{PDF} Mathematical Analysis a Modern Approach to Advanced

Total Page:16

File Type:pdf, Size:1020Kb

{PDF} Mathematical Analysis a Modern Approach to Advanced MATHEMATICAL ANALYSIS A MODERN APPROACH TO ADVANCED CALCULUS 2ND EDITION PDF, EPUB, EBOOK Tom M Apostol | 9780201002881 | | | | | Mathematical Analysis A Modern Approach to Advanced Calculus 2nd edition PDF Book Courant, Differential and Integral Calculus, 2 Vols. Very Few faint pencilled underlinings else unmarked. Buy New Learn more about this copy. In the 14th century, Madhava of Sangamagrama developed infinite series expansions, like the power series and the Taylor series , of functions such as sine , cosine , tangent and arctangent. The glue of the binding has stained the front and rear pastdowns. We don't recognize your username or password. Computer algebra Computational number theory Combinatorics Graph theory Discrete geometry. New Quantity Available: 1. Analysis may be distinguished from geometry ; however, it can be applied to any space of mathematical objects that has a definition of nearness a topological space or specific distances between objects a metric space. Lang, Undergraduate Analysis , Springer-Verlag. Mathematics areas of mathematics. The vast majority of classical mechanics , relativity , and quantum mechanics is based on applied analysis, and differential equations in particular. Novikov, Modern Geometry. Principles of Mathematical Analysis. This is illustrated in classical mechanics , where the motion of a body is described by its position and velocity as the time value varies. If You're an Educator Request a copy Additional order info. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. Seller Inventory ZB Multiple Lebesgue Integrals. These theories are usually studied in the context of real and complex numbers and functions. More information about this seller Contact this seller 7. Published by Pearson To find files of the homework assignments, click here. More information about this seller Contact this seller 5. Seller Inventory PS About this product. Seller Inventory DPB. Namespaces Article Talk. First printing; pp. One of the most important properties of a sequence is convergence. Multiple Lebesgue Integrals. Dover Publications. The vast majority of classical mechanics , relativity , and quantum mechanics is based on applied analysis, and differential equations in particular. Published by Addison-Wesley Arithmetic Algebraic number theory Analytic number theory Diophantine geometry. Continue shopping. This point of view turned out to be particularly useful for the study of differential and integral equations. Published by Pearson. There will only be a homework given on this topic this year, because it was taught in Analysis I. Seller Rating:. A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. Mathematical Analysis A Modern Approach to Advanced Calculus 2nd edition Writer Seller Inventory EA A History of Analysis. Approximation theory Clifford analysis Clifford algebra Differential equations Complex differential equations Ordinary differential equations Partial differential equations Stochastic differential equations Differential geometry Differential forms Gauge theory Geometric analysis Dynamical systems Chaos theory Control theory Functional analysis Operator algebra Operator theory Harmonic analysis Fourier analysis Multilinear algebra Exterior Geometric Tensor Vector Multivariable calculus Exterior Geometric Tensor Vector Numerical analysis Numerical linear algebra Numerical methods for ordinary differential equations Numerical methods for partial differential equations Validated numerics Variational calculus. Panels have moderate edge wear with chips, tears and creasing. Then, mathematicians started worrying that they were assuming the existence of a continuum of real numbers without proof. John, Introduction to Calculus and Analysis, 2 Vols. More information about this seller Contact this seller 8. Dubrovin, A. Description It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis. Principles of Mathematical Analysis. Buy this book Better World Books. Category Portal Commons WikiProject. Brand new! Book Description Addison- Wesley, Wrede and M. Condition: New. Wikimedia Commons Wikiquote. The lowest-priced brand-new, unused, unopened, undamaged item in its original packaging where packaging is applicable. The binding is tight. Schlagworte: Mathematik. Fourier Series and Fourier Integrals. Click on each topic title to download the notes for that topic. Sequences of Functions. Mathematical analysis: a modern approach to advanced calculus. Algorithms design analysis Automata theory Coding theory Computational logic Cryptography Information theory. Elements of Point Set Topology. Packaging should be the same as what is found in a retail store, unless the item is handmade or was packaged by the manufacturer in non-retail packaging, such as an unprinted box or plastic bag. Previous owner's stamp on the first free end page. About this product. To check out the grading and homework rules, click here. Seller Inventory zk American Mathematical Society. Examples of analysis without a metric include measure theory which describes size rather than distance and functional analysis which studies topological vector spaces that need not have any sense of distance. Main article: Real analysis. Much of analysis happens in some metric space; the most commonly used are the real line , the complex plane , Euclidean space , other vector spaces , and the