Diversity and Conservation Status of Native Australian Bees*

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Conservation Status of Native Australian Bees* Apidologie 40 (2009) 347–354 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2009 www.apidologie.org DOI: 10.1051/apido/2009018 Review article Diversity and conservation status of native Australian bees* Michael Batley 1,KatjaHogendoorn2 1 Australian Museum, 6 College St, Sydney, N.S.W., 2010, Australia and Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, North Ryde, N.S.W. 2109, Australia 2 School of Agriculture, Food and Wine, University of Adelaide, SA 5005, Australia Received 8 August 2008 – Revised 14 October 2008 – Accepted 26 October 2008 Abstract – Australia’s idiosyncratic bee fauna is characterised by a combination of numerous endemic taxa and by the complete absence of some families. Many species, and in particular several oligolectic species, remain undescribed and more than half the named taxa are in need of revision. The main threats to the native bee fauna include removal of nesting and foraging opportunities through land clearing and agriculture, the spread of exotic plant species and the consequences of climate change. Early steps to conserve the native bee fauna include commercial applications, the raising of public awareness and preservation of natural habitat. However, these actions are severely hampered by a lack of both identification keys and taxonomic expertise. Considerable investment in taxonomic research is needed to improve this state of affairs. native bees / Australia / conservation / taxonomy / Apoidea 1. DIVERSITY OF BEES 100 bee species are either known or suspected IN AUSTRALIA to be oligolectic (AFD, 2006). Michener (1965) noted a clear difference Australia has a distinctive bee fauna char- between the “typically Australian element” acterized by an unusually high proportion found throughout most of the continent and of species in the family Colletidae (Tab. I). the depauperate bee fauna of the northern rain- Several groups with widespread distributions forests that shares features with that of New throughout the rest of the World, notably An- Guinea and the Indo-Malaysian region. At drenidae and Mellitidae, are not found in Aus- the species level, there is a less distinct divi- tralia while the family Stenotritidae, and the sion between the fauna of the open eucalypt subfamily Euryglossinae are endemic to the forests and woodland of eastern and south- region (Michener, 1965, 2000). More than eastern coastal regions and that of the arid three-quarters of the known species belong zone which covers most of the remaining area. to the three most highly derived bee fami- There are no sharp lines of demarcation and lies, Stenotritidae, Colletidae and Halictidae species belonging to groups with significant (Danforth et al., 2006) and a small number of diversity in New Guinea have been found in colonisation events have given rise to lineages, rainforest remnants as far south as Sydney. like the genus Exoneura (Schwarz et al., 2006) or parts of the genus Lasioglossum (Danforth While the taxonomy of Australian bees and Ji, 2001), that are endemic to Australia has received some attention in the last 20 and adjacent areas. Despite the incomplete na- years, there is still a large number of unde- ture of flower-visiting records, approximately scribed species. The Australian Faunal Direc- tory (AFD, 2006) lists 1647 names, of which Corresponding author: K. Hogendoorn, about 45% come from revisions published [email protected] after 1965, 18% have been treated in doc- * Manuscript editor: Mark Brown toral theses that remain unpublished, and the Article published by EDP Sciences 348 M. Batley, K. Hogendoorn Table I. The number of Australian genera and named species (AFD, 2006) covered by keys. References to the keys are given in Michener (2000). family # genera # genera with keys # named # species covered % of species covered to at least part species by keys by keys Apidae 13 4 197 49 25% Colletidae 31 20 879 434 49% Halictidae 11 3 385 188 49% Megachilidae 5 1 168 25 15% Stenotritidae 2 1 21 10 48% remaining 37% are greatly in need of revi- affect bee populations, with demonstrable eco- sion. Genera such as Exoneura, Lipotriches, nomic consequences (Kremen et al., 2004). Stenotritus, Paracolletes, Trichocolletes and Similar studies have shown that the presence much of Euhesma have not been studied in re- of native Australian rainforest is important cent times. for the unmanaged pollination of tropical fruit Extrapolation of the results of four recent (Blanche et al., 2006). investigations, including unpublished theses, Conservation of native vegetation in Aus- covering almost 30% of the fauna suggests tralia has received considerable public and that between 300 and 400 species remain un- regulatory attention over the past 20 years, pri- described, but that the total number of valid marily with the objectives of controlling sec- names will remain virtually unchanged when ondary dryland salinity, maintaining biodiver- synonyms are removed. However, not only sity and reducing greenhouse gas emissions. are there large uncertainties in such extrapo- A recent review of progress towards national lations, but there is probably a bias towards objectives for biodiversity conservation (Grif- polylectic species. Oligolectic species are of- fin NRM Pty Ltd., 2004) concluded that, de- ten overlooked until the nature of their special- spite patchy success in many areas, clearing of isation is discovered (Houston, 1989, 1992, native vegetation will be effectively controlled 1993;Exley1998, 2004; reviewed in Murray in most jurisdictions by 2010, provided that et al., 