Validated and Numerically Efficient Chebyshev Spectral Methods For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Negative Result for Hearing the Shape of a Triangle: a Computer-Assisted Proof
AN ELECTRONIC JOURNAL OF THE SOCIETAT CATALANA DE MATEMATIQUES` A negative result for hearing the shape of a triangle: a computer-assisted proof ⇤Gerard Orriols Gim´enez Resum (CAT) ETH Z¨urich. En aquest article demostrem que existeixen dos triangles diferents pels quals [email protected] el primer, segon i quart valor propi del Laplaci`a amb condicions de Dirichlet coincideixen. Aix`o resol una conjectura proposada per Antunes i Freitas i Corresponding author ⇤ suggerida per la seva evid`encia num`erica. La prova ´esassistida per ordinador i utilitza una nova t`ecnica per tractar l’espectre d’un l’operador, que consisteix a combinar un M`etode d’Elements Finits per localitzar aproximadament els primers valors propis i controlar la seva posici´oa l’espectre, juntament amb el M`etode de Solucions Particulars per confinar aquests valors propis a un interval molt m´esprec´ıs. Abstract (ENG) We prove that there exist two distinct triangles for which the first, second and fourth eigenvalues of the Laplace operator with zero Dirichlet boundary conditions coincide. This solves a conjecture raised by Antunes and Freitas and suggested by their numerical evidence. We use a novel technique for a computer-assisted proof about the spectrum of an operator, which combines a Finite Element Method, to locate roughly the first eigenvalues keeping track of their position in the spectrum, and the Method of Particular Solutions, to get a much more precise bound of these eigenvalues. Keywords: computer-assisted proof, Laplace eigenvalues, spectral geome- Acknowledgement try, Finite Element Method, Method The author would like to thank Re- of Particular Solutions. -
1 Introduction
数理解析研究所講究録 1169 巻 2000 年 27-56 27 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations Mitsuhiro T. Nakao 中尾 充宏 Graduate School of Mathematics, Kyushu University 33 Fukuoka 812-8581, Japan $\mathrm{e}$ -mail: [email protected] Abstract. In this article, we describe on a state of the art of validated numerical computations for solutions of differential equations. A brief overview of the main techniques in self-validating numerics for initial and boundary value problems in ordinary and partial differential equations including eigenvalue problems will be presented. A fairly detailed introductions are given for the author’s own method related to second-order elliptic boundary value problems. Many references which seem to be useful for readers are supplied at the end of the article. Key words. Numerical verification, nonlinear differential equation, computer assisted proof in analysis 1 Introduction If we denote an equation for unknown $u$ by $F(u)=0$ (1.1) then the problem of finding the solution $u$ generally implies an $n$ dimensional simulta- neous system of equations provided $u$ is in some finite dimensional ( $\mathrm{n}$ -dimension) space. Since very large scale, e.g. several thousand, linear system of equations can be easily solved on computers nowadays, it is not too surprising that, even if (1.1) is nonlinear, we can verify the existence and uniqueness of the solution as well as its domain by some numerical computations on the digital computer. However, in the case where (1.1) is a differential equation, it becomes a simultaneous equation which has infinitely many unknowns because the dimension of the potential function space containing $\mathrm{u}$ is infinite. -
On the Linear Stability of Plane Couette Flow for an Oldroyd-B Fluid and Its
J. Non-Newtonian Fluid Mech. 127 (2005) 169–190 On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation Raz Kupferman Institute of Mathematics, The Hebrew University, Jerusalem, 91904, Israel Received 14 December 2004; received in revised form 10 February 2005; accepted 7 March 2005 Abstract It is well known that plane Couette flow for an Oldroyd-B fluid is linearly stable, yet, most numerical methods predict spurious instabilities at sufficiently high Weissenberg number. In this paper we examine the reasons which cause this qualitative discrepancy. We identify a family of distribution-valued eigenfunctions, which have been overlooked by previous analyses. These singular