A Century of Expansion and Progress

Total Page:16

File Type:pdf, Size:1020Kb

A Century of Expansion and Progress Company history A century of expansion and progress m.t. of acetone—WACKER’s very first Martin Doriat had developed the process at product—left Burghausen for Leverkusen, Burghausen. Berg later became managing for conversion by Bayer into synthetic rubber director of WACKER. for use by the German Imperial Navy for its The first vinyl chloride plant started up submarines during the First World War. in 1938 at Burghausen, launching the era The Consortium für elektrochemi- of WACKER PVC, which the company sche Industrie moved from Nuremberg to marketed under the trade name VINNOL®. Munich and the company relocated its head WACKER produced PVC for 60 years, office within Munich at the end of 1919, to beginning its exit from the business in July Prinzregentenstrasse 20/22. This would 1993—when it merged its PVC activities remain the company’s address until 1992. with those of Hoechst AG to create Vinnolit The company produced the solvent ethyl Kunststoff—and finally quitting the PVC acetate at Burghausen for the first time in business in 2000. 1920. Alexander Wacker in the same year French, Russian, and US forces modified the corporate ownership structure, occupied WACKER’s plants in February- switching to a family-owned holding May 1945. The rest of WACKER in company with himself as its first managing Munich and Burghausen was placed director. The agreement establishing this under US administration in July 1945 and company, signed in December 1920, remains almost all of the plants were shut down valid to this day—shares in Wacker Chemie until October, when production slowly SEMICONDUCTOR MATERIAL: AG belong not to individual members of the restarted. Allied control of WACKER Production of polycrystalline silicon in 1965. family, but to the holding company. ceased in March 1953 and the company The company at that time required capital was renamed Wacker-Chemie GmbH on to expand its output and product range so, in 8 April 1953. 1921, it sold 50% of its shares to Hoechst AG, During the 1950s, WACKER began lexander Wacker, born in Heidelberg a limited liability company at that time, via the process of switching from acetylene, in May 1846, laid the foundations an increase in share capital. By regulating the to ethylene, feedstock, for its vinyl plastic for the present-day Wacker Chemie company’s affairs in this manner, Alexander manufacturing operations. The switch was in AG when, on 13 October 1914, he Wacker, who died in April 1922, rendered line with the overall industry trend of shifting entered the Dr. Alexander Wacker, his life’s work secure for the future. from coal to crude oil as the starting material AGesellschaft für elektrochemische Industrie, WACKER was able to manufacture 20 for production. KG company in the trade register kept by the different products at Burghausen by late Dr. Walter Hafner developed the town of Traunstein, Germany. The company 1922, all of which were based on acetylene corresponding synthesis method, directly started to take shape in 1916-17. from carbide. Polyvinyl acetate (PVAc) oxidizing ethylene to acetaldehyde, which In 1916, the company’s headquarters was produced for the first time ever, by became the 2nd WACKER process to were established in Munich, and reacting acetylene with acetic acid, in 1924, cement its place in the history of chemistry. construction work started on the first by the Consortium, based on an invention In 1957, WACKER bought land in the factory building at Burghausen under by chemist Dr. Willy Herrmann. The first Merkenich district of Cologne to build an architect Professor Josef Hoffmann. commercial plant for PVAc, under the ethylene-to-acetaldehyde plant with capacity Production began at Burghausen on 7 VINNAPAS® trade name, began operating for 15,000 m.t./year of acetaldehyde. The December 1916 with the world’s first at Burghausen in 1930. VINNAPAS® plant received ethylene from Esso’s nearby industrial-scale synthesis of acetaldehyde, products became established in the 1930s, refinery complex and it initially shipped its followed by acetic acid. Construction also and PVAc was also used to make polyvinyl product by rail to Burghausen. began in 1916 on the 16-kilometer Alz alcohol under the POLYVIOL® trade name. WACKER agreed with Hoechst and canal. The Alz canal was completed in 1922 Dr. Gerhard Beier discovered vinyl acetate Marathon AG in 1965 to establish a refinery and it is still used by the Alzwerke power ethylene copolymers in 1960. at Burghausen. The Marathon refinery station to generate electricity. The first experimental work began in started operating in 1968 and the site’s steam In January 1917, the company started 1929 on the polymerization of vinyl chloride, cracker, today operated by Austria’s OMV, up the world’s first full-scale production which was obtained by adding hydrogen supplies the WACKER Burghausen site plant for synthetic