Ethylene-Vinyl Acetate

Ethylene-Vinyl Acetate

Ethylene-vinyl acetate From Wikipedia, the free encyclopedia Ethylene-vinyl acetate Names Other names Poly(ethylene-vinyl acetate); Poly(ethylene-co-vinyl acetate); Polyethylene-vinyl acetate copolymer Identifiers CAS Registry Number 24937-78-8 Abbreviations EVA; PEVA PubChem 32742 UNII 4OKC630HS6 Properties Chemical formula (C2H4)n(C4H6O2)m Molar mass Variable Ethylene-vinyl acetate (EVA), also known as poly(ethylene-vinyl acetate) (PEVA), is the copolymer of ethylene and vinyl acetate. The weight percent vinyl acetate usually varies from 10 to 40%, with the remainder being ethylene. It is a polymer that approaches elastomeric ("rubber-like") materials in softness and flexibility. This is distinct from a thermoplastic, in that the material is cross-linking, ergo difficult to recycle.[1][2][3] The material has good clarity and gloss, low-temperature toughness, stress-crack resistance, hot-melt adhesive waterproof properties, and resistance to UV radiation. EVA has a distinctive vinegar-like odor and is competitive with rubber and vinyl products in many electrical applications. Applications Hot melt adhesives, hot glue sticks, and top of the line soccer cleats are usually made from EVA, usually with additives like wax and resin. EVA is also used as a clinginess-enhancing additive in plastic wraps. Craft foam sheets are made of EVA and these foam sheets are popularly used for children's foam stickers. EVA is also used in biomedical engineering applications as a drug delivery device. The polymer is dissolved in an organic solvent (e.g., dichloromethane). Powdered drug and filler (typically an inert sugar) are added to the liquid solution and rapidly mixed to obtain a homogeneous mixture. The drug-filler-polymer mixture is then cast into a mold at −80 °C and freeze dried until solid. These devices are used in drug delivery research to slowly release a compound. While the polymer is not biodegradable within the body, it is quite inert and causes little or no reaction following implantation. EVA is one of the materials popularly known as expanded rubber or foam rubber. EVA foam is used as padding in equipment for various sports such as ski boots, bicycle saddles, hockey pads, boxing and mixed martial arts gloves and helmets, wakeboard boots, waterski boots, fishing rods and fishing reel handles. It is typically used as a shock absorber in sports shoes, for example. It is used for the manufacture of floats for commercial fishing gear such as purse seine (seine fishing) and gillnets. In addition, because of its buoyancy, EVA has made its way into non-traditional products such as floating eyewear. It is also used in the photovoltaics industry as an encapsulation material for crystalline silicon solar cells in the manufacture of photovoltaic modules. EVA slippers and sandals are currently very popular because of their properties like light weight, easy to form, odorless, glossy finish, and cheaper compared to natural rubber. In fishing rods, it is used to construct handles on the rod-butt end. EVA can be used as a substitute for cork in many applications. EVA emulsions are polyvinyl acetate (PVAc) copolymers based on vinyl acetate (VAM) internally plastized with vinyl acetate ethylene (VAE). PVAc copolymer are adhesives used in packaging, textile, bookbinding for bonding plastic films, metal surfaces, coated paper, as redispersible powder in plasters and cement renders EVA is also used in coatings formulation of good quality interior water-borne paints at 53% primary dispersant Hydrolysis of EVA gives ethylene vinyl alcohol (EVOH) copolymer. Other uses EVA is used in orthotics, fire safe cigarettes (FSC), surfboard and skimboard traction pads, and for the manufacturing of some artificial flowers. It is used as a cold flow improver for diesel fuel and a separator in HEPA filters. EVA can easily be cut from sheets and molded to shape. It is also used to make thermoplastic mouthguards that soften in boiling water for a user specific fit. It is also used for impregnation of leather. Additional uses are in the making of nicotine transdermal patches since the copolymer binds well with other agents to form gel like substances. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us