Self-Validated Numerical Methods and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Self-Validated Numerical Methods and Applications SelfValidated Numerical Metho ds and Applications Jorge Stol Instituto de Computacao Universidade Estadual de Campinas UNICAMP Luiz Henrique de Figueiredo Lab oratorio Nacional de Computacao Cientca LNCC Preface st This monograph is a set of course notes written for the Brazil ian Mathematics Collo quium held at IMPA in July It gives an overview of the eld of selfvalidated numerics computation mo dels in which approximate results are automatically provided with guaranteed error b ounds We fo cus in particular on two such mo dels interval arithmetic and ane arithmetic Interval arithmetic IA was develop ed in the s by Ramon E Mo ore IA is the simplest and most ecient of all validated nu merics mo dels and not surprisingly the most widely known and used After two decades of relative neglect IA has been enjoying a strong and steady resurgence driven largely by its successful use in all kinds of practical applications We are condent that many readers of this monograph will nd IA to b e a useful to ol in their own work as well Ane arithmetic AA is a more complex and exp ensive computation mo del designed to give tighter and more informative b ounds than IA in certain situations where the latter is known to p erform p o orly The AA mo del was prop osed and develop ed recently by the authors al though a similar mo del had b een develop ed in by E R Hansen Apart from its usefulness for certain sp ecial applications AA is b eing presented here as an example of the many topics for research that are still unexplored in the eld of selfvalidated numerical metho ds We ap ologize to the reader for the length and verb osity of these notes but likePascal we didnt have the time to make them shorter Je nai fait celleci plus longue que parce que je nai pas eu le loisir de la faire plus courte Blaise Pascal Lettres Provinciales XVI i ii Acknowledgements st We thank the Organizing Committee of the Brazilian Mathematics Collo quium for the opp ortunity to present this course We wish to thank Joao Comba who help ed implementa prototyp e ane arithmetic package in Mo dula and Marcus Vinicius Andrade who help ed debug the C version and wrote an implicit surface raytracer based on it Ronald van Iwaarden contributed an indep endent imple mentation of AA and investigated its p erformance on branchandb ound global optimization algorithms Douglas Priest and Helmut Jarausch provided co de and advice for rounding mo de control We wish to thank also Sergey P Shary and Lyle Ramshaw for valu able comments and references and Paulo Correa de Mello for the use of his computing equipment The authors research has been supp orted over the years partly by grants from Brazilian research funding agencies CNPq CAPES FAPESP FAPERJ and by the State University of Campinas UNI CAMP the Pontical Catholic University of Rio de Janeiro PUCRio the Institute for Pure and Applied Mathematics IMPA the National Lab oratory for Scientic Computation LNCC and Digitals Systems Research Center DEC SRC in Palo Alto Figures and were generated with Geomview Figure was generated with xfarbe Figures and were kindly provided by Luiz Velho The other gures were generated with software written by the authors Jorge Stol Luiz Henrique de Figueiredo Instituto de Computacao UNICAMP Lab Nacional de Computacao Cientca Caixa Postal Rua Lauro Muller Campinas SP Brazil Rio de Janeiro RJ Brazil stolfidccunicampbr lhflnccbr May Contents Intro duction Approximate computations Error mo dels Floatingp ointnumber systems The IEEE oatingp oint standard Interval arithmetic Intro duction Intervals Computing with IA Sp ecic op erations Utility op erations The error explosion problem Avoiding error explosion Ane arithmetic Ane forms Joint range of ane forms Sp ecial ane forms Conversions b etween IA and AA Computing with AA Ane op erations Nonane op erations Optimal ane approximations Square ro ot The minrange approximation Exp onential iii iv Contents Recipro cal Multiplication Division The mixed AAIA mo del Comparing AA and IA Implementation issues Optimization techniques Hansens Generalized Interval Arithmetic Some applications Zeros of functions Level sets Ray tracing Global optimization Surface intersection Bibliography Chapter Intro duction Approximate computations Many numerical computations esp ecially those concerned with mo d eling physical phenomena are inherently approximate they will not deliver the true exact values of the target quantities but only some values that are in some sense near the true ones Approximate numerical computation has been an essential to ol of science and technology for several centuries The history of the eld is actually as long as that of science itself the ancient Babylonians were already computing recipro cals and square ro ots as truncated sexagesimal a fractions One of Archimedess bestknown endeavors was numerical approximation algorithm for The greatest mathematicians of mo dern history such as Newton and Gauss were deeply concerned with this eld The rst electronic computers were expressly designed for numerical computing and that application is still an overriding concern in the design of mo dern CPU chips Error analysis The dierence