integers. Loading Related Books. About this Item: Reading, Addison-Wesley, Seller Inventory Mathematical Analysis: a modern approach to advanced calculus 12, Addison-Wesley Publishing Company. Stock photo. About this Item: Pearson, Computer algebra Computational number theory Combinatorics Graph theory Discrete geometry. View all copies of this ISBN edition:. Implicit Functions and Extremum Problems. Functions of Bounded Variation and Rectifiable Curves. Categories : Mathematical analysis. Main article: Numerical analysis. Hardcover in English - 2d ed. Functional analysis is also a major factor in quantum mechanics. Also, " monsters " nowhere continuous functions , continuous but nowhere differentiable functions , space-filling curves began to be investigated. Mathematical Analysis A Modern Approach to Advanced Calculus 2nd edition Reviews Supplemental materials are not guaranteed with any used book purchases. Much of analysis happens in some metric space; the most commonly used are the real line , the complex plane , Euclidean space , other vector spaces , and the integers. Condition: Good. Overview It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis. New York: Springer-Verlag. Customers who bought this item also bought. Download for print-disabled. First Edition. Fourth Printing. The Real and Complex Number Systems. Dedekind then constructed the real numbers by Dedekind cuts , in which irrational numbers are formally defined, which serve to fill the "gaps" between rational numbers, thereby creating a complete set: the continuum of real numbers, which had already been developed by Simon Stevin in terms of decimal expansions. Thus, his definition of continuity required an infinitesimal change in x to correspond to an infinitesimal change in y. New Paperback Quantity Available: 2. Mathematics and its History 2nd ed. Some Basic Notions of Set Theory. About this Item: Addison-Wesley. Seller Inventory DPB. Dust Jacket Condition: Very Good. Seller Inventory Numerical analysis is the study of algorithms that use numerical approximation as opposed to general symbolic manipulations for the problems of mathematical analysis as distinguished from discrete mathematics. More information about this seller Contact this seller 3. Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice. A Modern Approach to Advanced Calculus. An Introduction to Measure Theory. Username Password Forgot your username or password? Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure e. Mathematical Analysis , Addison-Wesley Pub. Computer science Theory of computation Numerical analysis Optimization Computer algebra. Understanding Analysis. It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis. Seller Inventory Topics Click on each topic title to download the notes for that topic. Results 1 - 13 of Functional Analysis. The Riemann-Stieltjes Integral. Relevant Courses. In this context, Jordan developed his theory of measure , Cantor developed what is now called naive set theory , and Baire proved the Baire category theorem. Condition: New. See more about this book on Archive. This document contains the list of topics to be presented in this course, a list of textbooks , and some comments and recommendations about these textbooks. Mathematical Analysis A Modern Approach to Advanced Calculus 2nd edition Read Online From Wikipedia, the free encyclopedia. This point of view turned out to be particularly useful for the study of
Recommended publications
  • Geometric Analysis of Shapes and Its Application to Medical Image Analysis
    Geometric Analysis of Shapes and Its application to Medical Image Analysis by Anirban Mukhopadhyay (Under the DIRECTION of Suchendra M. Bhandarkar) Abstract Geometric analysis of shapes plays an important role in the way the visual world is per- ceived by modern computers. To this end, low-level geometric features provide most obvious and important cues towards understanding the visual scene. A novel intrinsic geometric sur- face descriptor, termed as the Geodesic Field Estimate (GFE) is proposed. Also proposed is a parallel algorithm, well suited for implementation on Graphics Processing Units, for efficient computation of the shortest geodesic paths. Another low level geometric descriptor, termed as the Biharmonic Density Estimate, is proposed to provide an intrinsic geometric scale space signature for multiscale surface feature-based representation of deformable 3D shapes. The computer vision and graphics communities rely on mid-level geometric understanding as well to analyze a scene. Symmetry detection and partial shape matching play an important role as mid-level cues. A comprehensive framework for detection and characterization of partial intrinsic symmetry over 3D shapes is proposed. To identify prominent overlapping symmetric regions, the proposed framework is decoupled into Correspondence Space Voting followed by Transformation Space Mapping procedure. Moreover, a novel multi-criteria optimization framework for matching of partially visible shapes in multiple images using joint geometric embedding is also proposed. The ultimate goal of geometric shape analysis is to resolve high level applications of modern world. This dissertation has focused on three different application scenarios. In the first scenario, a novel approach for the analysis of the non-rigid Left Ventricular (LV) endocardial surface from Multi-Detector CT images, using a generalized isometry-invariant Bag-of-Features (BoF) descriptor, is proposed and implemented.
