. Peduncles 10-20 mm long; petals gla­ U.S.A., five of these occurring in Texas. Un­ brous or nearly so . 5. C. iselyi fortunately, he failed to note that one of the 5. Peduncles 1-5 mm long; petals mark­ latter, C. media (Mart.
    [Show full text]
  • Download Download
    Morphological phylogeny of Megachilini and the evolution of leaf-cuter behavior in bees (Hymenoptera: Megachilidae) Victor H. Gonzalez, Grey T. Gustafson, & Michael S. Engel Journal of Melitology No. 85 ISSN 2325-4467 3 July 2019 On the cover: A female of Megachile sp. preparing to take a freshly cut coinvine [Dal- bergia ecastaphyllum (L.) Taub. (Fabaceae: Faboideae: Dalbergieae)] leaf section back to her nest (Frenchman’s Forest Natural Area, Palm Beach County, Florida; photograph by Bob Peterson; used with permission). Journal of Melitology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 85, pp. 1–123 3 July 2019 Morphological phylogeny of Megachilini and the evolution of leaf-cuter behavior in bees (Hymenoptera: Megachilidae) Victor H. Gonzalez1,2, Grey T. Gustafson2,3, & Michael S. Engel2,3,4 Abstract. A unique feature among bees is the ability of some species of Megachile Latreille s.l. to cut and process fresh leaves for nest construction. The presence of a razor between the female mandibular teeth (interdental laminae) to facilitate leaf-cuting (LC) is a morphological novelty that might have triggered a subsequent diversifcation in this group. However, we have a lim- ited understanding of the phylogeny of this group despite the large number of described species and the origins and paterns of variations of this mandibular structure are unknown. Herein, using a cladistic analysis of adult external morphological characters, we explored the relation- ships of all genera of Megachilini and the more than 50 subgenera of Megachile s.l. We coded 272 characters for 8 outgroups and 114 ingroup species.
    [Show full text]
  • Palaeontologia Electronica Pleistocene Flora of Rio Puerto
    Palaeontologia Electronica http://palaeo-electronica.org Pleistocene flora of Rio Puerto Viejo, Costa Rica Terry A. Lott, David L. Dilcher, Sally P. Horn, Orlando Vargas, and Robert L. Sanford, Jr. ABSTRACT The Puerto Viejo Pleistocene megafossil flora presented here is based on fossil leaves, fruits, and seeds from the banks of Río Puerto Viejo, Costa Rica. Eleven types of plant megafossils are described in this study, including Laurophyllum, Oxandra, Pip- erites, Ingeae, Parinari, Sacoglottis, Byrsonima, and Pouteria. Detailed morphological and anatomical data are provided for each taxon. Although the Puerto Viejo site is situ- ated in the Atlantic Lowland Tropical Wet Forest today, the fossil flora suggests a rela- tionship with nearby modern forests at slightly higher elevation, and cooler paleotemperatures than at present. Terry A. Lott. Paleobotany and Palynology Laboratory, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800, USA. [email protected] David L. Dilcher. Department of Biology, Indiana University, Bloomington, Indiana 47401, USA. [email protected] Sally P. Horn. Department of Geography, University of Tennessee, Knoxville, Tennessee 37996, USA. [email protected] Orlando Vargas. La Selva Biological Station, Organization for Tropical Studies, Puerto Viejo de Sarapiquí, Costa Rica. [email protected] Robert L. Sanford, Jr. Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA. [email protected] KEY WORDS: Pleistocene; Costa Rica; fossil plants; cuticle; anatomy INTRODUCTION ous studies of the extant flora (Hartshorn and Ham- mel 1994; Wilbur 1994), along with some The lowland neotropical flora of La Selva Bio- paleoecological research focused on pollen and logical Station in Costa Rica (10°26’N, 84°00’W) is charcoal evidence of Late Quaternary vegetation predominately that of an undisturbed tropical wet and fire history (Horn and Sanford 1992; Kennedy forest.
    [Show full text]
  • Floral Ontogeny of Mimosoid Legumes. Jose Israel Ramirez-Domenech Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Floral Ontogeny of Mimosoid Legumes. Jose Israel Ramirez-domenech Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ramirez-domenech, Jose Israel, "Floral Ontogeny of Mimosoid Legumes." (1989). LSU Historical Dissertations and Theses. 4804. https://digitalcommons.lsu.edu/gradschool_disstheses/4804 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Fabaceae) from Sinaloa, Mexico
    Phytotaxa 401 (1): 049–054 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.401.1.4 A narrowly endemic new species of Calliandra series Racemosae (Fabaceae) from Sinaloa, Mexico HÉCTOR M. HERNÁNDEZ* & CARLOS GÓMEZ-HINOSTROSA Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-233, 04510 Mexico City, Mexico. Author for correspondence: [email protected] Abstract Calliandra estebanensis, a new species of Fabaceae, mimosoid, from a remote locality of Sinaloa, Mexico, is here described and illustrated. The new species is probably closely related to C. grandiflora, an extremely common species frequently found in oak, pine and pine-oak forests, from northwestern Mexico, in Durango, Sinaloa and Sonora, to Honduras and El Salva- dor. The new species is distinguished from C. grandiflora by its flowers with longer peduncles, shorter pedicels, and larger calyces and corollas, and by the much denser white-sericeous vestiture covering all reproductive structures. Excluding the longer pedicels, C. grandiflora has smaller flower parts, which are covered with a finer vestiture of shorter, variably-colored trichomes. Resumen Se describe e ilustra Calliandra estebanensis, una nueva especie de Fabaceae mimosoide de una remota localidad de Sinaloa, México. La especie nueva está posiblemente cercanamente relacionada con C. grandiflora, una especie sumamente común en bosques de encino, pino y pino-encino, desde el noroeste de México (Durango, Sinaloa y Sonora) hasta Honduras y El Salvador. Las dos especies se pueden distinguir en que C.
    [Show full text]