between a computed value and the true value of the corresp onding quantity is commonly called the error of that computed value Some sources of error are external to the computation the inputs mayhave b een contaminated by measurement error or missing data or Intro duction the computation may b e based on a simplied mathematical mo del that later proves to b e inadequate Other sources of error are internal due to the discrete nature of digital computing to resource limitations on computing time storage capacity or program complexity or to compatibility constraints such as hardware oatingp oint formats and decimal inputoutput conver sion These factors usually force the original mathematical mo del to b e replaced by a discrete approximation with nite steps truncated series rounded arithmetic etc The accuracy of numeric algorithms is notoriously hard to analyze In practice it is often imp ossible or unfeasible to predict mathematically the magnitude of the roundo and truncation errors hidden in the output of a numeric program In order to be truly useful every approximate numerical pro cedure must be accompanied by an accuracy specication a statement that denes the magnitude of the errors in the output values usually as a function of the input values and their errors The accuracy sp ecication must b e supp orted byanerror analysis a mathematical pro of that the output errors ob ey the sp ecications Unfortunatelyeven for relatively simple algorithms a rigorous error analysis is often prohibitively long or dicult or b oth Moreover a useful accuracy sp ecication often requires that the inputs satisfy a host of prerequisitesthis matrix must be wellconditioned that function must have b ounded derivatives these formulas should not overow etc In practice these prerequisites are often imp ossible to guarantee or even to check As a consequence numerical algorithms are often put to use without accuracy sp ecications much less a prop er error analysis Interpretation of the results is left to the user who must rely on his intuition crude tests or pure luck This unfortunate state of aairs has even led to prejudice against approximate numerical computing in contemp orary computer science tsuccess in applications The eld is despite its imp ortance and eviden generally p erceived by outsiders as sloppy and fuzzy and hence not really precise and scientic and hence not a resp ectable part computer sciencewhere as in mathematics there is no place for things that are correct Approximate computations A simple and common approach for estimating the error in a oating point computation is to rep eat it using more precision and compare the results If the results agree in many decimal places then the computa tion is assumed to be correct at least in the common part However this common practice can b e seriously misleading as the following sim ple example by Rump shows Consider the evaluation of f y x x y y y y xy for x and y Note that x y and all co ecients in f are exactly representable in oatingp oint b e it binary or decimal that computing f in FORTRAN on a IBM S Rump rep orts mainframe yield f using single precision f using double precision f using extended precision Since these three values agree in the rst seven places common practice would accept the computation as correct However the true value is f not even the sign is right in the computed results Similar results can b e obtained with Maple x y evaluate in floating point fyxxyyyyxy f evaluate in exact rational arithmetic yyxy fyxxyy
Recommended publications
  • A Negative Result for Hearing the Shape of a Triangle: a Computer-Assisted Proof
    AN ELECTRONIC JOURNAL OF THE SOCIETAT CATALANA DE MATEMATIQUES` A negative result for hearing the shape of a triangle: a computer-assisted proof ⇤Gerard Orriols Gim´enez Resum (CAT) ETH Z¨urich. En aquest article demostrem que existeixen dos triangles diferents pels quals [email protected] el primer, segon i quart valor propi del Laplaci`a amb condicions de Dirichlet coincideixen. Aix`o resol una conjectura proposada per Antunes i Freitas i Corresponding author ⇤ suggerida per la seva evid`encia num`erica. La prova ´esassistida per ordinador i utilitza una nova t`ecnica per tractar l’espectre d’un l’operador, que consisteix a combinar un M`etode d’Elements Finits per localitzar aproximadament els primers valors propis i controlar la seva posici´oa l’espectre, juntament amb el M`etode de Solucions Particulars per confinar aquests valors propis a un interval molt m´esprec´ıs. Abstract (ENG) We prove that there exist two distinct triangles for which the first, second and fourth eigenvalues of the Laplace operator with zero Dirichlet boundary conditions coincide. This solves a conjecture raised by Antunes and Freitas and suggested by their numerical evidence. We use a novel technique for a computer-assisted proof about the spectrum of an operator, which combines a Finite Element Method, to locate roughly the first eigenvalues keeping track of their position in the spectrum, and the Method of Particular Solutions, to get a much more precise bound of these eigenvalues. Keywords: computer-assisted proof, Laplace eigenvalues, spectral geome- Acknowledgement try, Finite Element Method, Method The author would like to thank Re- of Particular Solutions.