eigenfunctions span a family of non- modal stress perturbations which are divergence-free, and therefore do not couple back into the velocity field. Although these perturbations decay eventually, they exhibit transient amplification during which their “passive" transport by shearing streamlines generates large cross- stream gradients. This filamentation process produces numerical under-resolution, accompanied with a growth of truncation errors. We believe that the unphysical behavior has to be addressed by fine-scale modelling, such as artificial stress diffusivity, or other non-local couplings. © 2005 Elsevier B.V. All rights reserved. Keywords: Couette flow; Oldroyd-B model; Linear stability; Generalized functions; Non-normal operators; Stress diffusion 1. Introduction divided into two main groups: (i) numerical solutions of the boundary value problem defined by the linearized system The linear stability of Couette flow for viscoelastic fluids (e.g. [2,3]) and (ii) stability analysis of numerical methods is a classical problem whose study originated with the pi- for time-dependent flows, with the objective of understand- oneering work of Gorodtsov and Leonov (GL) back in the ing how spurious solutions emerge in computations. -
A Highly Efficient Spectral-Galerkin Method Based on Tensor Product for Fourth-Order Steklov Equation with Boundary Eigenvalue
An et al. Journal of Inequalities and Applications (2016)2016:211 DOI 10.1186/s13660-016-1158-1 R E S E A R C H Open Access A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue Jing An1,HaiBi1 and Zhendong Luo2* *Correspondence: [email protected] Abstract 2School of Mathematics and Physics, North China Electric Power In this study, a highly efficient spectral-Galerkin method is posed for the fourth-order University, No. 2, Bei Nong Road, Steklov equation with boundary eigenvalue. By making use of the spectral theory of Changping District, Beijing, 102206, compact operators and the error formulas of projective operators, we first obtain the China Full list of author information is error estimates of approximative eigenvalues and eigenfunctions. Then we build a 1 ∩ 2 available at the end of the article suitable set of basis functions included in H0() H () and establish the matrix model for the discrete spectral-Galerkin scheme by adopting the tensor product. Finally, we use some numerical experiments to verify the correctness of the theoretical results. MSC: 65N35; 65N30 Keywords: fourth-order Steklov equation with boundary eigenvalue; spectral-Galerkin method; error estimates; tensor product 1 Introduction Increasing attention has recently been paid to numerical approximations for Steklov equa- tions with boundary eigenvalue, arising in fluid mechanics, electromagnetism, etc. (see, e.g.,[–]). However, most existing work usually treated the second-order Steklov equa- tions with boundary eigenvalue and there are relatively few articles treating fourth-order ones. The fourth-order Steklov equations with boundary eigenvalue also have been used in both mathematics and physics, for example, the main eigenvalues play a very key role in the positivity-preserving properties for the biharmonic-operator under the border conditions w = w – χwν =on∂ (see []). -
Chebyshev and Fourier Spectral Methods 2000
Chebyshev and Fourier Spectral Methods Second Edition John P. Boyd University of Michigan Ann Arbor, Michigan 48109-2143 email: [email protected] http://www-personal.engin.umich.edu/jpboyd/ 2000 DOVER Publications, Inc. 31 East 2nd Street Mineola, New York 11501 1 Dedication To Marilyn, Ian, and Emma “A computation is a temptation that should be resisted as long as possible.” — J. P. Boyd, paraphrasing T. S. Eliot i Contents PREFACE x Acknowledgments xiv Errata and Extended-Bibliography xvi 1 Introduction 1 1.1 Series expansions .................................. 1 1.2 First Example .................................... 2 1.3 Comparison with finite element methods .................... 4 1.4 Comparisons with Finite Differences ....................... 6 1.5 Parallel Computers ................................. 9 1.6 Choice of basis functions .............................. 9 1.7 Boundary conditions ................................ 10 1.8 Non-Interpolating and Pseudospectral ...................... 12 1.9 Nonlinearity ..................................... 13 1.10 Time-dependent problems ............................. 15 1.11 FAQ: Frequently Asked Questions ........................ 16 1.12 The Chrysalis .................................... 17 2 Chebyshev & Fourier Series 19 2.1 Introduction ..................................... 19 2.2 Fourier series .................................... 20 2.3 Orders of Convergence ............................... 25 2.4 Convergence Order ................................. 27 2.5 Assumption of Equal Errors ........................... -