    [Show full text]
  • A Negative Result for Hearing the Shape of a Triangle: a Computer-Assisted Proof
    AN ELECTRONIC JOURNAL OF THE SOCIETAT CATALANA DE MATEMATIQUES` A negative result for hearing the shape of a triangle: a computer-assisted proof ⇤Gerard Orriols Gim´enez Resum (CAT) ETH Z¨urich. En aquest article demostrem que existeixen dos triangles diferents pels quals [email protected] el primer, segon i quart valor propi del Laplaci`a amb condicions de Dirichlet coincideixen. Aix`o resol una conjectura proposada per Antunes i Freitas i Corresponding author ⇤ suggerida per la seva evid`encia num`erica. La prova ´esassistida per ordinador i utilitza una nova t`ecnica per tractar l’espectre d’un l’operador, que consisteix a combinar un M`etode d’Elements Finits per localitzar aproximadament els primers valors propis i controlar la seva posici´oa l’espectre, juntament amb el M`etode de Solucions Particulars per confinar aquests valors propis a un interval molt m´esprec´ıs. Abstract (ENG) We prove that there exist two distinct triangles for which the first, second and fourth eigenvalues of the Laplace operator with zero Dirichlet boundary conditions coincide. This solves a conjecture raised by Antunes and Freitas and suggested by their numerical evidence. We use a novel technique for a computer-assisted proof about the spectrum of an operator, which combines a Finite Element Method, to locate roughly the first eigenvalues keeping track of their position in the spectrum, and the Method of Particular Solutions, to get a much more precise bound of these eigenvalues. Keywords: computer-assisted proof, Laplace eigenvalues, spectral geome- Acknowledgement try, Finite Element Method, Method The author would like to thank Re- of Particular Solutions.
    [Show full text]
  • Mathematical Analysis of the Accordion Grating Illusion: a Differential Geometry Approach to Introduce the 3D Aperture Problem
    Neural Networks 24 (2011) 1093–1101 Contents lists available at SciVerse ScienceDirect Neural Networks journal homepage: www.elsevier.com/locate/neunet Mathematical analysis of the Accordion Grating illusion: A differential geometry approach to introduce the 3D aperture problem Arash Yazdanbakhsh a,b,∗, Simone Gori c,d a Cognitive and Neural Systems Department, Boston University, MA, 02215, United States b Neurobiology Department, Harvard Medical School, Boston, MA, 02115, United States c Universita' degli studi di Padova, Dipartimento di Psicologia Generale, Via Venezia 8, 35131 Padova, Italy d Developmental Neuropsychology Unit, Scientific Institute ``E. Medea'', Bosisio Parini, Lecco, Italy article info a b s t r a c t Keywords: When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern Visual illusion occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse Motion when the observer moves away. Such distortions present a new problem beyond the classical aperture Projection line Line of sight problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates Accordion Grating depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid Aperture problem distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a Differential geometry nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays. ' 2011 Elsevier Ltd. All rights reserved. 1. Introduction need for line-ends or intersections along the lines to explain the illusion.