    [Show full text]
  • 1 Introduction
    数理解析研究所講究録 1169 巻 2000 年 27-56 27 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations Mitsuhiro T. Nakao 中尾 充宏 Graduate School of Mathematics, Kyushu University 33 Fukuoka 812-8581, Japan $\mathrm{e}$ -mail: [email protected] Abstract. In this article, we describe on a state of the art of validated numerical computations for solutions of differential equations. A brief overview of the main techniques in self-validating numerics for initial and boundary value problems in ordinary and partial differential equations including eigenvalue problems will be presented. A fairly detailed introductions are given for the author’s own method related to second-order elliptic boundary value problems. Many references which seem to be useful for readers are supplied at the end of the article. Key words. Numerical verification, nonlinear differential equation, computer assisted proof in analysis 1 Introduction If we denote an equation for unknown $u$ by $F(u)=0$ (1.1) then the problem of finding the solution $u$ generally implies an $n$ dimensional simulta- neous system of equations provided $u$ is in some finite dimensional ( $\mathrm{n}$ -dimension) space. Since very large scale, e.g. several thousand, linear system of equations can be easily solved on computers nowadays, it is not too surprising that, even if (1.1) is nonlinear, we can verify the existence and uniqueness of the solution as well as its domain by some numerical computations on the digital computer. However, in the case where (1.1) is a differential equation, it becomes a simultaneous equation which has infinitely many unknowns because the dimension of the potential function space containing $\mathrm{u}$ is infinite.
    [Show full text]
  • AMS Short Course on Rigorous Numerics in Dynamics: the Parameterization Method for Stable/Unstable Manifolds of Vector Fields
    AMS Short Course on Rigorous Numerics in Dynamics: The Parameterization Method for Stable/Unstable Manifolds of Vector Fields J.D. Mireles James, ∗ February 12, 2017 Abstract This lecture builds on the validated numerical methods for periodic orbits presented in the lecture of J. B. van den Berg. We discuss a functional analytic perspective on validated stability analysis for equilibria and periodic orbits as well as validated com- putation of their local stable/unstable manifolds. Building on this analysis we study heteroclinic and homoclinic connecting orbits between equilibria and periodic orbits of differential equations. We formulate the connecting orbits as solutions of certain projected boundary value problems whcih are amenable to an a posteriori analysis very similar to that already discussed for periodic orbits. The discussion will be driven by several application problems including connecting orbits in the Lorenz system and existence of standing and traveling waves. Contents 1 Introduction 2 2 The Parameterization Method 4 2.1 Formal series solutions for stable/unstable manifolds . .4 2.1.1 Manipulating power series: automatic differentiation and all that . .4 2.1.2 A first example: linearization of an analytic vector field in one complex variable . .9 2.1.3 Stable/unstable manifolds for equilibrium solutions of ordinary differ- ential equations . 15 2.1.4 A more realistic example: stable/unstable manifolds in a restricted four body problem . 18 2.1.5 Stable/unstable manifolds for periodic solutions of ordinary differen- tial equations . 23 2.1.6 Unstable manifolds for equilibrium solutions of partial differential equations . 26 2.1.7 Unstable manifolds for equilibrium and periodic solutions of delay differential equations .