acetone. Based on the chloride to acetylene. The company applied with ethylene. The last carbide furnace at 1st WACKER Process, the plant made in 1935 for a patent for the suspension Burghausen closed down in 1969. acetone via acetaldehyde and acetic acid. polymerization method for polyvinyl Meanwhile, WACKER had hired The first garlanded railcar carrying 15 chloride (PVC). Dr. Herbert Berg and Dr. Siegfried Nitzsche, a chemist from OCTOBER 2014 An IHS Chemical Week Special Publication www.chemweek.com LANDMARK: Huge carbide storage silo at WACKER’s Burghausen plant in 1954. SQUEEZING OUT SILICONES: Output soared in the 1960s. FIRST STEPS: Oxygen production plant at WACKER’s Burghausen site in 1916. > operations at Jena, eastern Germany, in 1947 and he by year-end making C h e m i t r o n i c began research work in August that year hyperpure silicon merging with on silanes and silicones. It was the first using the Siemens Siltronic, and step toward WACKER becoming one of process, establishing the polysilicon the world’s top silicone providers and a WACKER as DuPont’s business becoming technological leader in the field of silicon only rival in that field. part of WACKER. chemistry. Nitzsche’s team synthesized WACKER sold just 530 Meanwhile, the com- silanes in 1949 using the already developed kg of polysilicon in 1959, but the pany’s hyperpure polysilicon Mueller-Rochow process. The first silicone business expanded rapidly with the com- became of interest to the photovoltaic test plant started operating at Burghausen puter industry and the company founded industry and in 2000, the group sold in 1950 and the first silicone products Wacker Chemitronic GmbH as a wholly its first 1,000 m.t. of solar silicon. such as fluids and resins were marketed. owned subsidiary in 1968. The business, Demand for solar-grade polysilicon WACKER established its first silicone based in Burghausen, was the forerunner surged and WACKER launched the big- department in early 1953, and output of today’s Munich-based Siltronic AG gest investment plan in its history, spending reached 2,800 m.t. by 1964. WACKER semiconductor business. about €500 million in 2010 to expand expanded silicones capacity rapidly during WACKER constructed in 1969 the the main plant at Burghausen by 10,000 the 1960s in response to burgeoning first two full-scale plants at Burghausen m.t./year. This was followed by an addi- demand, starting up an additional plant for distilling the trichlorosilane precursor tional €900-million investment to begin at Burghausen in 1969 with initial silane and for producing polycrystalline silicon. polysilicon production at the Nünchritz site. capacity of 24,000 m.t./year and that same This hyperpure polysilicon was used to pull WACKER had acquired the Nünchritz year taking a 33.3% stake in Stauffer- monocrystalline silicon rods, which were silicone plant in the state of Saxony, eastern Wacker Silicones Corp. at Adrian, USA. processed into silicon wafers. Germany, in 1998, after German reunifica- WACKER became sole owner of the Chemitronic succeeded for the first time tion, for its silicones division. operation in 1987. In 1965, the company in 1973 in growing rods of hyperpure poly- Dr. Peter-Alexander Wacker was established Wacker Chemicals Corp. in crystalline silicon with a diameter of more appointed president and CEO of New York, which functioned initially than 20 centimeters. By the end of the WACKER in 2001. He had been a as a distribution site for major silicone 1970s, every other silicon atom used in the management board member of the com- customers in North America. world’s semiconductor technology had been pany since 1996. Blue Elephant Holding Chief chemist Dr. Eduard Enk had, in supplied by WACKER. GmbH, a holding company established 1953, launched studies on the manufacture Meanwhile, Dr. Max Ivanovits had by Wacker family members, acquired of hyperpure silicon, making him the father developed dispersible polymer powder, the 44% stake in WACKER still held of WACKER’s semiconductor business. based on the extraction of the water from by Sanofi-Aventis—the successor of Production of monocrystalline silicon rods dispersions. Large-scale production began Hoechst—in 2005 and the Wacker fam- began at Burghausen in 1955. Rod diameter in 1957 in one of Burghausen’s first powder ily became 100% owner. Under the lead of was originally 30 millimeters, and the purity towers with a capacity of 1,200 m.t./year. Peter-Alexander Wacker, a 30% stake in was one foreign atom per 10 million silicon WACKER expanded into Asian mar- the company was floated successfully on atoms. Today, purity is 99.99999999%. kets and established Wacker Chemicals the stock exchange through an initial pub- Siemens—the first company inEast Asia Ltd. in Tokyo in 1983. This was lic offering in April 2006. Germany to build transistors—transferred followed in 1984 by the establishment of a In May 2008, Peter-Alexander its licenses to WACKER in 1958 for subsidiary in Singapore.
