Evaluation of Certain Food Additives and Contaminants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wrong Perception and Scanty Knowledge on Food Handling: a Recipe for Food Contamination and Poisoning.”
International Journal For Research In Health Sciences And Nursing ISSN: 2208-2670 “WRONG PERCEPTION AND SCANTY KNOWLEDGE ON FOOD HANDLING: A RECIPE FOR FOOD CONTAMINATION AND POISONING.” (1) SAMUEL AUGUSTINE TURAY BEIJING ADVANCED INNIVATION CENTER FOR FOOD NUTRITION AND HUMAN HEALTH (BEIJING TECHNOLOGY AND BUSINESS UNIVERSITY), BEIJING 100048, CHINA [email protected] (2) SHAN LIANG SCHOOL OF FOOD CHEMICAL ENGINEERING, (BEIJING TECHNOLOGY AND BUSINESS UNIVERSITY), BEIJING 100048, CHINA (3) MIN ZHANG ENGINEERING AND TECHNOLOGY RESEARCH CENTER FOR FOOD AADDICTIVES (BEIJING TECHNOLOGY AND BUSINESS UNIVERSITY), BEIJING 100048, CHINA (4) ADIKALI KABA SESAY BEIJING SPORT UNIVERSITY-CHINA [email protected] Abstract Food processing is of vital importance in maintaining proper health as well as avoiding food poisoning and food contamination. The study is focused on bringing to light the concept of food safety and food handling. It is believed by the researcher that Sierra Leoneans do have a little knowledge on handling food and this has resulted to series of infections. Keeping food is scientific and the illiteracy rate is high giving rise for more people not to be able to follow precautionary measures in handling food. The research also focused on bringing out the different methods of food contaminations. These vary from biological, chemical and physical means. The biological components covers bacterial, virus and parasites, while the chemicals level looks into Volume-3 | Issue-12 | December,2017 | Paper-3 29 International Journal For Research In Health Sciences And Nursing ISSN: 2208-2670 various toxin, natural and marine toxins were also covered. The methodology was mostly empirical as literatures were reviewed from other research done by other writers. -
Guidelines on Food Fortification with Micronutrients
GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry. -
Advantame Chemical and Technical Assessment Prepared by Ivan Stankovic, Ph.D
Advantame Chemical and Technical Assessment Prepared by Ivan Stankovic, Ph.D. and reviewed by Daniel E Folmer, Ph.D. 1. Summary Advantame was not previously evaluated by JECFA and it has been recommended for priority evaluation at the 44th Session of the Codex Committee on Food Additives (CCFA) (FAO/WHO, 2012). This Chemical and Technical Assessment document is based on data and information submitted by Ajinomoto Co., Inc., in the dossier dated December, 2012 (Ajinomoto, 2012). Advantame (ANS9801 - laboratory code name) is an N-substituted (aspartic acid portion) derivative of aspartame that is intended for use as a non-nutritive sweetener. Advantame has been demonstrated to be approximately 100 times sweeter than aspartame and approximately 37000 times sweeter than sucrose. Advantame is manufactured via a chemical synthesis. Approval for the use of advantame as a Schedule 2 food additive [permitted to Good Manufacturing Practices (GMP) in processed foods] in Australia/New Zealand has been recently issued by Food Standards Australia New Zealand (FSANZ) (FSANZ, 2011). INS No. 969 has been assigned to advantame at the 45th Session of the CCFA in 2013 (FAO/WHO, 2013) New tentative specifications were prepared at the 77th JECFA (2013) and published in FAO JECFA Monographs 14 (2013) requesting information on: • Suitability of the head space GC method (using appropriate dissolution solvent) for determination of residual solvents published in the “Combined Compendium of Food Additives Specifications, Vol. 4” and data, in a minimum of 5 batches, using the method, • An alternative/improved HPLC method for the assay of advantame and advantame-acid using a standard curve, • Additional data and analytical methods for determination of palladium and platinum, • Information on the purity and availability of the commercial reference standards used in the assay of advantame and advantame-acid 2. -
Environmental Contaminants in Food