    [Show full text]
  • Validated and Numerically Efficient Chebyshev Spectral Methods For
    Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations Florent Bréhard, Nicolas Brisebarre, Mioara Joldes To cite this version: Florent Bréhard, Nicolas Brisebarre, Mioara Joldes. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations. ACM Transactions on Mathematical Soft- ware, Association for Computing Machinery, 2018, 44 (4), pp.44:1-44:42. 10.1145/3208103. hal- 01526272v3 HAL Id: hal-01526272 https://hal.archives-ouvertes.fr/hal-01526272v3 Submitted on 5 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations Florent Bréhard∗ Nicolas Brisebarrey Mioara Joldeşz Abstract In this work we develop a validated numerics method for the solu- tion of linear ordinary differential equations (LODEs). A wide range of algorithms (i.e., Runge-Kutta, collocation, spectral methods) exist for nu- merically computing approximations of the solutions. Most of these come with proofs of asymptotic convergence, but usually, provided error bounds are non-constructive. However, in some domains like critical systems and computer-aided mathematical proofs, one needs validated effective error bounds. We focus on both the theoretical and practical complexity anal- ysis of a so-called a posteriori quasi-Newton validation method, which mainly relies on a fixed-point argument of a contracting map.
    [Show full text]
  • Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
    FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger 2 FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th{19th, 2017 Books of abstracts 4 FoCM 2017 Contents Presentation . .7 Governance of FoCM . .9 Local Organizing Committee . .9 Administrative and logistic support . .9 Technical support . 10 Volunteers . 10 Workshops Committee . 10 Plenary Speakers Committee . 10 Smale Prize Committee . 11 Funding Committee . 11 Plenary talks . 13 Workshops . 21 A1 { Approximation Theory Organizers: Albert Cohen { Ron Devore { Peter Binev . 21 A2 { Computational Algebraic Geometry Organizers: Marta Casanellas { Agnes Szanto { Thorsten Theobald . 36 A3 { Computational Number Theory Organizers: Christophe Ritzenhaler { Enric Nart { Tanja Lange . 50 A4 { Computational Geometry and Topology Organizers: Joel Hass { Herbert Edelsbrunner { Gunnar Carlsson . 56 A5 { Geometric Integration and Computational Mechanics Organizers: Fernando Casas { Elena Celledoni { David Martin de Diego .
    [Show full text]
  • Book of Abstracts
    GAMM International Association of Applied Mathematics and Mechanics IMACS International Association for Mathematics and Computers in Simulation 13th International Symposium on Scienti¯c Computing Computer Arithmetic and Veri¯ed Numerical Computations SCAN'2008 El Paso, Texas September 29 { October 3, 2008 ABSTRACTS Published in El Paso, Texas July 2008 1 2 Contents Preface....................................................................................... 8 Mohammed A. Abutheraa and David Lester, \Machine-E±cient Chebyshev Approximation for Standard Statistical Distribution Functions" . 9 GÄotzAlefeld and Guenter Mayer, \On the interval Cholesky method" . 11 GÄotzAlefeld and Zhengyu Wang, \Bounding the Error for Approximate Solutions of Almost Linear Complementarity Problems Using Feasible Vectors" . 12 Rene Alt, Jean-Luc Lamotte, and Svetoslav Markov, "On the accuracy of the CELL processor" . 13 Roberto Araiza, \Using Intervals for the Concise Representation of Inverted Repeats in RNA" .................................................................................... 15 Ekaterina Auer and Wolfram Luther, \Veri¯cation and Validation of Two Biomechanical Problems" . 16 Ali Baharev and Endre R¶ev,\Comparing inclusion techniques on chemical engineering problems" . 17 Neelabh Baijal and Luc Longpr¶e,\Preserving privacy in statistical databases by using intervals instead of cell suppression" . 19 Bal¶azsB¶anhelyiand L¶aszl¶oHatvani, \A computer-assisted proof for stable/unstable behaviour of periodic solutions for the forced damped pendulum" . 20 Moa Belaid, \A Uni¯ed Interval Constraint Framework for Crisp, Soft, and Parametric Constraints" . 21 Moa Belaid, \Box Satisfaction and Unsatisfaction for Solving Interval Constraint Systems" . 22 Frithjof Blomquist, \Staggered Correction Computations with Enhanced Accuracy and Extremely Wide Exponent Range" . 24 Gerd Bohlender and Ulrich W. Kulisch, \Complete Interval Arithmetic and its Implementation on the Computer" . 26 Chin-Yun Chen, \Bivariate Product Cubature Using Peano Kernels For Local Error Estimates" .