2009). currently proposed and enacted regulations are A measure of the extent of missing informa- properly implemented. Australia is still some tion is given by the number of subgenera for distance from achieving a no net loss target which there are no published keys to species for native vegetation, but the recent policy and (Tab. I). Overall, 57% of all named species are regulatory interventions should ensure that all not covered by keys. future clearing proposals are subject to appro- Knowledge of the taxonomy of Australian priate levels of assessment relative to the con- bees is much more extensive than information servation status of the vegetation community. about their biology. Many species are known from very few specimens and distributions and Some areas have been less affected by clear- flowering-visiting records for regions outside ing than others so that only 13% of the to- Western Australia are limited (Houston, 2000: tal land area has been cleared. The largest AFD, 2006). proportion of Australia, the rangelands of the arid zone, remains relatively free of broad- scale clearing. The eastern and south-eastern 2. THREATS TO BEES coastal areas were predominantly eucalyptus IN AUSTRALIA forests and woodlands. Approximately 80% of the pre-European extent of eucalypt forests 2.1. Deforestation and agriculture and woodlands remain, despite high rates of clearing in Queensland and New South Wales The loss of floral resources and nesting sites that were a cause for concern. Between 1981 associated with deforestation will obviously and 1999 the average rate of clearing was Bees in Australia 349 38000 ha/year in NSW and 343 000 ha/year in nectar-producing flowers, making pesticides Queensland, though some of this was removal of secondary importance. of regrowth. The most severely affected vege- tation groups are the low closed forests, closed shrublands and the heaths, of which only 50% 2.2. Exotic species now remains, but these covered only 1% of the continental area. Australia is the only country yet to be in- However, vegetation removal is not the only vaded by Varroa destructor and has a large form of ecological disturbance and an area population of feral Apis mellifera. The num- may retain the same vegetation type and yet bers of feral honeybees are such that they may have a different species composition. For ex- be affecting the populations of birds, mammals ample, it has been estimated that of the two and other insects by virtue of the sheer amount million ha of lowland grassland in south- of floral resources that they consume (Paton, eastern Australia at the time of European set- 1996; Stout and Morales, 2009). Paini (2004) tlement, the remaining natural remnants cover has reviewed the 10 studies that addressed var- 10000 ha. (McDougall and Kirkpatrick, 1994). ious aspects of the impact of European honey- Furthermore, in the arid centre of Australia, bees on native bees in Australia and concluded substantial changes in plant composition have that many of the studies suffered from low been attributed to the impacts of water-centred replication or confounding factors. It is likely grazing. The effect of such changes on bee that the most important impact of honeybees populations could be considerable. For exam- on native bees is indirect, through their role in ple in the southern arid regions of Australia, the propagation of serious exotic weeds such the lack of regeneration of Western Myall as Scotch Broom (Cytisus scoparius, Simpson due to rabbit, goat and sheep grazing (Lange et al., 2005), and lantana (Lantana camara, and Purdie, 1976), may seriously affect the Goulson and Derwent, 2004) at the cost of survival of the endemic allodapine bee Ex- native vegetation (Stout and Morales, 2009). oneurella tridentata, because this species de- The imminent arrival of the Varroa mite in pends largely on the dead branches of this Australia, which is expected to largely wipe tree for nesting substrate (Hurst,
Recommended publications
  • 5.4 Insect Visitors to Marianthus Aquilonaris and Surrounding Flora
    REPORT: Insect visitors to Marianthus aquilonaris and surrounding flora Nov 2-4, 2019 Kit Prendergast, Native bee scientist BSc First Class Honours, PhD researcher and Forrest Scholar On behalf of Botanica Consulting 1 REPORT: Insect visitors to Marianthus aquilonaris and surrounding flora Nov 2-4 2019 Kit Prendergast, Native bee scientist Background Marianthus aquilonaris (Fig. 1) was declared as Rare Flora under the Western Australian Wildlife Conservation Act 1950 in 2002 under the name Marianthus sp. Bremer, and is ranked as Critically Endangered (CR) under the International Union for Conservation of Nature (IUCN 2001) criteria B1ab(iii,v)+2ab(iii,v); C2a(ii) due to its extent of occurrence being less than 100 km2, its area of occupancy being less than 10 km2, a continuing decline in the area, extent and/or quality of its habitat and number of mature individuals and there being less than 250 mature individuals known at the time of ranking (Appendix A). However, it no longer meets these criteria as more plants have been found, and a recommendation has been proposed to be made by DBCA to the Threatened Species Scientific Committee (TSSC) to change its conservation status to CR B1ab(iii,v)+2ab(iii,v) (Appendix A), but this recommendation has not gone ahead (DEC, 2010). Despite its listing as CR under the Western Australian Biodiversity Conservation Act 2016, the species is not currently listed under the Environment Protection and Biodiversity Conservation Act 1999. The main threats to the species are mining/exploration, track maintenance and inappropriate fire regimes (DEC, 2010). Fig. 1. Marianthus aquilonaris, showing flower, buds and leaves.