Environmental Contaminants in Food December 1979 NTIS order #PB80-153265 Library of Congress Catalog Card Number 79-600207 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock No. 052-003-00724-0 FOREWORD This report presents the major findings of an OTA assessment of Federal and State efforts to deal with the environmental contamination of food. Undertaken at the request of the House Committee on Interstate and Foreign Commerce, the study examines both regulatory approaches and monitoring strategies for coping with contaminated food. The assessment is concerned with chemical and radioactive contaminants that inadvertently find their way into the human food supply. To bring the scope of inquiry within manageable bounds, we excluded naturally occurring toxins such as fungal and microbial toxins. The Office of Technology Assessment was assisted by two advisory panels of scientists and representatives of public interest groups, agriculture, the chemical industry, fisheries, and State and foreign governments. The Food and Drug Ad- ministration, the Department of Agriculture, and the Environmental Protection Agency each designated staff members to attend panel meetings, provide back- ground information, and review draft reports, Background papers were commis- sioned concerning the scientific aspects of detecting and regulating environ- mental contaminants in food. The Congressional Research Service provided five analyses of previous food contamination episodes, Reviews of the draft report were provided by the advisory panels, Federal agencies, and a number of inter- ested individuals not previously involved with the assessment. Because this assessment addresses concerns of American citizens as well as policy makers and scientists, the summary of the report is also being published as a separate document. -
Introduction to Food and Food Processing
2010 INTRODUCTION TO ANDFOOD FOOD PROCESSING – I TRAINING MANUAL FOR FOOD SAFETY REGULATORS Vol THE TRAINING MANUAL FOR FOOD SAFETY REGULATORS WHO ARE INVOLVED IN IMPLEMENTING FOOD SAFETY AND STANDARDS ACT 2006 ACROSS THE COUNTRY FOODS SAFETY & STANDARDS AUTHORITY OF INDIA (MINISTRY OF HEALTH & FAMILY WELFARE) FDA BHAVAN, KOTLA ROAD, NEW DELHI – 110 002 Website: www.fssai.gov.in INDEX TRAINING MANUAL FOR FOOD SAFETY OFFICERS Sr Subject Topics Page No No 1 INTRODUCTION TO INTRODUCTION TO FOOD FOOD – ITS Carbohydrates, Protein, fat, Fibre, Vitamins, Minerals, ME etc. NUTRITIONAL, Effect of food processing on food nutrition. Basics of Food safety TECHNOLOGICAL Food Contaminants (Microbial, Chemical, Physical) AND SAFETY ASPECTS Food Adulteration (Common adulterants, simple tests for detection of adulteration) Food Additives (Classification, functional role, safety issues) Food Packaging & labelling (Packaging types, understanding labelling rules & 2 to 100 Regulations, Nutritional labelling, labelling requirements for pre-packaged food as per CODEX) INTRODUCTION OF FOOD PROCESSING AND TECHNOLOGY F&VP, Milk, Meat, Oil, grain milling, tea-Coffee, Spices & condiments processing. Food processing techniques (Minimal processing Technologies, Photochemical processes, Pulsed electric field, Hurdle Technology) Food Preservation Techniques (Pickling, drying, smoking, curing, caning, bottling, Jellying, modified atmosphere, pasteurization etc.) 2 FOOD SAFETY – A Codex Alimentarius Commission (CODEX) GLOBAL Introduction Standards, codes -
Correlation Between Total DDT Residues in Blood and Fat of Beef Animals 1
948 Journal ofFood Protection Vol. 42, No. 12, Pages 948-949 (December, 1979) Copyright © 1979, International Association of Milk, Food, and Environmental Sanitarians Correlation Between Total DDT Residues in Blood and Fat of Beef Animals 1 M. DE CAMPOS2•, C. E. GUTIERREZ B. and A. E. OLSZYNA-MARZYS3 Institute ofNutrition ofCentral America and Panama (JNCAP), Apartado Posta! I I 88, Guatemala City, Guatemala, Central America (Received for publication February 26. 1979) ABSTRACT MATERIALS Al'.lJ METHODS Downloaded from http://meridian.allenpress.com/jfp/article-pdf/42/12/948/1649976/0362-028x-42_12_948.pdf by guest on 29 September 2021 In Guatemala, where in certain regions heavily pesticide-sprayed Samples cotton fields are interspersed with pastures for cattle, pesticide residues Samples of blood and fat were collected from 30 bovines of different in beef fat represent a problem. Organochlorine pesticides are still sex and breed in the Department of Escuintla on the Pacific Coast. widely used and even if the use of DDT has been decreasing over the Twenty ml of blood were taken by puncture of the jugular vein and last few years, this pesticide is still a major food contaminant. The collected in glass tubes containing 4 drops of heparin as an present study was undertaken to establish if a correlation between total anticoagulant. The tubes, as well as all the glassware used for analysis, DDT levels in blood and fat could be found. Samples of blood and fat were previously washed with soap and water, rinsed with tap water and from 30 bovines were analyzed by gas-liquid chromatography. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0304439 A1 Divi Et Al