    [Show full text]
  • Deterministic Global Optimization for Dynamic Systems Using Interval Analysis
    Deterministic Global Optimization for Dynamic Systems Using Interval Analysis Youdong Lin and Mark A. Stadtherr Department of Chemical and Biomolecular Engineering University of Notre Dame, Notre Dame, IN, USA 12th GAMM–IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics Duisburg, Germany, 26–29 September 2006 Outline Background • Tools • – Interval Analysis – Taylor Models – Validated Solutions of Parametric ODE Systems Algorithm Summary • Computational Studies • Concluding Remarks • 2 Background Many practically important physical systems are modeled by ODE systems. • Optimization problems involving these models may be stated as • min φ [xµ(θ); θ; µ = 0; 1; : : : ; r] θ;xµ s:t: x_ = f(x; θ) x0 = x0(θ) xµ(θ) = x(tµ; θ) t [t ; tr] 2 0 θ Θ 2 Sequential approach: Eliminate xµ using parametric ODE solver, obtaining • an unconstrained problem in θ May be multiple local solutions – need for global optimization • 3 Deterministic Global Optimization of Dynamic Systems Much recent interest, mostly combining branch-and-bound and relaxation techniques, e.g., Esposito and Floudas (2000): α-BB approach • – Rigorous values of α not used: no theoretical guarantees Chachuat and Latifi (2003): Theoretical guarantee of -global optimality • Papamichail and Adjiman (2002, 2004): Theoretical guarantee of -global • optimality Singer and Barton (2006): Theoretical guarantee of -global optimality • – Use convex underestimators and concave overestimators to construct two bounding IVPs, which are then solved to obtain
    [Show full text]
  • Validated Numerics for Pedestrians
    4ECM Stockholm 2004 c 2005 European Mathematical Society Validated Numerics for Pedestrians Warwick Tucker Abstract. The aim of this paper is to give a very brief introduction to the emerg- ing area of validated numerics. This is a rapidly growing field of research faced with the challenge of interfacing computer science and pure mathematics. Most validated numerics is based on interval analysis, which allows its users to account for both rounding and discretization errors in computer-aided proofs. We will il- lustrate the strengths of these techniques by converting the well-known bisection method into a efficient, validated root finder. 1. Introduction Since the creation of the digital computer, numerical computations have played an increasingly fundamental role in modeling physical phenomena for science and engineering. With regards to computing speed and memory capacity, the early computers seem almost amusingly crude compared to their modern coun- terparts. Nevertheless, real-world problems were solved, and the speed-up due to the use of machines pushed the frontier of feasible computing tasks forward. Through a myriad of small developmental increments, we are now on the verge of producing Peta-flop/Peta-byte computers – an incredible feat which must have seemed completely unimaginable fifty years ago. Due to the inherent limitations of any finite-state machine, numerical computations are almost never carried out in a mathematically precise manner. As a consequence, they do not produce exact results, but rather approximate values that usually, but far from always, are near the true ones. In addition to this, external influences, such as an over-simplified mathematical model or a discrete approximation of the same, introduce additional inaccuracies into the calculations.