    [Show full text]
  • Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
    Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Pollination Ecology and Evolution of Epacrids
    Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes.
    [Show full text]
  • Two New and Unusual Species of the Bee Genus Leioproctus Smith (Hymenoptera: Colletidae), with Notes on Their Behaviour
    Rec. West. Au.\1. Mw. 1991. 15(1) g},,96 Two new and unusual species of the bee genus Leioproctus Smith (Hymenoptera: Colletidae), with notes on their behaviour Terry F. Houston* Abstract 'Two new species of Leioproclus sensu slriclo, L. excuhilOr from Western and Central Australia and L. macmi//qni from south-western Australia. are described and fIgured. Males of both species have extraordinary antennae. excuhilor having the fIrst flagellar segment greatly attenuated as in stenotritid bees and macmillani having most segments highly setose and produced into lobes. Males of excuhilOr have other unusual modifications including a very broad highly depressed metasoma and spend much time perched upside-down on dead tree trunks. Both sexes of macmillani have the head peculiarly elongated. doubtless an adaptation to the tubular flowers of their winter-flowering food plant. ASlr%ma xerophyllum. Introduction Little is recorded of the ethology of the Australian species of Leioproctus Smith sensu stricto even though the subgenus is a large one with 126 nominal Australian species and possibly as many undescribed ones. The two species described here, while not especially closely related, are both aberrant members ofthe subgenus. Their extraordinary features at first glance might suggest they should be placed in separate genera but closer inspection reveals their affinities with Leioproctus s. str. Their behaviour, too, is unusual and worthy of reporting. For these reasons, the species are described ahead of a much needed subgeneric revision. Terminology and Abbreviations The morphological terminology employed here follows that of Michener (1965). Relative dimensions quoted in the descriptions are directly comparable between sexes and species.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Evolution of the Suctorial Proboscis in Pollen Wasps (Masarinae, Vespidae)
    Arthropod Structure & Development 31 (2002) 103–120 www.elsevier.com/locate/asd Evolution of the suctorial proboscis in pollen wasps (Masarinae, Vespidae) Harald W. Krenna,*, Volker Maussb, John Planta aInstitut fu¨r Zoologie, Universita¨t Wien, Althanstraße 14, A-1090, Vienna, Austria bStaatliches Museum fu¨r Naturkunde, Abt. Entomologie, Rosenstein 1, D-70191 Stuttgart, Germany Received 7 May 2002; accepted 17 July 2002 Abstract The morphology and functional anatomy of the mouthparts of pollen wasps (Masarinae, Hymenoptera) are examined by dissection, light microscopy and scanning electron microscopy, supplemented by field observations of flower visiting behavior. This paper focuses on the evolution of the long suctorial proboscis in pollen wasps, which is formed by the glossa, in context with nectar feeding from narrow and deep corolla of flowers. Morphological innovations are described for flower visiting insects, in particular for Masarinae, that are crucial for the production of a long proboscis such as the formation of a closed, air-tight food tube, specializations in the apical intake region, modification of the basal articulation of the glossa, and novel means of retraction, extension and storage of the elongated parts. A cladistic analysis provides a framework to reconstruct the general pathways of proboscis evolution in pollen wasps. The elongation of the proboscis in context with nectar and pollen feeding is discussed for aculeate Hymenoptera. q 2002 Elsevier Science Ltd. All rights reserved. Keywords: Mouthparts; Flower visiting; Functional anatomy; Morphological innovation; Evolution; Cladistics; Hymenoptera 1. Introduction Some have very long proboscides; however, in contrast to bees, the proboscis is formed only by the glossa and, in Evolution of elongate suctorial mouthparts have some species, it is looped back into the prementum when in occurred separately in several lineages of Hymenoptera in repose (Bradley, 1922; Schremmer, 1961; Richards, 1962; association with uptake of floral nectar.
