Diversity and Composition of Bacterial Endophytes Among Plant Parts Of

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Composition of Bacterial Endophytes Among Plant Parts Of Dong et al. Chin Med (2018) 13:41 https://doi.org/10.1186/s13020-018-0198-5 Chinese Medicine RESEARCH Open Access Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng Linlin Dong1, Ruiyang Cheng1, Lina Xiao1, Fugang Wei2, Guangfei Wei1, Jiang Xu1, Yong Wang3, Xiaotong Guo4, Zhongjian Chen3 and Shilin Chen1* Abstract Background: Bacterial endophytes are widespread inhabitants inside plant tissues that play crucial roles in plant growth and biotransformation. This study aimed to ofer information for the exploitation of endophytes by analyzing the bacterial endophytes in diferent parts of Panax notoginseng. Methods: We used high-throughput sequencing methods to analyze the diversity and composition of bacterial endophytes from diferent parts of P. notoginseng. Results: A total of 174,761 classifed sequences were obtained from the analysis of 16S ribosomal RNA in diferent parts of P. notoginseng. Its fbril displayed the highest diversity of bacterial endophytes. Principal coordinate analysis revealed that the compositions of the bacterial endophytes from aboveground parts (fower, leaf, and stem) difered from that of underground parts (root and fbril). The abundances of Conexibacter, Gemmatimonas, Holophaga, Luteoli- bacter, Methylophilus, Prosthecobacter, and Solirubrobacter were signifcantly higher in the aboveground parts than in the underground parts, whereas the abundances of Bradyrhizobium, Novosphingobium, Phenylobacterium, Sphingo- bium, and Steroidobacter were markedly lower in the aboveground parts. Conclusions: Our results elucidated the comprehensive diversity and composition profles of bacterial endophytes in diferent parts of 3-year-old P. notoginseng. Our data ofered pivotal information to clarify the role of endophytes in the production of P. notoginseng and its important metabolites. Keywords: Panax notoginseng, Endophytes, Plant parts, High-throughput sequencing, 16S ribosomal RNA Background even seedling death [6, 7]. Approximately 8–10 years of Panax notoginseng is renowned for its remarkable anti- crop rotation are necessary for improving the soil con- hypertensive, antithrombotic, anti-atherosclerotic, and ditions for planted P. notoginseng [8]. P. notoginseng has neuroprotective bioactivities, making it one of the most a narrow ecological range, and its production mainly valuable ingredients in staple household medicines [1–3]. occurs in Wenshan, Yunnan Province, where the climatic Protopanaxadiol and protopanaxatriol saponins are the and soil conditions are optimal for its cultivation. Never- main active compounds detected in the diferent parts theless, arable soils available for P. notoginseng cultivation of P. notoginseng [4, 5]. P. notoginseng is a perennial plant are becoming scarce. cultivated in fxed plots, and continuous cropping leads Endophytic bacteria localized inside plant tissues to decreased productivity, reduced tuber quality, and have shown no negative efect on their host plants [9]. Bacteria inhabit diferent plant tissues, including rhizo- sphere, root, leaf, and stem [10]. Bacterial endophytes *Correspondence: [email protected] play key roles in improving plant growth, increasing 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China tolerance against biotic factors, and producing sec- Full list of author information is available at the end of the article ondary metabolites [11, 12]. Song et al. reported that © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Dong et al. Chin Med (2018) 13:41 Page 2 of 9 endophytic Bacillus altitudinis isolated from Panax Methods ginseng enhanced ginsenoside accumulation [13]. Gao Processing of samples et al. reported that Paenibacillus polymyxa isolated Tree-year-old P. notoginseng plants were collected from from P. ginseng leaves improved plant growth, increased Wenshan, Yunnan Province, China, which is the main ginsenoside concentration, and reduced morbidity [14]. production area of P. notoginseng. Tese plant samples Endophytes stimulated secondary metabolites and were used to analyze the bacterial endophytes in diferent enhanced plant growth. Numerous works highlighted parts of P. notoginseng. Six plants were randomly gath- that the composition of the bacterial endophytes were ered from one plantation and served as one sample in our infuenced by plant species, parts, and growth stage test sites of Wenshan Miaoxiang Notoginseng Technol- [11, 