AMS Short Course on Rigorous Numerics in Dynamics: the Parameterization Method for Stable/Unstable Manifolds of Vector Fields
AMS Short Course on Rigorous Numerics in Dynamics: The Parameterization Method for Stable/Unstable Manifolds of Vector Fields J.D. Mireles James, ∗ February 12, 2017 Abstract This lecture builds on the validated numerical methods for periodic orbits presented in the lecture of J. B. van den Berg. We discuss a functional analytic perspective on validated stability analysis for equilibria and periodic orbits as well as validated com- putation of their local stable/unstable manifolds. Building on this analysis we study heteroclinic and homoclinic connecting orbits between equilibria and periodic orbits of differential equations. We formulate the connecting orbits as solutions of certain projected boundary value problems whcih are amenable to an a posteriori analysis very similar to that already discussed for periodic orbits. The discussion will be driven by several application problems including connecting orbits in the Lorenz system and existence of standing and traveling waves. Contents 1 Introduction 2 2 The Parameterization Method 4 2.1 Formal series solutions for stable/unstable manifolds . .4 2.1.1 Manipulating power series: automatic differentiation and all that . .4 2.1.2 A first example: linearization of an analytic vector field in one complex variable . .9 2.1.3 Stable/unstable manifolds for equilibrium solutions of ordinary differ- ential equations . 15 2.1.4 A more realistic example: stable/unstable manifolds in a restricted four body problem . 18 2.1.5 Stable/unstable manifolds for periodic solutions of ordinary differen- tial equations . 23 2.1.6 Unstable manifolds for equilibrium solutions of partial differential equations . 26 2.1.7 Unstable manifolds for equilibrium and periodic solutions of delay differential equations . -
Isospectral Families of High-Order Systems∗
Isospectral Families of High-order Systems∗ Peter Lancaster† Department of Mathematics and Statistics University of Calgary Calgary T2N 1N4, Alberta, Canada and Uwe Prells School of Mechanical, Materials, Manufacturing Engineering & Management University of Nottingham Nottingham NG7 2RD United Kingdom November 28, 2006 Keywords: Matrix Polynomials, Isospectral Systems, Structure Preserving Transformations, Palindromic Symmetries. Abstract Earlier work of the authors concerning the generation of isospectral families of second or- der (vibrating) systems is generalized to higher-order systems (with no spectrum at infinity). Results and techniques are developed first for systems without symmetries, then with Hermi- tian symmetry and, finally, with palindromic symmetry. The construction of linearizations which retain such symmetries is discussed. In both cases, the notion of strictly isospectral families of systems is introduced - implying that properties of both the spectrum and the sign-characteristic are preserved. Open questions remain in the case of strictly isospectral families of palindromic systems. Intimate connections between Hermitian and unitary sys- tems are discussed in an Appendix. ∗The authors are grateful to an anonymous reviewer for perceptive comments which led to significant improve- ments in exposition. †The research of Peter Lancaster was partly supported by a grant from the Natural Sciences and Engineering Research Council of Canada 1 1 Introduction ` By a high-order system we mean an n × n matrix polynomial L(λ) = A`λ + ··· + A1λ + A0 n×n with coefficients in C . Such a polynomial with A` 6= 0 is said to have degree `, (sometimes referred to as “order” `) and “high-order” implies that ` ≥ 2. It will be assumed throughout that the leading coefficient A` is nonsingular. -
Introduction to Spectral Methods