Recommended publications
  • Results of Long-Term Carcinogenicity Bioassay on Vinyl Acetate Monomer in Sprague-Dawley Rats
    Results of Long-Term Carcinogenicity Bioassay on Vinyl Acetate Monomer in Sprague-Dawley Rats FRANCO MINARDI, FIORELLA BELPOGGI, MORANDO SOFFRITTI, ADRIANO CILIBERTI, MICHELINA LAURIOLA, ELISA CATTIN, AND CESARE MALTONI† Cancer Research Center, European Ramazzini Foundation for Oncology and Environmental Sciences, Bologna, Italy ABSTRACT: Vinyl acetate monomer (VAM) was administered in drinking water supplied ad libitum at doses of 5,000, 1,000, and 0 ppm (v/v) to 17-week-old Sprague-Dawley rats (breeders) and to 12-day embryos (offspring). Treatment lasted for 104 weeks; thereafter, animals were kept under control conditions until spontaneous death. VAM was found to cause an increase in total malig- nant tumors and in carcinomas and/or precursor lesions of the oral cavity, lips, tongue, esophagus, and forestomach. Based on these data, VAM must be con- sidered a multipotent carcinogen. KEYWORDS: vinyl acetate monomer; carcinogenicity; long-term bioassay; rat INTRODUCTION Vinyl acetate monomer (VAM) is an important compound in the plastics industry. VAM (C 4H6O2) has a molecular weight of 86.09. Industrial production of VAM started in the United States in 1928.1 VAM is produced mainly by two processes: (1) In a process used since the 1920s, acetylene and acetic acid are reacted in the vapor phase over a catalyst bed,2 (2) In another process, largely used since the 1970s, eth- ylene is reacted with acetic acid in the presence of oxygen.3 The world production of VAM is over 2.5 million tons per year.4 The only commercial use of VAM is in the production of polymers (polyvinyl ac- etate, polyvinyl alcohol, polyvinyl acetals) and copolymers (ethylene-vinyl acetate and polyvinyl-acetate chloride).3 Polyvinyl acetate is mainly used in adhesives for paper, wood, glass, metals, and porcelain.
