Ethylene-Vinyl Acetate

Total Page:16

File Type:pdf, Size:1020Kb

Ethylene-Vinyl Acetate Ethylene-vinyl acetate From Wikipedia, the free encyclopedia Ethylene-vinyl acetate Names Other names Poly(ethylene-vinyl acetate); Poly(ethylene-co-vinyl acetate); Polyethylene-vinyl acetate copolymer Identifiers CAS Registry Number 24937-78-8 Abbreviations EVA; PEVA PubChem 32742 UNII 4OKC630HS6 Properties Chemical formula (C2H4)n(C4H6O2)m Molar mass Variable Ethylene-vinyl acetate (EVA), also known as poly(ethylene-vinyl acetate) (PEVA), is the copolymer of ethylene and vinyl acetate. The weight percent vinyl acetate usually varies from 10 to 40%, with the remainder being ethylene. It is a polymer that approaches elastomeric ("rubber-like") materials in softness and flexibility. This is distinct from a thermoplastic, in that the material is cross-linking, ergo difficult to recycle.[1][2][3] The material has good clarity and gloss, low-temperature toughness, stress-crack resistance, hot-melt adhesive waterproof properties, and resistance to UV radiation. EVA has a distinctive vinegar-like odor and is competitive with rubber and vinyl products in many electrical applications. Applications Hot melt adhesives, hot glue sticks, and top of the line soccer cleats are usually made from EVA, usually with additives like wax and resin. EVA is also used as a clinginess-enhancing additive in plastic wraps. Craft foam sheets are made of EVA and these foam sheets are popularly used for children's foam stickers. EVA is also used in biomedical engineering applications as a drug delivery device. The polymer is dissolved in an organic solvent (e.g., dichloromethane). Powdered drug and filler (typically an inert sugar) are added to the liquid solution and rapidly mixed to obtain a homogeneous mixture. The drug-filler-polymer mixture is then cast into a mold at −80 °C and freeze dried until solid. These devices are used in drug delivery research to slowly release a compound. While the polymer is not biodegradable within the body, it is quite inert and causes little or no reaction following implantation. EVA is one of the materials popularly known as expanded rubber or foam rubber. EVA foam is used as padding in equipment for various sports such as ski boots, bicycle saddles, hockey pads, boxing and mixed martial arts gloves and helmets, wakeboard boots, waterski boots, fishing rods and fishing reel handles. It is typically used as a shock absorber in sports shoes, for example. It is used for the manufacture of floats for commercial fishing gear such as purse seine (seine fishing) and gillnets. In addition, because of its buoyancy, EVA has made its way into non-traditional products such as floating eyewear. It is also used in the photovoltaics industry as an encapsulation material for crystalline silicon solar cells in the manufacture of photovoltaic modules. EVA slippers and sandals are currently very popular because of their properties like light weight, easy to form, odorless, glossy finish, and cheaper compared to natural rubber. In fishing rods, it is used to construct handles on the rod-butt end. EVA can be used as a substitute for cork in many applications. EVA emulsions are polyvinyl acetate (PVAc) copolymers based on vinyl acetate (VAM) internally plastized with vinyl acetate ethylene (VAE). PVAc copolymer are adhesives used in packaging, textile, bookbinding for bonding plastic films, metal surfaces, coated paper, as redispersible powder in plasters and cement renders EVA is also used in coatings formulation of good quality interior water-borne paints at 53% primary dispersant Hydrolysis of EVA gives ethylene vinyl alcohol (EVOH) copolymer. Other uses EVA is used in orthotics, fire safe cigarettes (FSC), surfboard and skimboard traction pads, and for the manufacturing of some artificial flowers. It is used as a cold flow improver for diesel fuel and a separator in HEPA filters. EVA can easily be cut from sheets and molded to shape. It is also used to make thermoplastic mouthguards that soften in boiling water for a user specific fit. It is also used for impregnation of leather. Additional uses are in the making of nicotine transdermal patches since the copolymer binds well with other agents to form gel like substances. .