15]. Analysis of the diversity and composition ogy, Co., Ltd. in August. Tere were three replicates from of endophytes in plant parts could provide valuable three plantations. Te fowers (Fl), leaves (Le), stems (St), resources for plant growth promotion and biotransfor- roots (Ro), and fbers (Fi) of all samples were separated, mation [16]. Although the diversity and composition of washed with running tap water, and rinsed thrice with root endogenous bacteria in P. notoginseng have been distilled water. A single sample consisted of 1 g of each described [17], limited information is available on the part from six plants as one sample. To sterilize the sur- endophytic community in diferent parts of P. notogin- face of the plant parts, the samples from each part were seng. Tus, the diversity and composition of bacterial successively immersed in 70% ethanol for 5 min, 2.5% endophytes must be investigated to exploit the agro- sodium hypochlorite for 1–2 min, and 70% ethanol for nomical and metabolic potential of P. notoginseng. 1 min, and then rinsed fve times with sterile Millipore Cultivation-independent methods can facilitate a water. Te last portion of the washing water was inocu- rapid analysis of vast samples and provide reliable lated in Luria–Bertani agar at 37 °C for 24 h to validate information on the diversity and composition of endo- sterilization efciency. A total of 15 samples were stored phytic bacteria [18]. Many studies have explored rhizo- at − 80 °C until DNA extraction. sphere and plant-associated bacterial communities by using high-throughput sequencing analysis [19–21]. DNA extraction, polymerase chain reaction (PCR) Metagenetic methods for analyzing endophyte com- amplifcation, and sequence processing munities would provide deeper insight into the diver- Te total genomic DNA was extracted from all plant sity and composition of bacterial endophytes, thereby parts by using the MOBIO PowerSoil ® Kit (MOBIO Lab- leading to the potential discovery of new endophytes oratories, Inc., Carlsbad, CA, USA) in accordance with [22, 23]. Checcucci et al. reported the high taxo- the manufacturer’s instructions. Te DNA quality of each nomic diversity of bacterial endophytes in the leaves sample was confrmed by utilizing a NanoDrop spectro- of Tymus spp. by using 16S rRNA gene metagenomic photometer (Termo Fisher Scientifc, Model 2000, MA, sequencing [24]. A total of 29 culturable bacterial endo- USA) and stored at − 20 °C for further PCR amplifcation. phytes have been identifed in the tissues of Aloe vera Bacterial 16S rRNA V1 hypervariable region genes were and characterized to 13 genera [25]. Nevertheless, cul- amplifed by using the universal primers 27F/338R [29]. ture-dependent biodiversity studies on endophytic bac- Te forward and reverse primers contained an 8 bp bar- terial communities remain scarce [19]. Pyrosequencing code (Additional fle 1: Table S1). PCRs were performed could detect low-abundance bacteria in leaf salad vege- as described by Dong et al. with slight modifcations [21]. tables that could not be identifed by culture-dependent Te reaction systems were denatured at 94 °C for 3 min methods [26]. Additional, high-throughput sequencing and then amplifed for 25 cycles at 94 °C for 45 s, 55 °C also used in the analysis of soil microbial communi- for 30 s, and 72 °C for 60 s. A fnal extension of 10 min ties, and this method efectively revealed the changes was added at the end of the program. Negative controls in diversity of soil microbial communities in soils dur- (no templates) were included to check DNA contami- ing the cultivation of Panax plants [21, 27, 28]. In the nation of the primer or the sample. PCR products from present study, high-throughput sequencing analysis of each sample were separated with 1% agarose gel, purifed 16S ribosomal RNA (rRNA) genes was conducted to with a MinElute Gel Extraction Kit (Qiagen, Valencia, describe the diversity and composition of associations CA, USA), and quantifed with a Quant-iT PicoGreen among diferent parts of P. notoginseng. Te results dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). Te clarifed the tissue-wise diversity of bacterial endo- amplicons were pooled in equimolar ratios. Te amplicon phytes in the samples collected from P. notoginseng as libraries were paired-end sequenced (2 × 250) by using an well as expanded the knowledge on plant–microbe rela- Illumina MiSeq platform in accordance with the manu- tionships and the potential properties for plant growth facturer’s protocol. promotion and biotransformation.