    [Show full text]
  • Applied Mathematics in Focus Nonlinear Problems of Elasticity S
    RUNDBRIEF DER GESELLSCHAFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK 2nd edition Herausgegeben vom 3rd edition Sekretär der GAMM V. Ulbricht, Dresden Redaktion 5th edition M. Gründer, Dresden 2005 – Brief 1 Sein wo andere nicht sind! Das Tool für optimale, verlässliche Ergebnisse. Maple 9.5 enthält über 3500 Funktionen für symbolische und numerische Mathematik, Grafi k, Ein- und Ausgabe, Program- mierung und Kommunikation mit anderer Software. Numerik und Symboli- Paket für symbolische Logik. griff auf wichtige Defi nitionen sche Berechnungen Erstmals ist ein leistungsfähi- und Hintergrundinformationen. Maple 9.5 erweitert Art und ges Paket für lokale Optimie- Umfang der lösbaren Proble- rung enthalten. Lehre und Forschung me erheblich und setzt damit Maple 9.5 bietet komfortable die Tradition fort, mit gültigen Echtes Wissens- Werkzeuge, die Lehrenden Standards übereinstimmende Management dabei helfen, Kursmaterialien Verfahren anzubieten, die hö- Maple 9.5 umfasst neue Werk- effektiv anzubieten und bei chste Genauigkeit und mäch- zeuge und eine verbesserte Studenten das Verständnis ma- tige Löser vereinen. Vielfältige Arbeitsumgebung, die es Ihnen thematischer und technischer Neuerungen stellen sicher, erlaubt, nicht einfach nur Ihre Konzepte zu fördern. Das erwei- dass Maple 9.5 mehr kann als Rechenergebnisse, sondern Ihr terte Werkzeug-Menü erlaubt je zuvor: Wissen wirklich zu verwalten, den Zugriff auf 40 interaktive Verbesserungen bei Vereinfach- zu bearbeiten und weiterzuge- Tutoren, die Sie auf mathemati- ung, Umwandlung und Kombi- ben. Mit seinem eingebauten sche Entdeckungsfahrten durch nation symbolischer Ausdrücke; Wörterbuch mathematischer die ein- und mehrdimensionale Reihenentwicklungen; Ratgeber und technischer Begriffe bietet Analysis und die lineare Algebra für mathematische Funktionen; Maple 9.5 den bequemen Zu- mitnehmen. maple@scientifi c.de • www.scientifi c.de RUNDBRIEF DER GESELLSCHAFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK Herausgegeben vom Sekretär der GAMM V.
    [Show full text]
  • Mafelap 2016
    MAFELAP 2016 Conference on the Mathematics of Finite Elements and Applications 14–17 June 2016 Abstracts MAFELAP 2016 The organisers of MAFELAP 2016 are pleased to ac- knowledge the financial support given to the confer- ence by the Institute of Mathematics and its Appli- cations (IMA) in the form of IMA Studentships, and the financial support from Brunel University London for the Tuesday evening showcase event. Contents of the MAFELAP 2016 Abstracts Alphabetical order by the speaker Finite element approximations for a fractional Laplace equation Gabriel Acosta and Juan Pablo Borthagaray Mini-Symposium: Elliptic problems with singularities . ....1 A Mixed-Method B-Field Finite-Element Formulation for Incompressible, Resistive Magnetohydrodynamics James H. Adler, Thomas Benson and Scott P. MacLachlan Mini-Symposium: Advances in Finite Element Methods for Nonlinear Mate- rials ................................................ ...............................2 Fitted ALE scheme for Two-Phase Navier–Stokes Flow Marco Agnese and Robert N¨urnberg Parallel session....................................... ....................3 An isogeometric approach to symmetric Galerkin boundary element method Alessandra Aimi, Mauro Diligenti, Maria Lucia Sampoli, and Alessandra Sestini Mini-Symposium: Recent developments in isogeometric analysis . .....3 High order finite elements: mathematician’s playground or practical engineering tool? Mark Ainsworth INVITED LECTURE..................................... ...............4 High-Order Discontinuous Galerkin methods