Recommended publications
  • Graft Polymerization of Vinyl Acetate Onto Starch. Saponification to Starch-G-Poly(Vinyl Alcohol)
    Graft Polymerization of Vinyl Acetate onto Starch. Saponification to Starch-g-Poly(vinyl Alcohol) GEORGE F. FANTA, R. C. BURR, W. M. DOANE, and C. R. RUSSELL, Northern Regional Research Center, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, Peoria, Illinois 61604 Synopsis Graft polymerizations ofvinyl acetate onto granular corn starch were initiated by cobalt-60 irra­ diation of starch-monomer-water mixtures. and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 IvIrad. However, over half of the polymer was present as ungrafted poly­ (vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only :34'1,) grafted synthetic polymer (:34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acryl­ amide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficiency. However, grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate-methyl methacrylate was carried out near O°C, although conversion of monomers to polymer was low and grafted polymer contained 40-50',\0 poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hy­ droxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety \vas about 30,000.
    [Show full text]
  • Vinyl Acetate from Ethylene, Acetic Acid and Oxygen Industrial Plant Simulation
    Vinyl Acetate from ethylene, acetic acid and oxygen Industrial Plant Simulation. J.P. Contreras, J.C. Naranjo, S. Ramírez & D.M. Martínez Chemical Engineer department, Los Andes University, Bogotá, Colombia. I.D. Gil Chemical Engineer department, National University of Colombia, Bogotá, Colombia. Paper # 134650 ABSTRACT The production of vinyl acetate monomer (VAM) represents one of the largest industries with a growth es- timate of a near 2.7% per year starting in 2008. In recent times, thanks to different studies and the importance of said product, one process has been developed based on the reaction of ethylene, acetic acid, and oxygen us- ing a Pd/Au catalyst. In this work, a detailed study was made based on a simulation of the process using the Aspen Plus v2006 program and establishing the correct operation conditions. The simulated process involves, from the preparation of the raw materials until the dehydration of the monomer. The restrictions set for the simulation corresponds to the VAM composition restriction in the extractive distillation column using glycerol. INTRODUCTION Vinyl acetate is a colorless, flammable liquid that also has a characteristic smell that can quickly become irri- tating. This monomer is used principally in the production of polyvinyl acetate (PVAc) and other vinyl acetate co-polymers. Polyvinyl acetate is a precursor of polyvinilyc alcohol and polyvinyl acetate resins (PVA). Vinyl acetate is also copolymerized as a minor raw material for vinyl chloride and ethylene to form commercial polymers and acrylic fibers.1 Vinyl acetate is completely soluble in organic liquids but not in water. At 20º C a saturated solution of the monomer in water can contain between 2-2.4% of vinyl acetate, while a saturated water solution in vinyl ace- tate contains 1% of water.
    [Show full text]
  • United States Patent Office Patiented Jan.5, 1963 2 Evaporation of the Solvent, to Leave Behind a Thin, De 3,073,794 Posited Film of the Polymer
    3,073,794 United States Patent Office Patiented Jan.5, 1963 2 evaporation of the solvent, to leave behind a thin, de 3,073,794 posited film of the polymer. Basically, a suitable poly SPRAYABLE, ANHYDROUS SOLUTION OF -V. mer is a “1-vinyl-2-pyrrolidone polymer" and this is the NYL-2-PYRERODONE POLYMER IN CHELOR principal component. However, the term is also defined FLUORO HYDRO CARBON PROPELLANT George G. Stoner, Easton, Pa., assignor to General herewith to include not only the homopolymers but also a Aniline & Film Corporation, New York, N.Y., a corpor wide range of heteropolymers, copolymers, interpolymers, ration of Delaware terpolymers (three-component polymers) and, in general, No Drawing. Fied May 22, 1959, Ser. No. 814,999 polymers in which vinylpyrrollidone is either the sole com 6 (Cais. (CE. 260-33.8) ponent, a major component or a substantial component. O In the latter two instances the vinylpyrrollidone is copolym This invention relates to film-forming compositions, erized with such substances as vinyl acetate, isopropenyl and relates more particularly to sprayable film-forming acetate, vinyl laurate, vinyl stearate, vinyl oleate, vinyl compositions which are non-flammable and non-alcoholic benzoate, and other vinyl and isopropenyl esters; vinyl and which are eminently suitable for therapeutic pur chloride, 2-chloropropene, and other vinyl and isopropenyl poses. 5 halides; methyl vinyl ether, ethyl vinyl ether, isopropyl This application is a continuation-in-part of my ap vinyl ether, isobutyl vinyl ether, 2-ethoxyethyl vinyl ether, plication Serial No. 580,443, filed April 25, 1956 and now phenyl vinyl ether and other vinyl ethers; acrylic acid and abandoned.