    [Show full text]
  • Hymenoptera: Colletidae): Emerging Patterns from the Southern End of the World Eduardo A
    Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Biogeography and diversification of ARTICLE colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world Eduardo A. B. Almeida1,2*, Marcio R. Pie3, Sea´n G. Brady4 and Bryan N. Danforth2 1Departamento de Biologia, Faculdade de ABSTRACT Filosofia, Cieˆncias e Letras, Universidade de Aim The evolutionary history of bees is presumed to extend back in time to the Sa˜o Paulo, Ribeira˜o Preto, SP 14040-901, Brazil, 2Department of Entomology, Comstock Early Cretaceous. Among all major clades of bees, Colletidae has been a prime Hall, Cornell University, Ithaca, NY 14853, example of an ancient group whose Gondwanan origin probably precedes the USA, 3Departamento de Zoologia, complete break-up of Africa, Antarctica, Australia and South America, because Universidade Federal do Parana´, Curitiba, PR modern lineages of this family occur primarily in southern continents. In this paper, 81531-990, Brazil, 4Department of we aim to study the temporal and spatial diversification of colletid bees to better Entomology, National Museum of Natural understand the processes that have resulted in the present southern disjunctions. History, Smithsonian Institution, Washington, Location Southern continents. DC 20560, USA Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event-based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood-based dispersal–extinction– cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Hesperocolletes Douglasi (Douglas’S Broad-Headed Bee)
    Threatened species nomination form (Version 2018) Threatened species nomination For nominations to the WA Threatened Species Scientific Committee (and the Minister for Environment) to amend threatened species listings under the WA Wildlife Conservation Act 1950 or their assigned IUCN Red List threat status ranking. Cover Page (Office use only) Species name (scientific and common name): Hesperocolletes douglasi (Douglas’s broad-headed bee) Nomination for (addition, deletion, change): Addition Nominated conservation category and criteria: Critically Endangered D Scientific committee assessment of eligibility against the criteria: A. Population size reduction B. Geographic range C. Small population size and decline D. Very small or restricted population E. Quantitative analysis Outcome: Scientific committee meeting date: Scientific committee comments: Recommendation: Ministerial approval: Government Gazettal/ Legislative effect: Page 1 of 28 Threatened species nomination form Nomination summary (to be completed by nominator) Current conservation status Scientific name: Hesperocolletes douglasi Common name: Douglas’s broad-headed bee Family name: Colletidae Fauna Flora Nomination for: Listing Change of status Delisting 1. Is the species currently on any conservation list, either in a State or Territory, Australia or Internationally? Provide details of the occurrence and listing status for each jurisdiction in the following table 2. Is it present in an Australian jurisdiction, but not listed? Date listed or Listing category i.e. Jurisdiction
    [Show full text]
  • Pollination in New Zealand
    2.11 POLLINATION IN NEW ZEALAND POLLINATION IN NEW ZEALAND Linda E. Newstrom-Lloyd Landcare Research, PO Box 69040, Lincoln 7640, New Zealand ABSTRACT: Pollination by animals is a crucial ecosystem service. It underpins New Zealand’s agriculture-dependent economy yet has hitherto received little attention from a commercial perspective except where pollination clearly limits crop yield. In part this has been because background pollination by feral honey bees (Apis mellifera) and other unmanaged non-Apis pollinators has been adequate. However, as pollinators decline throughout the world, the consequences for food production and national economies have led to increasing research on how to prevent further declines and restore pollination services. In New Zealand, managed honey bees are the most important pollinators of most commercial crops including pasture legumes, but introduced bumble bees can be more important in some crops and are increasingly being used as managed colonies. In addition, New Zealand has several other introduced bees and a range of solitary native bees, some of which offer prospects for development as managed colonies. Diverse other insects and some vertebrates also contribute to background pollination in both natural and agricultural ecosystems. However, New Zealand’s depend- ence on managed honey bees makes it vulnerable to four major threats facing these bees: diseases, pesticides, a limited genetic base for breeding varroa-resistant bees, and declining fl oral resources. To address the fourth threat, a preliminary list of bee forage plants has been developed and published online. This lists species suitable for planting to provide abundant nectar and high-quality pollen during critical seasons.
    [Show full text]
  • A Supermatrix Approach to Apoid Phylogeny and Biogeography Shannon M Hedtke1*, Sébastien Patiny2 and Bryan N Danforth1
    Hedtke et al. BMC Evolutionary Biology 2013, 13:138 http://www.biomedcentral.com/1471-2148/13/138 RESEARCH ARTICLE Open Access The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography Shannon M Hedtke1*, Sébastien Patiny2 and Bryan N Danforth1 Abstract Background: Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. Results: We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data.
    [Show full text]