    [Show full text]
  • Sept. 4, 1962. MICHIJIRO AKABOSH ETAL 3,052,610 CONCENTRATION of ACETIC ACID Filed May 19, 1960
    Sept. 4, 1962. MICHIJIRO AKABOSH ETAL 3,052,610 CONCENTRATION OF ACETIC ACID Filed May 19, 1960 INVENTORS MCHIJIRO AKABOSH KK UJ U RAGAM: BY KENSUKE O KUMA AttoRNEY 3,052,610 United States Patent Office Patented Sept. 4, 1962 2 1. acetate. Some of the vinyl acetate from the upper phase 3,052,610 is returned to the top of the distillation zone as reflux, CONCENTRATION OF ACETIC ACD in accordance with conventional distillation technique, Michijiro Akaboshi, Toyonaka City, and Kikuji Uragaini and the remainder is withdrawn as product. and Kensuke Okema, Toyama City, Japan, assignors to Particularly suitable as a source of vinyl acetate for Kurashiki Rayon Co., Ltd., Okayama Prefecture, the distillation operation referred to above is the vinyl Japan, a corporation of Japan acetate-acetic acid mixture which is produced in the syn Fied May 19, 1960, Ser. No. 30,384 thesis of vinyl acetate from acetylene and acetic acid. 6 Claims. (C. 202-42) Prior to its use for the production of polyvinyl acetate This invention relates to the concentration of aqueous O by polymerization, the vinyl acetate must be separated Solutions of acetic acid and is more particularly concerned from the acetic acid. In accordance with the invention, With a process for concentrating aqueous acetic acid solu this operation is combined with the acetic acid dehydrat tions which is effectively integrated with the manufac ing and concentrating operation so that two normally ture of polyvinyl alcohol. independent processing steps are effectively and efficiently In accordance with conventional practice, polyvinyl 5 combined into a single operation which produces sub alcohol is formed by the saponification or "alcoholysis' stantially pure vinyl acetate suitable for the production of polyvinyl acetate which, in turn, is formed by the poly of polyvinyl acetate, and an effectively concentrated or merization of vinyl acetate.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • THERMAL DEGRADATION of Pvac
    Journal of the University of J.Chemical Blazevska-Gilev, Technology D. Spaseskaand Metallurgy, 40, 4, 2005, 287-290 THERMAL DEGRADATION OF PVAc J. Blazevska-Gilev, D. Spaseska Faculty of Technology and Metallurgy, Received 20 October 2005 Ss Cyril and Methodius University, Accepted 15 November 2005 P.O. Box 580, MK-1001 Skopje, Republic of Macedonia, E-mail: [email protected] ABSTRACT The kinetics of decomposition of plastics are interesting from different points of view, i.e. evolution of harmful substances during fires or waste incineration, recovering of chemical raw materials from plastic refuses and designing of recycling procedures. Non isothermal or dynamic thermogravimetry (TGA) has been used for kinetic study of the thermally activated process of polyvinyl acetate (PVAc), heating by two different rates up to around 723 K. As the easily measured weight changes of the samples in the defined thermal conditions are a suitable sensor for their structural and chemical changes, by means of some methods like Gropjanov-Abbakumov,s one, the useful information for identifying the formal kinetic parameters of the investigated processes taking place in the course of thermal treatment have been obtained. The thermal variation of the rate constant as well as the kinetic equations for the examined process depending on the investigated parameters have been derived. Keywords: polyvinyl acetate, thermal degradation, degradation kinetics. INTRODUCTION mally degrades under vacuum at an appreciable rate at temperatures above 500 K. The mechanisms of ther- Polyvinyl acetate (PVAc) is known to be one of mal degradation of PVAc is very complex process in- the most important commercial polymers as a result cluding, among others, the following reactions: chain of its low cost and high performance of the products, fission, radical recombination, carbon hydrogen single combined with the wide range of properties.
    [Show full text]
  • The Production of Vinyl Acetate Monomer As a Co-Product from the Non-Catalytic Cracking of Soybean Oil
    Processes 2015, 3, 619-633; doi:10.3390/pr3030619 OPEN ACCESS processes ISSN 2227-9717 www.mdpi.com/journal/processes Article The Production of Vinyl Acetate Monomer as a Co-Product from the Non-Catalytic Cracking of Soybean Oil Benjamin Jones, Michael Linnen, Brian Tande and Wayne Seames * Department of Chemical Engineering, University of North Dakota, 241 Centennial Dr., Stop 7101 Grand Forks, ND 58202-7101, USA; E-Mails: [email protected] (B.J.); [email protected] (M.L.); [email protected] (B.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-701-777-2958; Fax: +1-701-777-3773. Academic Editor: Bhavik Bakshi Received: 30 June 2015/ Accepted: 7 August 2015 / Published: 14 August 2015 Abstract: Valuable chemical by-products can increase the economic viability of renewable transportation fuel facilities while increasing the sustainability of the chemical and associated industries. A study was performed to demonstrate that commercial quality chemical products could be produced using the non-catalytic cracking of crop oils. Using this decomposition technique generates a significant concentration of C2−C10 fatty acids which can be isolated and purified as saleable co-products along with transportation fuels. A process scheme was developed and replicated in the laboratory to demonstrate this capability. Using this scheme, an acetic acid by-product was isolated and purified then reacted with ethylene derived from renewable ethanol to generate a sample of vinyl acetate monomer. This sample was assessed by a major chemical company and found to be of acceptable quality for commercial production of polyvinyl acetate and other products.