    [Show full text]
  • Results of Long-Term Carcinogenicity Bioassay on Vinyl Acetate Monomer in Sprague-Dawley Rats
    Results of Long-Term Carcinogenicity Bioassay on Vinyl Acetate Monomer in Sprague-Dawley Rats FRANCO MINARDI, FIORELLA BELPOGGI, MORANDO SOFFRITTI, ADRIANO CILIBERTI, MICHELINA LAURIOLA, ELISA CATTIN, AND CESARE MALTONI† Cancer Research Center, European Ramazzini Foundation for Oncology and Environmental Sciences, Bologna, Italy ABSTRACT: Vinyl acetate monomer (VAM) was administered in drinking water supplied ad libitum at doses of 5,000, 1,000, and 0 ppm (v/v) to 17-week-old Sprague-Dawley rats (breeders) and to 12-day embryos (offspring). Treatment lasted for 104 weeks; thereafter, animals were kept under control conditions until spontaneous death. VAM was found to cause an increase in total malig- nant tumors and in carcinomas and/or precursor lesions of the oral cavity, lips, tongue, esophagus, and forestomach. Based on these data, VAM must be con- sidered a multipotent carcinogen. KEYWORDS: vinyl acetate monomer; carcinogenicity; long-term bioassay; rat INTRODUCTION Vinyl acetate monomer (VAM) is an important compound in the plastics industry. VAM (C 4H6O2) has a molecular weight of 86.09. Industrial production of VAM started in the United States in 1928.1 VAM is produced mainly by two processes: (1) In a process used since the 1920s, acetylene and acetic acid are reacted in the vapor phase over a catalyst bed,2 (2) In another process, largely used since the 1970s, eth- ylene is reacted with acetic acid in the presence of oxygen.3 The world production of VAM is over 2.5 million tons per year.4 The only commercial use of VAM is in the production of polymers (polyvinyl ac- etate, polyvinyl alcohol, polyvinyl acetals) and copolymers (ethylene-vinyl acetate and polyvinyl-acetate chloride).3 Polyvinyl acetate is mainly used in adhesives for paper, wood, glass, metals, and porcelain.
    [Show full text]
  • Sept. 4, 1962. MICHIJIRO AKABOSH ETAL 3,052,610 CONCENTRATION of ACETIC ACID Filed May 19, 1960
    Sept. 4, 1962. MICHIJIRO AKABOSH ETAL 3,052,610 CONCENTRATION OF ACETIC ACID Filed May 19, 1960 INVENTORS MCHIJIRO AKABOSH KK UJ U RAGAM: BY KENSUKE O KUMA AttoRNEY 3,052,610 United States Patent Office Patented Sept. 4, 1962 2 1. acetate. Some of the vinyl acetate from the upper phase 3,052,610 is returned to the top of the distillation zone as reflux, CONCENTRATION OF ACETIC ACD in accordance with conventional distillation technique, Michijiro Akaboshi, Toyonaka City, and Kikuji Uragaini and the remainder is withdrawn as product. and Kensuke Okema, Toyama City, Japan, assignors to Particularly suitable as a source of vinyl acetate for Kurashiki Rayon Co., Ltd., Okayama Prefecture, the distillation operation referred to above is the vinyl Japan, a corporation of Japan acetate-acetic acid mixture which is produced in the syn Fied May 19, 1960, Ser. No. 30,384 thesis of vinyl acetate from acetylene and acetic acid. 6 Claims. (C. 202-42) Prior to its use for the production of polyvinyl acetate This invention relates to the concentration of aqueous O by polymerization, the vinyl acetate must be separated Solutions of acetic acid and is more particularly concerned from the acetic acid. In accordance with the invention, With a process for concentrating aqueous acetic acid solu this operation is combined with the acetic acid dehydrat tions which is effectively integrated with the manufac ing and concentrating operation so that two normally ture of polyvinyl alcohol. independent processing steps are effectively and efficiently In accordance with conventional practice, polyvinyl 5 combined into a single operation which produces sub alcohol is formed by the saponification or "alcoholysis' stantially pure vinyl acetate suitable for the production of polyvinyl acetate which, in turn, is formed by the poly of polyvinyl acetate, and an effectively concentrated or merization of vinyl acetate.