US 20160304439A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0304439 A1 Divi et al. (43) Pub. Date: Oct. 20, 2016 (54) PROCESS FOR THE PREPARATION OF Publication Classification ADVANTAME (51) Int. Cl. (71) Applicant: Divi's Laboratories Limited, Ameerpet CD7C 2.3L/2 (2006.01) (IN) CD7C 45/45 (2006.01) (52) U.S. Cl. (72) Inventors: Murali Krishna Prasad Divi, CPC ............. C07C 231/12 (2013.01); C07C 45/45 Ameerpet (IN); Mysore Aswatha (2013.01) Narayana Rao, Ameerpet (IN); Shaik Nowshuddin, Ameerpet (IN) (57) ABSTRACT (21) Appl. No.: 14/848,533 A novel process for the preparation of N—N-3-(3-hydroxy (22) Filed: Sep. 9, 2015 4-methoxyphenyl)-propyl-L-C.-aspartyl-L-phenylalanine 1-methyl ester is described. It comprises, reacting isovanillin (30) Foreign Application Priority Data or its derivative with vinyl acetate followed by reductive condensation with L-C.-aspartyl-L-phenylalanine-1- Apr. 20, 2015 (IN) ........................... 2019/CHFA2015 methyl ester. US 2016/0304439 A1 Oct. 20, 2016 PROCESS FOR THE PREPARATION OF ADVANTAME MeO O FIELD OF INVENTION NH HO NH 0001. The present invention relates to an improved pro OH cess for the preparation of N—N-3-(3-hydroxy-4- Advantame COOMe methoxyphenyl)propyl-L-C.-aspartyl-L-phenylalanine-1- O methyl ester, known as Advantame, a non-caloric Sweetener. BACKGROUND OF THE INVENTION 0002 Advantame is a novel sweetener developed by 0003. The U.S. Pat. No. 6,794,531 B2, assigned to Aji Ajinomoto Co. It is a derivative of Aspartame, chemically nomoto Co., describes a process for the preparation of N—N-3-(3-hydroxy-4-methoxyphenyl)propyl-L-C.-as Advantame (Scheme 1), involving condensation of 3-(3- partyl-L-phenylalanine-1-methyl ester, having the follow hydroxy-4-methoxyphenyl)-propionaldehyde (III) with ing structure: Aspartame. -
WO 2018/002637 Al 04 January 2018 (04.01.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002637 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: A61K 9/00 (2006.01) A61K 47/44 (2017.01) A61K 9/08 (2006.01) (21) International Application Number: PCT/GB2017/051914 (22) International Filing Date: 29 June 2017 (29.06.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 161 1547.9 0 1 July 2016 (01 .07.2016) GB (71) Applicant: GW RESEARCH LIMITED [GB/GB]; Sov ereign House, Vision Park, Chivers Way, Histon, Cam bridge Cambridgeshire CB24 9BZ (GB). (72) Inventor: SHAH, Harshit; Sovereign House, Vision Park, Chivers Way, Histon, Cambridge Cambridgeshire CB24 9BZ (GB). (74) Agent: HGF LIMITED; 4th Floor, Merchant Exchange, 17-19 Whitworth Street West, Manchester Greater Man chester M l 5WG (GB). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
JOINT FAO/WHO EXPERT COMMITTEE on FOOD ADDITIVES Seventy-Seventh Meeting Rome, 4–13 June 2013
JECFA/77/SC JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES Seventy-seventh meeting Rome, 4–13 June 2013 SUMMARY AND CONCLUSIONS Issued 19 June 2013 A meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) was held in Rome, Italy, from 4 to 13 June 2013. The purpose of the meeting was to evaluate certain food additives and contaminants. Mrs I. Meyland, Denmark, served as Chairperson, and Dr D. Benford, Food Standards Agency, United Kingdom, served as Vice-Chairperson. Mr S.J. Crossley, Food Safety, Food and Agriculture Organization of the United Nations, and Dr A. Tritscher, Department of Food Safety and Zoonoses, World Health Organization, served as Joint Secretaries. The present meeting was the seventy-seventh in a series of similar meetings. The tasks before the Committee were (a) to elaborate principles governing the evaluation of food additives, (b) to evaluate certain food additives and contaminants and (c) to review and prepare specifications for selected food additives. The report of the meeting will be published in the WHO Technical Report Series. Its presentation will be similar to that of previous reports—namely, general considerations, comments on specific substances and recommendations for future work. An annex will include detailed tables (similar to the tables in this report) summarizing the main conclusions of the Committee in terms of acceptable or tolerable daily intakes and other toxicological and safety recommendations. Information on the specifications for the identity and purity of certain food additives examined by the Committee will also be included. The participants in the meeting are listed in Annex 1. -
Risk Assessment Report Advantame (Food Additives)