    [Show full text]
  • 1 Introduction
    数理解析研究所講究録 1169 巻 2000 年 27-56 27 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations Mitsuhiro T. Nakao 中尾 充宏 Graduate School of Mathematics, Kyushu University 33 Fukuoka 812-8581, Japan $\mathrm{e}$ -mail: [email protected] Abstract. In this article, we describe on a state of the art of validated numerical computations for solutions of differential equations. A brief overview of the main techniques in self-validating numerics for initial and boundary value problems in ordinary and partial differential equations including eigenvalue problems will be presented. A fairly detailed introductions are given for the author’s own method related to second-order elliptic boundary value problems. Many references which seem to be useful for readers are supplied at the end of the article. Key words. Numerical verification, nonlinear differential equation, computer assisted proof in analysis 1 Introduction If we denote an equation for unknown $u$ by $F(u)=0$ (1.1) then the problem of finding the solution $u$ generally implies an $n$ dimensional simulta- neous system of equations provided $u$ is in some finite dimensional ( $\mathrm{n}$ -dimension) space. Since very large scale, e.g. several thousand, linear system of equations can be easily solved on computers nowadays, it is not too surprising that, even if (1.1) is nonlinear, we can verify the existence and uniqueness of the solution as well as its domain by some numerical computations on the digital computer. However, in the case where (1.1) is a differential equation, it becomes a simultaneous equation which has infinitely many unknowns because the dimension of the potential function space containing $\mathrm{u}$ is infinite.
    [Show full text]
  • Karen Keskulla Uhlenbeck
    2019 The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2019 to Karen Keskulla Uhlenbeck University of Texas at Austin “for her pioneering achievements in geometric partial differential equations, gauge theory and integrable systems, and for the fundamental impact of her work on analysis, geometry and mathematical physics.” Karen Keskulla Uhlenbeck is a founder of modern by earlier work of Morse, guarantees existence of Geometric Analysis. Her perspective has permeated minimisers of geometric functionals and is successful the field and led to some of the most dramatic in the case of 1-dimensional domains, such as advances in mathematics in the last 40 years. closed geodesics. Geometric analysis is a field of mathematics where Uhlenbeck realised that the condition of Palais— techniques of analysis and differential equations are Smale fails in the case of surfaces due to topological interwoven with the study of geometrical and reasons. The papers of Uhlenbeck, co-authored with topological problems. Specifically, one studies Sacks, on the energy functional for maps of surfaces objects such as curves, surfaces, connections and into a Riemannian manifold, have been extremely fields which are critical points of functionals influential and describe in detail what happens when representing geometric quantities such as energy the Palais-Smale condition is violated. A minimising and volume. For example, minimal surfaces are sequence of mappings converges outside a finite set critical points of the area and harmonic maps are of singular points and by using rescaling arguments, critical points of the Dirichlet energy. Uhlenbeck’s they describe the behaviour near the singularities major contributions include foundational results on as bubbles or instantons, which are the standard minimal surfaces and harmonic maps, Yang-Mills solutions of the minimising map from the 2-sphere to theory, and integrable systems.
    [Show full text]
  • AMS Short Course on Rigorous Numerics in Dynamics: the Parameterization Method for Stable/Unstable Manifolds of Vector Fields
    AMS Short Course on Rigorous Numerics in Dynamics: The Parameterization Method for Stable/Unstable Manifolds of Vector Fields J.D. Mireles James, ∗ February 12, 2017 Abstract This lecture builds on the validated numerical methods for periodic orbits presented in the lecture of J. B. van den Berg. We discuss a functional analytic perspective on validated stability analysis for equilibria and periodic orbits as well as validated com- putation of their local stable/unstable manifolds. Building on this analysis we study heteroclinic and homoclinic connecting orbits between equilibria and periodic orbits of differential equations. We formulate the connecting orbits as solutions of certain projected boundary value problems whcih are amenable to an a posteriori analysis very similar to that already discussed for periodic orbits. The discussion will be driven by several application problems including connecting orbits in the Lorenz system and existence of standing and traveling waves. Contents 1 Introduction 2 2 The Parameterization Method 4 2.1 Formal series solutions for stable/unstable manifolds . .4 2.1.1 Manipulating power series: automatic differentiation and all that . .4 2.1.2 A first example: linearization of an analytic vector field in one complex variable . .9 2.1.3 Stable/unstable manifolds for equilibrium solutions of ordinary differ- ential equations . 15 2.1.4 A more realistic example: stable/unstable manifolds in a restricted four body problem . 18 2.1.5 Stable/unstable manifolds for periodic solutions of ordinary differen- tial equations . 23 2.1.6 Unstable manifolds for equilibrium solutions of partial differential equations . 26 2.1.7 Unstable manifolds for equilibrium and periodic solutions of delay differential equations .