    [Show full text]
  • US EPA, Inert (Other) Pesticide Ingredients in Pesticide Products
    Inert Ingredients ordered by CAS Number Updated August 2004 CAS PREFIX NAME List No. 50-21-5 Lactic acid 4B 50-70-4 Sorbitol 4A 50-81-7 L- Ascorbic acid 4A 50-99-7 Dextrose 4A 51-03-6 Piperonyl butoxide 3 51-05-8 Procaine hydrochloride 3 51-55-8 Atropine 3 52-51-7 2- Bromo-2-nitro-propane-1,3-dio 3 54-21-7 Sodium salicylate 3 56-81-5 Glycerol (glycerin) 1,2,3 propanetriol 4A 56-86-0 L- Glutamic acid 3 56-95-1 Chlorhexidine diacetate 3 57-10-3 Hexadecanoic acid 4A 57-11-4 Stearic acid 4A 57-13-6 Urea 4A 57-48-7 D- Fructose 4B 57-50-1 Sugar 4A 57-55-6 Propylene glycol 4B 57-88-5 (3.beta.)- Cholest-5-en-3-ol 4B 58-08-2 1H- Purine-2,6-dione, 3,7-dihydro-1,3,7-trimethyl- 4B 58-56-0 Thiamine mononitrate 4B 58-85-5 Biotin 3 58-86-6 D- Xylose 4B 58-95-7 Vitamin E acetate 3 59-30-3 Folic acid 4B 59-40-5 N-(2- Quinoxalinyl)sulfanilide 3 59-67-6 Nicotinic acid 3 60-00-4 Ethylenediaminetetraacetic acid (EDTA) 4B 60-12-8 Benzeneethanol 3 60-29-7 Ethane, 1,1'-oxybis- 3 60-33-3 Linoleic acid 3 61-73-4 C.I. Basic Blue 9 3 62-33-9 Ethylenediaminetetraacetic acid (EDTA), calcium4B 62-54-4 Acetic acid, calcium salt 4A 63-42-3 D-(+)-Lactose 4A 63-68-3 L- Methionine 4B 64-02-8 Ethylenediaminetetraacetic acid (EDTA), tetraso4B 64-17-5 Ethanol 4B 64-18-6 Formic acid 3 64-19-7 Acetic acid 4B 64-86-8 Colchicine 3 65-85-0 Benzoic acid 4B 66-71-7 1,10- Phenanthroline 3 67-03-8 Thiamin hydrochloride 3 67-43-6 1,1,4,7,7- Diethylenetriaminepentaacetic acid 3 67-48-1 Choline chloride 4B 67-56-1 Methyl alcohol 3 67-63-0 2- Propanol 4B 67-64-1 Acetone 3 67-68-5 Dimethyl
    [Show full text]
  • An Investigation Into the Synthesis of Poly(Co-Maleic Anhydride/Iso-Butyl Vinyl Ether) with RAFT Polymerisation
    The University of New South Wales Faculty of Engineering School of Chemical Sciences and Engineering Centre for Advanced Macromolecular Design (CAMD) An investigation into the Synthesis of Poly(co-maleic anhydride/iso-butyl vinyl ether) with RAFT polymerisation A Thesis in Industrial Chemistry by S. C. Lea Submitted for the degree of Masters of Science in Industrial Chemistry October 2006 Table of contents List of symbols.............................................................................................. i Chapter 1. Introduction .............................................................................. 1 References................................................................................................. 3 Chapter 2. Chemistry and mechanism of radical polymerisation............. 4 2.1 Free radical polymerisation ………………………………………...4 2.1.1 Initiation .................................................................................... 4 2.1.2 Propagation............................................................................... 6 2.1.3 Termination ............................................................................... 7 2.1.4 Chain transfer........................................................................... 8 2.1.4.1 Transfer agents....................................................................... 9 2.1.4.2 The transfer constant Ctr and the re-initiation constant Cri... 9 2.1.5 Number and weight average molecular weight ...................... 10 2.1.6 Kinetics of FRP ......................................................................