Recommended publications
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Breast Milk Microbiota: a Review of the Factors That Influence Composition
    Published in "Journal of Infection 81(1): 17–47, 2020" which should be cited to refer to this work. ✩ Breast milk microbiota: A review of the factors that influence composition ∗ Petra Zimmermann a,b,c,d, , Nigel Curtis b,c,d a Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland b Department of Paediatrics, The University of Melbourne, Parkville, Australia c Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia d Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia s u m m a r y Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have Keywords: investigated the composition of the breast milk microbiota and factors that might influence it. Microbiome We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies Diversity reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maxi- Delivery mum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, Caesarean 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, ar- GBS chaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococ- Antibiotics cus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, BMI Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery Probiotics mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, Smoking Diet HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota.
    [Show full text]
  • Effect of Co-Inoculation of Bradyrhizobium And
    agronomy Article Effect of Co-Inoculation of Bradyrhizobium and Trichoderma on Growth, Development, and Yield of Arachis hypogaea L. (Peanut) Ravi Teja Kumar Reddy Neelipally 1, Ambrose O. Anoruo 1,* and Shad Nelson 2 1 Department of Agriculture, Agribusiness and Environmental Sciences, College of Agriculture, Natural Resources & Human Sciences, Texas A&M University, Kingsville, TX 78363, USA; [email protected] 2 College of Agriculture, Natural Resources & Human Sciences, Texas A&M University, Kingsville, TX 78363, USA; [email protected] * Correspondence: [email protected] Received: 20 August 2020; Accepted: 14 September 2020; Published: 17 September 2020 Abstract: Cultivation of the peanut (Arachis hypogaea L.) on the same land contributes to the accumulation of root exudates, leading to increased soil pathogens and decreased yield. Trichoderma harzianum is a naturally occurring endophytic biocontrol fungus that can enhance plant growth, nutrient uptake, and tolerance to biotic and abiotic stresses. Separately, Bradyrhizobium spp. is a biological nitrogen-fixing (BNF) bacterium favoring nodule formation in peanut roots which promotes nitrogen fixation. The dynamics of the symbiotic association between these two organisms were evaluated in the laboratory and greenhouse conditions. Peanuts were cultivated in pots inoculated with either Bradyrhizobium or Trichoderma or both to evaluate growth, development, and yield. The in vitro study results showed that seeds treated with Trichoderma had better germination and seedling biomass (p = 0.0008) compared to the other treatments. On the other hand, the results of greenhouse studies showed that seeds inoculated with both microbes, and those inoculated with Bradyrhizobium alone had higher dry biomass (p < 0.0001) as well as higher chlorophyll content (p < 0.0001) compared to the other treatments.
    [Show full text]
  • Marine Sediments Illuminate Chlamydiae Diversity and Evolution
    Supplementary Information for: Marine sediments illuminate Chlamydiae diversity and evolution Jennah E. Dharamshi1, Daniel Tamarit1†, Laura Eme1†, Courtney Stairs1, Joran Martijn1, Felix Homa1, Steffen L. Jørgensen2, Anja Spang1,3, Thijs J. G. Ettema1,4* 1 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden 2 Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway 3 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, The Netherlands 4 Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, The Netherlands. † These authors contributed equally * Correspondence to: Thijs J. G. Ettema, Email: [email protected] Supplementary Information Supplementary Discussions ............................................................................................................................ 3 1. Evolutionary relationships within the Chlamydiae phylum ............................................................................. 3 2. Insights into the evolution of pathogenicity in Chlamydiaceae ...................................................................... 8 3. Secretion systems and flagella in Chlamydiae .............................................................................................. 13 4. Phylogenetic diversity of chlamydial nucleotide transporters. ....................................................................