    [Show full text]
  • Iasinstitute for Advanced Study
    IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J.
    [Show full text]
  • A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar
    The Mathematics Enthusiast Volume 16 Article 15 Number 1 Numbers 1, 2, & 3 2-2019 A Mathematical Analysis of Student-Generated Sorting Algorithms Audrey Nasar Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/tme Recommended Citation Nasar, Audrey (2019) "A Mathematical Analysis of Student-Generated Sorting Algorithms," The Mathematics Enthusiast: Vol. 16 : No. 1 , Article 15. Available at: https://scholarworks.umt.edu/tme/vol16/iss1/15 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 16, nos.1, 2&3, p. 315 A Mathematical Analysis of student-generated sorting algorithms Audrey A. Nasar1 Borough of Manhattan Community College at the City University of New York Abstract: Sorting is a process we encounter very often in everyday life. Additionally it is a fundamental operation in computer science. Having been one of the first intensely studied problems in computer science, many different sorting algorithms have been developed and analyzed. Although algorithms are often taught as part of the computer science curriculum in the context of a programming language, the study of algorithms and algorithmic thinking, including the design, construction and analysis of algorithms, has pedagogical value in mathematics education. This paper will provide an introduction to computational complexity and efficiency, without the use of a programming language. It will also describe how these concepts can be incorporated into the existing high school or undergraduate mathematics curriculum through a mathematical analysis of student- generated sorting algorithms.
    [Show full text]
  • Arxiv:1912.01885V1 [Math.DG]
    DIRAC-HARMONIC MAPS WITH POTENTIAL VOLKER BRANDING Abstract. We study the influence of an additional scalar potential on various geometric and analytic properties of Dirac-harmonic maps. We will create a mathematical wishlist of the pos- sible benefits from inducing the potential term and point out that the latter cannot be achieved in general. Finally, we focus on several potentials that are motivated from supersymmetric quantum field theory. 1. Introduction and Results The supersymmetric nonlinear sigma model has received a lot of interest in modern quantum field theory, in particular in string theory, over the past decades. At the heart of this model is an action functional whose precise structure is fixed by the invariance under various symmetry operations. In the physics literature the model is most often formulated in the language of supergeome- try which is necessary to obtain the invariance of the action functional under supersymmetry transformations. For the physics background of the model we refer to [1] and [18, Chapter 3.4]. However, if one drops the invariance under supersymmetry transformations the resulting action functional can be investigated within the framework of geometric variational problems and many substantial results in this area of research could be achieved in the last years. To formulate this mathematical version of the supersymmetric nonlinear sigma model one fixes a Riemannian spin manifold (M, g), a second Riemannian manifold (N, h) and considers a map φ: M → N. The central ingredients in the resulting action functional are the Dirichlet energy for the map φ and the Dirac action for a spinor defined along the map φ.