    [Show full text]
  • EVOH): a Review
    Polymer Reviews ISSN: 1558-3724 (Print) 1558-3716 (Online) Journal homepage: https://www.tandfonline.com/loi/lmsc20 Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review Caroline Maes, Wout Luyten, Geert Herremans, Roos Peeters, Robert Carleer & Mieke Buntinx To cite this article: Caroline Maes, Wout Luyten, Geert Herremans, Roos Peeters, Robert Carleer & Mieke Buntinx (2018) Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review, Polymer Reviews, 58:2, 209-246, DOI: 10.1080/15583724.2017.1394323 To link to this article: https://doi.org/10.1080/15583724.2017.1394323 © 2018 The Author(s). Published by Taylor & Accepted author version posted online: 24 Francis Group, LLC Oct 2017. Published online: 18 Jan 2018. Submit your article to this journal Article views: 3240 View related articles View Crossmark data Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=lmsc20 POLYMER REVIEWS 2018, VOL. 58, NO. 2, 209–246 https://doi.org/10.1080/15583724.2017.1394323 REVIEW Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review Caroline Maes a,b, Wout Luytena, Geert Herremansa, Roos Peetersb, Robert Carleerc, and Mieke Buntinxb aKuraray–Eval Europe NV, Haven 1053 Nieuwe Weg 1, Bus 10, Zwijndrecht, Belgium; bHasselt University, Packaging Technology Center IMO-IMOMEC, Wetenschapspark 27, Diepenbeek, Belgium; cHasselt University, Applied and Analytical Chemistry IMO-IMOMEC, Agoralaan Building D, Diepenbeek, Belgium ABSTRACT ARTICLE HISTORY The gas barrier properties of ethylene vinyl alcohol copolymer (EVOH) Received 26 June 2017 against oxygen, carbon dioxide and water vapor have been Accepted 15 October 2017 widely investigated in relation to different material characteristics, KEYWORDS environmental conditions and new processing technologies.
    [Show full text]
  • Vinyl Acetate Polymer with Wet Adhesion
    Europaisches Patentamt 0 383 592 J European Patent Office Publication number: A1 Office europeen des brevets EUROPEAN PATENT APPLICATION C09J © Application number: 90301611.1 © mt. ci.«: C09J 133/06, 131/04, C09J 125/04, C09J 201/00, © Date of filing: 15.02.90 C09D 133/06, C09D 131/04, C09D 125/04, C09D 201/00 © Priority: 17.02.89 CA 591428 © Applicant: NACAN PRODUCTS LIMITED 60 West Drive © Date of publication of application: Brampton, Ontario, L6T 4W7(CA) 22.08.90 Bulletin 90/34 © Inventor: Boyce, A. Clarke © Designated Contracting States: 208 Burton Road DE FR GB NL SE Oakville Ontaria L6K 2K2(CA) Inventor: Farwaha, Rajeev 143-8th Street No. 108 Entobicoke Ontario M8V 3C8(CA) Inventor: Licht, Brigitte H. 291 Lakeview Avenue Burlington Ontario L7N 1Y9(CA) Inventor: Menard, Martin 311 Quevillan Varennes Quebec JOL 2B0(CA) © Representative: Smart, Peter John et al W.H. BECK, GREENER & CO 7 Stone Buildings Lincoln's Inn London WC2A 3SZ(GB) © Vinyl acetate polymer with wet adhesion. © Wet adhesion properties comparable or superior to all-acrylic latexes for vinyl acetate copolymers and other low cost polymers, such as EVA-vinyl chloride copolymers, is achieved by blending a minor proportion, usually about 5 to 15%, of a small particle size copolymer containing copolymerized wet adhesion monomer which is a 5 cyclic ureido. Very low quantities of the wet adhesion monomer, less than 0.25 wt% of total monomers, only are required to achieve excellent results. CM O> LO CO 00 CO Q- LU Xerox Copy Centre EP 0 383 592 A1 VINYL ACETATE POLYMER WITH WET ADHESION The present invention relates to imparting wet adhesion properties to vinyl acetate copolymers and other low cost polymers employed in latex compositions particularly suited for semi-gloss, gloss and flat interior and exterior paint formulations.