[Tentative translation] Risk Assessment Report Advantame (Food Additives) Food Safety Commission of Japan (FSCJ) July 2013 1 [Tentative translation] Contents Page Chronology of Discussions ................................................................................................. 3 List of members of the Food Safety Commission of Japan (FSCJ) ................................. 3 List of members of the Expert Committee on Food Additives, the Food Safety Commission of Japan (FSCJ)............................................................................................. 4 Executive summary............................................................................................................. 5 I. Outline of the items under assessment ........................................................................... 6 1. Use ................................................................................................................................ 6 2. Names of the principal components ........................................................................... 6 3. Molecular and structural formulae ........................................................................... 6 4. Molecular weights ....................................................................................................... 6 5. Characteristics ............................................................................................................ 6 6. Stability ....................................................................................................................... -
The Microbial Quality of Fast Food and Traditional Fast Food
Nature and Science 2010;8(10) The Microbial Quality of Fast Food and Traditional Fast Food Saadia M. Hassanein Easa Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt Abstract: Sixty food samples were collected from 60 random restaurants of fast and traditional fast foods in El Qassium, Saudi Arabia and investigated for bacteria species using different temperatures (10oC, 20oC, 30oC, 40oC and 50oC) incubated for 24-48 hours and analyzed for fungi and yeasts incubated at 25oC. The results revealed that from 45 sample of traditional foods, yielded a total twenty two species of eighteen genera of bacteria. A fourteen species of twelve genera of fungi and three species of three genera of yeasts. While fast food results revealed that from 15 fast food samples collected from 15 restaurants a total ten species of ten genera of bacteria. A total eight species of seven genera of fungi. The species of bacteria isolated in this study namely, Acetobacter sp., Achromobacter sp., Bacillus coagulans, B. Subtilis, Clostridium perfringens, Erwinia carotovora, Escherichia coli, Flavobacterium sp., Klebsiella pneumoniae, Lactobacillus plantarum, Leuconostoc mesenteroides, Listeria monocytogenes, Microbacterium lacticum, Micrococcus sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putrefaciens, Salmonella sp., Staphylococcus aureus, Streptococcus lactis, Streptococcus thermophilus, Campylobacter jejuni, Citrobacter fruendii, Proteus vulgaris and Yersinia sp. The occurrence of some these bacteria illustrate that fast foods in these restaurants may act as a reservoir of pathogenic bacteria for human. Fungi isolated namely Aspergillus glaucus, A. niger, Alternaria sp., Cheotomium candidum, Cladosporium herbarum, Fusarium sp., Monilia sp., Mucor rouxii, Neuropora sp., Penicillium expansum, Penicillium sp., Rhizopus nigricans, Sporotrichum carinis and Thamnidium elegans. -
Optimizing Flavors and Sweeteners
[Sweeteners] Vol. 22 No. 11 November 2012 Optimizing Flavors and Sweeteners By Cindy Hazen, Contributing Editor Whether we’re talking economic or environmental issues, there’s a common theme: We should do more with less. The food industry can relate. We’ve all heard consumers say they want a longer shelf life but no preservatives; natural, organic and artisan at low cost; full flavor and sodium reduction; and no added sugar without compromising sweetness. We can’t meet every consumer expectation in this space, but we can give you some tips to help you get the most out of your sweetener system. First things first Sweeteners don’t look alike, taste alike or behave alike. Yet, there’s a tendency to compare. Sugar, or sucrose, is the standard, because it’s familiar to us and, importantly, it’s sweet from start to finish. “Sweetness is measured in how quick and how long sweet lasts in your mouth,” explains Laura Ennis, senior beverage innovation technologist, David Michael & Co., Philadelphia. This can be measured by a temporal sweetness profile. “Different sweeteners are rated on their intensity over time, and these results can be plotted onto a graph. For example, crystalline fructose peaks very early and fades rather quickly, whereas sucrose peaks later and lasts longer, hence the reason that most chewing gums are accentuated with artificial sweeteners to keep the sweet profile lasting longer. Non-nutritive sweeteners tend to take the longest to peak and, therefore, lack this upfront sweetness.” Perception of sweetness occurs when a sweet molecule comes in contact with a sweet receptor in the taste bud.