Introduction to spectral methods Eric Gourgoulhon Laboratoire de l’Univers et de ses Th´eories (LUTH) CNRS / Observatoire de Paris Meudon, France Based on a collaboration with Silvano Bonazzola, Philippe Grandcl´ement,Jean-Alain Marck & J´eromeNovak [email protected] http://www.luth.obspm.fr 4th EU Network Meeting, Palma de Mallorca, Sept. 2002 1 Plan 1. Basic principles 2. Legendre and Chebyshev expansions 3. An illustrative example 4. Spectral methods in numerical relativity 2 1 Basic principles 3 Solving a partial differential equation Consider the PDE with boundary condition Lu(x) = s(x); x 2 U ½ IRd (1) Bu(y) = 0; y 2 @U; (2) where L and B are linear differential operators. Question: What is a numerical solution of (1)-(2)? Answer: It is a function u¯ which satisfies (2) and makes the residual R := Lu¯ ¡ s small. 4 What do you mean by “small” ? Answer in the framework of Method of Weighted Residuals (MWR): Search for solutions u¯ in a finite-dimensional sub-space PN of some Hilbert space W (typically a L2 space). Expansion functions = trial functions : basis of PN : (Á0;:::;ÁN ) XN u¯ is expanded in terms of the trial functions: u¯(x) = u˜n Án(x) n=0 Test functions : family of functions (Â0;:::;ÂN ) to define the smallness of the residual R, by means of the Hilbert space scalar product: 8 n 2 f0;:::;Ng; (Ân;R) = 0 5 Various numerical methods Classification according to the trial functions Án: Finite difference: trial functions = overlapping local polynomials of low order Finite element: trial functions = local smooth functions (polynomial -
Math 660-Lecture 15: Spectral Methods: Fourier Pseduo-Spectral Method
Math 660-Lecture 15: Spectral methods: Fourier pseduo-spectral method The topics here will be in the book `Spectral methods in Matlab' (Chap- ter 3); Another reference book is `Spectral methods in chemistry and physics.' 1 Spectral methods v.s. pseudo-spectral methods 1.1 Spectral method A spectral method is to represent the solution of a differential equation in terms of a basis of some vector space and then reduce the differential equations to an ODE system for the coefficients. In this sense, the (contin- uous) Fourier Transform and the Finite Element methods are all spectral methods. In particular, suppose we have some equation T (u) = f(x) where T is some temporal-spatial operator for the differential equation. Then, under the basis we have the error: X X R(x) = T ( ci(t)φi(x)) − f~iφi i i Pick test functions fχjg, which is the dual basis of fφi(x)g (if the space is a Hilbert space like in FEM, these two are identical) and we require hχj;Ri = 0: This then gives a system of equations for cj. • Advantages: Reduce differential operators to multiplications, and solv- ing ODEs might be easier. • Disadvatange: The multiplication in the spatial variable becomes con- volution. Then, we may have a big matrix-vector multiplication. 1.2 Pseudo-spectral method Here, represent the solution in terms of the basis but impose the equa- tion only at discrete points. As we can see, the pseudo-spectral method in some sense is a spectral method in discrete space. There are some typical pseudo-spectral methods 1 • Fourier Pseudo-spectral method with trigonometric basis • Chebyshev pseudo-spectral method with Chebyshev polynomial basis • Collocation methods with polynomial basis (especially for ODEs solvers); (Some people also call the pseudo-spectral method the collocation method.) For discrete points, we often choose χj = δ(x − xj), so that we require R(xj) = 0: The pseudo-spectral method may have efficient algorithms, which makes solving PDEs fast. -
Applying an Iterative Method Numerically to Solve N × N Matrix
Applying an iterative method numerically to solve n × n rsta.royalsocietypublishing.org matrix Wiener–Hopf equations with exponential factors Research Matthew J. Priddin1, Anastasia V. Kisil2 Article submitted to journal and Lorna J. Ayton1 1DAMTP, University of Cambridge, Cambridge, CB3 Subject Areas: 0WA, UK 2Department of Mathematics, The University wave motion, applied mathematics, of Manchester, Manchester, M13 9PL, UK differential equations Keywords: This paper presents a generalisation of a recent iterative approach to solving a class of 2 2 Wiener–Hopf equations, × matrix Wiener–Hopf equations involving exponential Riemann-Hilbert problem, iterative factors. We extend the method to square matrices of