    [Show full text]
  • Arxiv:1905.02960V2 [Math.NA]
    SOLVING LAPLACE PROBLEMS WITH CORNER SINGULARITIES VIA RATIONAL FUNCTIONS ∗ ABINAND GOPAL AND LLOYD N. TREFETHEN Abstract. A new method is introduced for solving Laplace problems on 2D regions with cor- ners by approximation of boundary data by the real part of a rational function with fixed poles exponentially clustered near each corner. Greatly extending a result of D. J. Newman in 1964 in approximation theory, we first prove that such approximations can achieve root-exponential conver- gence for a wide range of problems, all the way up to the corner singularities. We then develop a numerical method to compute approximations via linear least-squares fitting on the boundary. Typ- ical problems are solved in <1s on a desktop to 8-digit accuracy, with the accuracy guaranteed in the interior by the maximum principle. The computed solution is represented globally by a single formula, which can be evaluated in a few microseconds at each point. Key words. Laplace equation, rational approximation, Hermite integral, method of fundamen- tal solutions, potential theory AMS subject classifications. 65N35, 41A20, 65E05 1. Introduction. In 1964 Donald Newman published a result that has attracted a good deal of attention among approximation theorists [37]. Newman considered supremum norm approximation of f(x) = x on [ 1, 1] and showed that, whereas | | −1 degree n polynomial approximants offer at best O(n− ) convergence as n , ratio- nal functions can achieve root-exponential convergence, that is, errors O(exp(→ ∞C√n)) with C > 0. (The degree of a rational function is the maximum of the degrees− of its numerator and denominator.) Newman’s construction crucially involved placing poles in the complex plane clustered exponentially near the singularity at x = 0, and he also showed that root-exponential convergence was the best possible.
    [Show full text]
  • Produits Et Activités De La Recherche Equipe I : Géométrie Et Topologie
    Annexe 4 - Produits et activités de la recherche ANNEXE 4 - Produits et activités de la recherche En cohérence avec les données chiffrées de l’onglet 4 du fichier Excel « Données du contrat en cours », on remplira ce document destiné à l’évaluation du critère 1 du référentiel de l’évaluation « Produits et activités de la recherche », pour l’ensemble de l’unité et pour chaque équipe / thème. CAMPAGNE D’ÉVALUATION 2020-2021 VAGUE B Equipe I : Géométrie et Topologie Nom de l’équipe : Géométrie et Topologie Responsable d’équipe pour le contrat en cours : Gaël Meigniez Responsable d’équipe pour le contrat à venir : I - PRODUCTION DE CONNAISSANCES ET ACTIVITÉS CONCOURANT AU RAYONNEMENT ET À L’ATTRACTIVITÉ SCIENTIFIQUE DE L’UNITÉ ET DE CHAQUE ÉQUIPE / THÈME 1- Journaux / Revues Articles scientifiques (90) 1. Baird P., Ghandour E., Biconformal equivalence between 3-dimensional Ricci solitons, à paraître, Tohoku Math. J. 2. Baird P., Ghandour E., A class of analytic pairs of conjugate functions in dimension three, Advances in Geometry, 19 (3) 421-433 (2019). 3. Baird P., Wehbe M., An integral formula for a class of biharmonic maps from Euclidean 3- space, Differential Geometry and its Applications, 60, 190-201 (2018). 4. Baird P., Ou Y-L., Biharmonic conformal maps in dimension four and equations of Yamabe- type, Journal of Geometric Analysis 28 (4) 3892-3905 (2018). 5. Baird P., Fardoun A., Ouakkas S., Biharmonic maps from biconformal deformations with respect to isoparametric functions, Differential Geometry and its Applications, 50 155-166 (2017). 6. Baird P., Eastwood M. G., On functions with a conjugate, Annales de l'Institut Fourier, 65 (1), 277-314 (2015).
    [Show full text]