    [Show full text]
  • The Orthosymplectic Lie Supergroup in Harmonic Analysis Kevin Coulembier
    The orthosymplectic Lie supergroup in harmonic analysis Kevin Coulembier Department of Mathematical Analysis, Faculty of Engineering, Ghent University, Belgium Abstract. The study of harmonic analysis in superspace led to the Howe dual pair (O(m) × Sp(2n);sl2). This Howe dual pair is incomplete, which has several implications. These problems can be solved by introducing the orthosymplectic Lie supergroup OSp(mj2n). We introduce Lie supergroups in the supermanifold setting and show that everything is captured in the Harish-Chandra pair. We show the uniqueness of the supersphere integration as an orthosymplectically invariant linear functional. Finally we study the osp(mj2n)-representations of supersymmetric tensors for the natural module for osp(mj2n). Keywords: Howe dual pair, Lie supergroup, Lie superalgebra, harmonic analysis, supersphere PACS: 02.10.Ud, 20.30.Cj, 02.30.Px PRELIMINARIES Superspaces are spaces where one considers not only commuting but also anti-commuting variables. The 2n anti- commuting variables x`i generate the complex Grassmann algebra L2n. Definition 1. A supermanifold of dimension mj2n is a ringed space M = (M0;OM ), with M0 the underlying manifold of dimension m and OM the structure sheaf which is a sheaf of super-algebras with unity on M0. The sheaf OM satisfies the local triviality condition: there exists an open cover fUigi2I of M0 and isomorphisms of sheaves of super algebras T : Ui ! ¥ ⊗ L . i OM CUi 2n The sections of the structure sheaf are referred to as superfunctions on M . A morphism of supermanifolds ] ] F : M ! N is a morphism of ringed spaces (f;f ), f : M0 ! N0, f : ON ! f∗OM .
    [Show full text]
  • Geometric Analysis and Integral Geometry
    598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors 598 Geometric Analysis and Integral Geometry AMS Special Session on Radon Transforms and Geometric Analysis in Honor of Sigurdur Helgason’s 85th Birthday January 4–7, 2012 Boston, MA Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces January 8–9, 2012 Medford, MA Eric Todd Quinto Fulton Gonzalez Jens Gerlach Christensen Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2010 Mathematics Subject Classification. Primary 22E30, 43A85, 44A12, 45Q05, 92C55; Secondary 22E46, 32L25, 35S30, 65R32. Library of Congress Cataloging-in-Publication Data AMS Special Session on Radon Transforms and Geometric Analysis (2012 : Boston, Mass.) Geometric analysis and integral geometry : AMS special session in honor of Sigurdur Helgason’s 85th birthday, radon transforms and geometric analysis, January 4-7, 2012, Boston, MA ; Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces, January 8-9, 2012, Medford, MA / Eric Todd Quinto, Fulton Gonzalez, Jens Gerlach Christensen, editors.
    [Show full text]
  • On P-Adic Mathematical Physics B
    ISSN 2070-0466, p-Adic Numbers, Ultrametric Analysis and Applications, 2009, Vol. 1, No. 1, pp. 1–17. c Pleiades Publishing, Ltd., 2009. REVIEW ARTICLES On p-Adic Mathematical Physics B. Dragovich1**, A. Yu. Khrennikov2***, S.V.Kozyrev3****,andI.V.Volovich3***** 1Institute of Physics, Pregrevica 118, 11080 Belgrade, Serbia 2Va¨xjo¨ University, Va¨xjo¨,Sweden 3 Steklov Mathematical Institute, ul. Gubkina 8, Moscow, 119991 Russia Received December 15, 2008 Abstract—A brief review of some selected topics in p-adic mathematical physics is presented. DOI: 10.1134/S2070046609010014 Key words: p-adic numbers, p-adic mathematical physics, complex systems, hierarchical structures, adeles, ultrametricity, string theory, quantum mechanics, quantum gravity, prob- ability, biological systems, cognitive science, genetic code, wavelets. 1. NUMBERS: RATIONAL, REAL, p-ADIC We present a brief review of some selected topics in p-adic mathematical physics. More details can be found in the references below and the other references are mainly contained therein. We hope that this brief introduction to some aspects of p-adic mathematical physics could be helpful for the readers of the first issue of the journal p-Adic Numbers, Ultrametric Analysis and Applications. The notion of numbers is basic not only in mathematics but also in physics and entire science. Most of modern science is based on mathematical analysis over real and complex numbers. However, it is turned out that for exploring complex hierarchical systems it is sometimes more fruitful to use analysis over p-adic numbers and ultrametric spaces. p-Adic numbers (see, e.g. [1]), introduced by Hensel, are widely used in mathematics: in number theory, algebraic geometry, representation theory, algebraic and arithmetical dynamics, and cryptography.
    [Show full text]