    [Show full text]
  • How Do Pesticides Influence Gut Microbiota? a Review
    International Journal of Environmental Research and Public Health Review Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review Federica Giambò 1,†, Michele Teodoro 1,† , Chiara Costa 2,* and Concettina Fenga 1 1 Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; [email protected] (F.G.); [email protected] (M.T.); [email protected] (C.F.) 2 Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy * Correspondence: [email protected]; Tel.: +39-090-2212052 † Equally contributed. Abstract: In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function. Keywords: gut microbiota; microbial community; pesticides; occupational exposure; dysbiosis Citation: Giambò, F.; Teodoro, M.; Costa, C.; Fenga, C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. 1. Introduction Int. J. Environ. Res. Public Health 2021, 18, 5510. https://doi.org/10.3390/ In recent years, the demand for food has risen significantly in relation to the world ijerph18115510 population’s increase.
    [Show full text]
  • Bacterial, Archaeal, and Eukaryotic Diversity Across Distinct Microhabitats in an Acid Mine Drainage Victoria Mesa, José.L.R
    Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage Victoria Mesa, José.L.R. Gallego, Ricardo González-Gil, B. Lauga, Jesus Sánchez, Célia Méndez-García, Ana I. Peláez To cite this version: Victoria Mesa, José.L.R. Gallego, Ricardo González-Gil, B. Lauga, Jesus Sánchez, et al.. Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Frontiers in Microbiology, Frontiers Media, 2017, 8 (SEP), 10.3389/fmicb.2017.01756. hal-01631843 HAL Id: hal-01631843 https://hal.archives-ouvertes.fr/hal-01631843 Submitted on 14 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-08-01756 September 9, 2017 Time: 16:9 # 1 ORIGINAL RESEARCH published: 12 September 2017 doi: 10.3389/fmicb.2017.01756 Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage Victoria Mesa1,2*, Jose L. R. Gallego3, Ricardo González-Gil4, Béatrice Lauga5, Jesús Sánchez1, Celia Méndez-García6† and Ana I. Peláez1† 1 Department of Functional Biology – IUBA, University of Oviedo, Oviedo, Spain, 2 Vedas Research and Innovation, Vedas CII, Medellín, Colombia, 3 Department of Mining Exploitation and Prospecting – IUBA, University of Oviedo, Mieres, Spain, 4 Department of Biology of Organisms and Systems – University of Oviedo, Oviedo, Spain, 5 Equipe Environnement et Microbiologie, CNRS/Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux, UMR5254, Pau, France, 6 Carl R.
    [Show full text]
  • A Review of the Source and Function of Microbiota in Breast Milk
    68 A Review of the Source and Function of Microbiota in Breast Milk M. Susan LaTuga, MD, MSPH1 Alison Stuebe, MD, MSc2,3 Patrick C. Seed, MD, PhD4 1 Department of Pediatrics, Division of Neonatology, Albert Einstein Address for correspondence M. Susan LaTuga, MD, MSPH, Albert College of Medicine, Bronx, New York Einstein College of Medicine, 1601 Tenbroeck Ave, 2nd floor, Bronx, NY 2 Department of Obstetrics and Gynecology, University of North 10461 (e-mail: mlatuga@montefiore.org). Carolina School of Medicine 3 Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina 4 Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina Semin Reprod Med 2014;32:68–73 Abstract Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast Keywords milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional ► enteromammary gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect trafficking to a dysbiosis or abnormal shift in the breast milk microbiota.
    [Show full text]
  • Metabolic Network Percolation Quantifies Biosynthetic Capabilities
    RESEARCH ARTICLE Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome David B Bernstein1,2, Floyd E Dewhirst3,4, Daniel Segre` 1,2,5,6,7* 1Department of Biomedical Engineering, Boston University, Boston, United States; 2Biological Design Center, Boston University, Boston, United States; 3The Forsyth Institute, Cambridge, United States; 4Harvard School of Dental Medicine, Boston, United States; 5Bioinformatics Program, Boston University, Boston, United States; 6Department of Biology, Boston University, Boston, United States; 7Department of Physics, Boston University, Boston, United States Abstract The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems. *For correspondence: DOI: https://doi.org/10.7554/eLife.39733.001 [email protected] Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Populations of Bradyrhizobium Japonicum
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1987, p. 315-319 Vol. 53, No. 2 0099-2240/87/020315-05$02.00/0 Copyright © 1987, American Society for Microbiology Long-Term Effects of Metal-Rich Sewage Sludge Application on Soil Populations of Bradyrhizobium japonicum B. K. KINKLE,1 J. S. ANGLE,'* AND H. H. KEYSER2 Department of Agronomy, University of Maryland, College Park, Maryland 20742,1 and Nitrogen Fixation and Soybean Genetics Laboratory, U.S. Department of Agriculture, Agricultural Resear-ch Stationi, Beltsv'ille, Maryland 207052 Received 27 October 1986/Accepted 5 November 1986 The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobiumjaponicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined.