    [Show full text]
  • Vinyl Acetate
    Vinyl acetate 108-05-4 Hazard Summary Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to vinyl acetate has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of vinyl acetate in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified vinyl acetate for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on inhalation chronic toxicity of vinyl acetate and the RfC, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Vinyl Acetate. (1) Uses Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol.(1) Vinyl acetate is also used as a raw material in the production of other chemicals, in adhesives, water-based paints, nonwoven textile fibers, textile sizings and finishes, paper coatings, inks, films, and lacquers. (1,2) Sources and Potential Exposure Exposure is most likely to occur in the workplace, where individuals may be occupationally exposed to vinyl acetate via inhalation or dermal contact during its manufacture or use.
    [Show full text]
  • 67160 Polyvinyl Acetate Copolymer
    Material Safety Data Sheet According to regulation (EC) No. 1907/2006 (REACH) 67160 Polyvinyl Acetate Copolymer Page 1 Revised edition: 27.05.2015 Version: 1.2 Printed: 07.10.2016 1. Identification of the Substance/Mixture and of the Company/Undertaking 1. 1. Product Identifier Product Name: Polyvinyl Acetate Copolymer Article No.: 67160 1. 2. Relevant identified Uses of the Substance or Mixture and Uses advised against Identified uses: Raw material for industrial purposes. Adhesive, coating material, primer Binding agent Uses advised against: 1. 3. Details of the Supplier of the Safety Data Sheet (Producer/Importer) Company: Kremer Pigmente GmbH & Co. KG Address: Hauptstr. 41-47, 88317 Aichstetten, Germany Tel./Fax.: Tel +49 7565 914480, Fax +49 7565 1606 Internet: www.kremer-pigmente.de EMail: [email protected] Importer: -- 1. 4. Emergency No. Emergency No.: +49 7565 914480 (Mon-Fri 8:00 - 17:00) 2. Hazards Identification 2. 1. Classification of the Substance or Mixture Classification according to Regulation (EC) No. 1272/2008 (CLP/GHS) Flammable liquids, hazard category 2 Eye irritation, hazard category 2 Specific Target Organ Toxicity (single exposure), hazard category 3 H225 Highly flammable liquid and vapour. Cat.: 2 H319 Causes serious eye irritation. Cat.: 2 H336 May cause drowsiness or dizziness. Cat.: 3 Classification according to Directive No. 67/548/EC or No. 1999/45/EC Flammable (F) R11 Highly flammable Irritating (Xi) R36 Irritating to eyes. R66 Repeated exposure may cause skin dryness or cracking. Safety Phrases: Possible Environmental Effects: 2. 2. Label Elements Classification according to Regulation next page: 2 Material Safety Data Sheet According to regulation (EC) No.