    [Show full text]
  • THERMAL DEGRADATION of Pvac
    Journal of the University of J.Chemical Blazevska-Gilev, Technology D. Spaseskaand Metallurgy, 40, 4, 2005, 287-290 THERMAL DEGRADATION OF PVAc J. Blazevska-Gilev, D. Spaseska Faculty of Technology and Metallurgy, Received 20 October 2005 Ss Cyril and Methodius University, Accepted 15 November 2005 P.O. Box 580, MK-1001 Skopje, Republic of Macedonia, E-mail: [email protected] ABSTRACT The kinetics of decomposition of plastics are interesting from different points of view, i.e. evolution of harmful substances during fires or waste incineration, recovering of chemical raw materials from plastic refuses and designing of recycling procedures. Non isothermal or dynamic thermogravimetry (TGA) has been used for kinetic study of the thermally activated process of polyvinyl acetate (PVAc), heating by two different rates up to around 723 K. As the easily measured weight changes of the samples in the defined thermal conditions are a suitable sensor for their structural and chemical changes, by means of some methods like Gropjanov-Abbakumov,s one, the useful information for identifying the formal kinetic parameters of the investigated processes taking place in the course of thermal treatment have been obtained. The thermal variation of the rate constant as well as the kinetic equations for the examined process depending on the investigated parameters have been derived. Keywords: polyvinyl acetate, thermal degradation, degradation kinetics. INTRODUCTION mally degrades under vacuum at an appreciable rate at temperatures above 500 K. The mechanisms of ther- Polyvinyl acetate (PVAc) is known to be one of mal degradation of PVAc is very complex process in- the most important commercial polymers as a result cluding, among others, the following reactions: chain of its low cost and high performance of the products, fission, radical recombination, carbon hydrogen single combined with the wide range of properties.
    [Show full text]
  • The Production of Vinyl Acetate Monomer As a Co-Product from the Non-Catalytic Cracking of Soybean Oil
    Processes 2015, 3, 619-633; doi:10.3390/pr3030619 OPEN ACCESS processes ISSN 2227-9717 www.mdpi.com/journal/processes Article The Production of Vinyl Acetate Monomer as a Co-Product from the Non-Catalytic Cracking of Soybean Oil Benjamin Jones, Michael Linnen, Brian Tande and Wayne Seames * Department of Chemical Engineering, University of North Dakota, 241 Centennial Dr., Stop 7101 Grand Forks, ND 58202-7101, USA; E-Mails: [email protected] (B.J.); [email protected] (M.L.); [email protected] (B.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-701-777-2958; Fax: +1-701-777-3773. Academic Editor: Bhavik Bakshi Received: 30 June 2015/ Accepted: 7 August 2015 / Published: 14 August 2015 Abstract: Valuable chemical by-products can increase the economic viability of renewable transportation fuel facilities while increasing the sustainability of the chemical and associated industries. A study was performed to demonstrate that commercial quality chemical products could be produced using the non-catalytic cracking of crop oils. Using this decomposition technique generates a significant concentration of C2−C10 fatty acids which can be isolated and purified as saleable co-products along with transportation fuels. A process scheme was developed and replicated in the laboratory to demonstrate this capability. Using this scheme, an acetic acid by-product was isolated and purified then reacted with ethylene derived from renewable ethanol to generate a sample of vinyl acetate monomer. This sample was assessed by a major chemical company and found to be of acceptable quality for commercial production of polyvinyl acetate and other products.
    [Show full text]
  • Vinyl Acetate
    Vinyl acetate 108-05-4 Hazard Summary Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol. Acute (short-term) inhalation exposure of workers to vinyl acetate has resulted in eye irritation and upper respiratory tract irritation. Chronic (long-term) occupational exposure did not result in any severe adverse effects in workers; some instances of upper respiratory tract irritation, cough, and/or hoarseness were reported. Nasal epithelial lesions and irritation and inflammation of the respiratory tract were observed in mice and rats chronically exposed by inhalation. No information is available on the reproductive, developmental, or carcinogenic effects of vinyl acetate in humans. An increased incidence of nasal cavity tumors has been observed in rats exposed by inhalation. In one drinking water study, an increased incidence of tumors was reported in rats. EPA has not classified vinyl acetate for carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (2), which contains information on inhalation chronic toxicity of vinyl acetate and the RfC, and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Vinyl Acetate. (1) Uses Vinyl acetate is primarily used as a monomer in the production of polyvinyl acetate and polyvinyl alcohol.(1) Vinyl acetate is also used as a raw material in the production of other chemicals, in adhesives, water-based paints, nonwoven textile fibers, textile sizings and finishes, paper coatings, inks, films, and lacquers. (1,2) Sources and Potential Exposure Exposure is most likely to occur in the workplace, where individuals may be occupationally exposed to vinyl acetate via inhalation or dermal contact during its manufacture or use.
    [Show full text]