    [Show full text]
  • Advances in Biochemistry and Biotechnology Bacterial
    Advances in Biochemistry and Biotechnology Degrassi G and Carpentieri-Pipolo V. Adv Biochem Biotechnol 5: 1099. Review Article DOI: 10.29011/2574-7258.001099 Bacterial Endophytes Associated to Crops: Novel Practices for Sustainable Agriculture Giuliano Degrassi1*, Valeria Carpentieri-Pipolo2 1Industrial Biotechnology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Parque Tecnológico Miguelete, San Martín, Buenos Aires, República Argentina 2Embrapa Trigo, Rodovia BR-285, Km 294, 99050-970, Passo Fundo, Rio Grande do Sul, Brazil. *Corresponding author: Giuliano Degrassi, Industrial Biotechnology Group, International Centre for Genetic Engineering and Bio- technology (ICGEB), Parque Tecnológico Miguelete, Av. General Paz N° 5445, B1650WAB San Martín, Buenos Aires, República Argentina Citation: Degrassi G and Carpentieri-Pipolo V (2020) Bacterial Endophytes Associated to Crops: Novel Practices for Sustainable Agriculture. Adv Biochem Biotechnol 5: 1099. DOI: 10.29011/2574-7258.001099 Received Date: 16 April, 2020; Accepted Date: 20 May, 2020; Published Date: 25 May, 2020 Abstract For many decades, rhizosphere bacteria have been studied for their potential to promote crop growth and control certain pathogens. Compared to the studies conducted, there are relatively few examples of microbial inoculants based on rhizosphere bacteria that have had commercial success, mainly due to the strong competition present in the rhizosphere. In the last twenty years, studies on endophytes have multiplied, also and above all as a possible alternative to rhizobacteria, for the development of microbial inoculants capable of replacing some agrochemicals and reducing the environmental impact of agronomic management of crops. This minireview summarizes the most important characteristics and qualities of endophytic bacteria and describes the path that can be followed to identify and deepen the knowledge of candidates suitable for the development of microbial inocu- lants.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Microbial Diversity and Cellulosic Capacity in Municipal Waste Sites By
    Microbial diversity and cellulosic capacity in municipal waste sites by Rebecca Co A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Science in Biology Waterloo, Ontario, Canada, 2019 © Rebecca Co 2019 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions In Chapter 2, the sampling and DNA extraction and sequencing of samples (Section 2.2.1 - 2.2.2) were carried out by Dr. Aneisha Collins-Fairclough and Dr. Melessa Ellis. The work described in Section 2.2.3 Metagenomic pipeline and onwards was done by the thesis’s author. Sections 2.2.1 Sample collection – 2.2.4 16S rRNA gene community profile were previously published in Widespread antibiotic, biocide, and metal resistance in microbial communities inhabiting a municipal waste environment and anthropogenically impacted river by Aneisha M. Collins- Fairclough, Rebecca Co, Melessa C. Ellis, and Laura A. Hug. 2018. mSphere: e00346-18. The writing and analyses incorporated into this chapter are by the thesis's author. iii Abstract Cellulose is the most abundant organic compound found on earth. Cellulose’s recalcitrance to hydrolysis is a major limitation to improving the efficiency of industrial applications. The biofuel, pulp and paper, agriculture, and textile industries employ mechanical and chemical methods of breaking down cellulose.
    [Show full text]