    [Show full text]
  • VINYLACETATE Production out of ACETYLENE
    ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology Vol. 6, Issue 12 , December 2019 VINYLACETATE Production Out of ACETYLENE Omanov B.Sh., Fayzullaev N.I., Khatamova M.S. Navoi State Pedagogical Institute, Samarkand State University, Navoi State Pedagogical Institute, Uzbekistan ABSTRACT: In the study, a nanocatalyst with high efficiency, activity and selectivity has been created for the catalytic acetylated reaction of acetylene on the basis of Sol-gel technology. The impact of various factors (temperature, volume velocity, С2Н2:СН3СООН mol ratio, the way of preparation of catalysts etc.) on vinyl acetate sulphide, selection process and conversion of starting material with the presence of a catalyst with the highest catalytic activity (ZnO)x∙(CdO)y∙(ZrO2)z/keramzite style has been studied. As a result of the research, the mechanism and kinetic equation of vinyl acetate steam phase is proposed. Based on the results obtained, the kinetic model has been created, on the basis of this kinetic model, the process of vinyl acetate synthesis has been optimized. KEY WORDS: Acetic acid, Acetylene, Catalyst, Material balance, Optimization, Sol-gel technology, Vinyl acetate. I.INTRODUCTION The most important vinyl acetate is the vinyl acetate among oxygen-containing compounds that can be extracted from the major organic and petrochemical industries. Vinyl acetate is widely used in industry as a monomer. One of the important properties of vinyl acetate is its polymerization. Polyvinyl acetate, polyvinyl alcohol and polyvinyl-acetal are extensively used among vinyl acetate polymer products produced from vinyl acetate. Polyvinyl acetate has high adhesion and elasticity properties, which is highly evaporative.
    [Show full text]
  • Ethylene-Vinyl Acetate
    Ethylene-vinyl acetate From Wikipedia, the free encyclopedia Ethylene-vinyl acetate Names Other names Poly(ethylene-vinyl acetate); Poly(ethylene-co-vinyl acetate); Polyethylene-vinyl acetate copolymer Identifiers CAS Registry Number 24937-78-8 Abbreviations EVA; PEVA PubChem 32742 UNII 4OKC630HS6 Properties Chemical formula (C2H4)n(C4H6O2)m Molar mass Variable Ethylene-vinyl acetate (EVA), also known as poly(ethylene-vinyl acetate) (PEVA), is the copolymer of ethylene and vinyl acetate. The weight percent vinyl acetate usually varies from 10 to 40%, with the remainder being ethylene. It is a polymer that approaches elastomeric ("rubber-like") materials in softness and flexibility. This is distinct from a thermoplastic, in that the material is cross-linking, ergo difficult to recycle.[1][2][3] The material has good clarity and gloss, low-temperature toughness, stress-crack resistance, hot-melt adhesive waterproof properties, and resistance to UV radiation. EVA has a distinctive vinegar-like odor and is competitive with rubber and vinyl products in many electrical applications. Applications Hot melt adhesives, hot glue sticks, and top of the line soccer cleats are usually made from EVA, usually with additives like wax and resin. EVA is also used as a clinginess-enhancing additive in plastic wraps. Craft foam sheets are made of EVA and these foam sheets are popularly used for children's foam stickers. EVA is also used in biomedical engineering applications as a drug delivery device. The polymer is dissolved in an organic solvent (e.g., dichloromethane). Powdered drug and filler (typically an inert sugar) are added to the liquid solution and rapidly mixed to obtain a homogeneous mixture.
    [Show full text]
  • Screening Assessment for the Challenge
    Screening Assessment for the Challenge Acetic acid ethenyl ester (Vinyl Acetate Monomer) Chemical Abstracts Service Registry Number 108-05-4 Environment Canada Health Canada November 2008 Synopsis Pursuant to section 74 of the Canadian Environmental Protection Act, 1999, (CEPA 1999) the Ministers of the Environment and of Health have conducted a screening assessment of acetic acid ethenyl ester, otherwise commonly referred to as vinyl acetate, Chemical Abstracts Service Registry Number 108-05-4, a substance identified in the categorization of the Domestic Substances List as a high priority for action under the Ministerial Challenge. Vinyl acetate was identified as a high priority as it was considered to pose greatest potential for exposure to individuals in Canada and had been classified by other agencies on the basis of carcinogenicity. The substance did not meet the ecological categorization criterion for persistence, bioaccumulation or inherently toxic to aquatic organisms. Therefore, the focus of this assessment of vinyl acetate relates to human health aspects. According to the data submitted in response to section 71 of CEPA 1999, vinyl acetate is primarily imported into Canada, between ten and fifty-thousand metric tons (2006 data), for use in the industrial synthesis of polyvinyl acetate (PVAc) and vinyl acetate (co)polymers such as ethylene vinyl acetate or EVA copolymer. These polymers are subsequently applied in the manufacturing of various types of products for industrial and consumer applications. Vinyl acetate monomer itself has no direct use as an end-use product nor is it added intentionally; it is only found as a residue of manufacturing polymerization processes. As PVAc is used to manufacture polyvinyl alcohols, polyvinyl alcohols do not contain any residues of vinyl acetate monomer.