methods, scattering, n-part arbitrary dimension n, as arise in mixed boundary boundaries value problems with n junctions. To demonstrate the method we consider the classical problem of Author for correspondence: scattering a plane wave by a set of collinear plates. The results are compared to other known Matthew Priddin methods. We describe an effective implementation e-mail: [email protected] using a spectral method to compute the required Cauchy transforms. The approach is ideally suited to obtaining far-field directivity patterns of utility to applications. Convergence in iteration is fastest for large wavenumbers, but remains practical at modest wavenumbers to achieve a high degree of accuracy. 1. Introduction The Wiener–Hopf technique [1] provides a powerful tool to approach varied problems such as the solution of integral equations and random processes. Applications may so be found in such diverse fields as aeroacoustics [2], metamaterials [3], geophysics [4], crack propagation [5] and financial mathematics [6]. The mathematical problem underlying the Wiener– Hopf technique may be simply stated: find functions that are analytic in adjacent (or overlapping) regions of a complex manifold that satisfy a prescribed jump condition at their common boundary. -
Msc in Applied Mathematics
MSc in Applied Mathematics Title: Mathematical and Technological Aspects of Quantum Information Processing Author: Jordi Tura i Brugués Advisor: Sebastià Xambó i Descamps Co-Advisor: Antonio Acín dal Maschio Department: Departament de Matemàtica Aplicada II Academic year: 2010-2011 Universitat Polit`ecnicade Catalunya Facultat de Matem`atiquesi Estad´ıstica Master's Degree Thesis Mathematical and Technological Aspects of Quantum Information Processing Jordi Tura i Brugu´es Advisor: Sebasti`aXamb´oi Descamps Co-Advisor: Antonio Ac´ındal Maschio Departament de Matem`aticaAplicada II Abstract Keywords: Quantum, information, processing, computation, coding, cryptography, entanglement, field theory, entropy, key distribution, protocols. Since its genesis, quantum mechanics has proved to be a very accurate model for predicting the behavior of the world below the nanoscale. However, crucial breakthroughs in technology were needed in order to be able to effectively access and manipulate such small magnitudes. During the last twenty years, the field of quantum information processing has experienced a growing interest, in its many variants, both theoretically and practically. Despite being still at a very basic stage, expectations are high. The uniqueness of quantum phenomena (superposition of states, creation of entanglement, etc.) have no classical analogue and allow novelties such as another paradigm of computation, more secure com- munications, quantum teleportation, quantum dense coding, etc. which are presented and analyzed here. The aim of this Thesis is to present in a unified way the main mathematical methods used in quantum information processing, as well as the state of the art of their corresponding technological implementa- tions. Our contributions are based in making a self-contained presentation; seeking completeness, that is, treating the most relevant fields of research involved, focusing on their relations; and picking the most relevant, insightful references, given the quantity of literature produced in this field. -
Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger 2 FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th{19th, 2017 Books of abstracts 4 FoCM 2017 Contents Presentation . .7 Governance of FoCM . .9 Local Organizing Committee . .9 Administrative and logistic support . .9 Technical support . 10 Volunteers . 10 Workshops Committee . 10 Plenary Speakers Committee . 10 Smale Prize Committee . 11 Funding Committee . 11 Plenary talks . 13 Workshops . 21 A1 { Approximation Theory Organizers: Albert Cohen { Ron Devore { Peter Binev . 21 A2 { Computational Algebraic Geometry Organizers: Marta Casanellas { Agnes Szanto { Thorsten Theobald . 36 A3 { Computational Number Theory Organizers: Christophe Ritzenhaler { Enric Nart { Tanja Lange . 50 A4 { Computational Geometry and Topology Organizers: Joel Hass { Herbert Edelsbrunner { Gunnar Carlsson . 56 A5 { Geometric Integration and Computational Mechanics Organizers: Fernando Casas { Elena Celledoni { David Martin de Diego .