    [Show full text]
  • Jeffrey E. Lucius U.S. Geological Survey This Report Is Preliminary
    U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PHYSICAL AND CHEMICAL PROPERTIES AND HEALTH EFFECTS OF THIRTY-THREE TOXIC ORGANIC CHEMICALS Jeffrey E. Lucius U.S. Geological Survey Open-File Report 87-428 August 1987 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. CONTENTS Page Introduction 4 The Properties 6 Abbreviations 13 Conversion Factors 16 Summary Tables 17 Acetic acid 27 Acetone 31 Benzene 34 Bis(2-ethylhexyl)phthalate 37 Bromoform 39 Carbon tetrachloride 42 Chlorobenzene 46 Chloroethane 49 Chloroform 52 Cyclohexane 55 Di-n-butyl phthalate 58 1.1-Dichloroethane 60 1.2-Dichloroethane 63 1,1-Dichloroethene 66 trans-1,2-Dichloroethene 69 Dimethyl sulfoxide 71 1,4-Dioxane 74 Ethanol 77 Ethylbenzene 81 Ethylene dibromide 84 Methanol 87 Methylene chloride 91 Naphthalene 94 Phenol 97 Quinoline 101 Tetrachloroethene 103 Toluene 106 1,1,1-Trichloroethane 109 Trichloroethene 112 Vinyl chloride 115 Water 118 m-Xylene 121 o-Xylene 124 p-Xylene 127 References and Bibliography 130 SUMMARY TABLES page 1. Ranking of top 20 organic ground water contaminants based on number of sites at which each contaminant was detected. 17 2. Selected toxic organic chemicals ordered by Chemical Abstract Service Registry Number (CAS RN). Those chemicals on the U.S. EPA top 100 hazardous substances list are also noted. 18 3. Selected toxic organic chemicals ordered by number of carbon and hydrogen atoms. 19 4. Ranking of selected toxic organic chemicals by specific gravity at room temperature.
    [Show full text]
  • (Vinyl Acetate-Butyl Acrylate) Emulsion by Controlling the Amount of Redox Initiator
    materials Article Improvement in Wood Bonding Strength of Poly (Vinyl Acetate-Butyl Acrylate) Emulsion by Controlling the Amount of Redox Initiator Yun Zhang 1, Bo Pang 1, Sen Yang 1, Wei Fang 1, Sheng Yang 2, Tong-Qi Yuan 1,* and Run-Cang Sun 1 1 Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; [email protected] (Y.Z.); [email protected] (B.P.); [email protected] (S.Y.); [email protected] (W.F.); [email protected] (R.-C.S.) 2 Research Institute of Wood Industry, Chinese Academy of Forestry, 1 Dong Xiao Fu, Xiang Shan Road, Haidian District, Beijing 100091, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6233-6903 Received: 18 December 2017; Accepted: 5 January 2018; Published: 8 January 2018 Abstract: Polyvinyl acetate emulsion adhesive has been widely used due to its good bonding performance and environmentally friendly properties. Indeed, the bonding performance can be further improved by copolymerizing with other monomers. In this study, the effect of the adjunction of redox initiator (hydrogen peroxide–tartaric acid, H2O2–TA) on the properties of the poly (vinyl acetate-butyl acrylate) (P (VAc–BA)) emulsion adhesive was investigated. With increasing dosage, the reaction became more complete and the obtained film was more compact, as identified via SEM. The core-shell structure of the emulsion particles was confirmed via TEM. Results indicate that while the initiator content increased from 0.5 to 1.0%, a clearer core-shell structure was obtained and the bonding strength of the plywood improved from 2.34 to 2.97 MPa.
    [Show full text]