Of the Human Oral Microbiome Using Cultivation-Dependent and –Independent Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Of the Human Oral Microbiome Using Cultivation-Dependent and –Independent Approaches University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2019 Investigating the microbial “dark matter” of the human oral microbiome using cultivation-dependent and –independent approaches Karissa Cross University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Cross, Karissa, "Investigating the microbial “dark matter” of the human oral microbiome using cultivation- dependent and –independent approaches. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5637 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Karissa Cross entitled "Investigating the microbial “dark matter” of the human oral microbiome using cultivation-dependent and –independent approaches." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Mircea Podar, Major Professor We have read this dissertation and recommend its acceptance: Heidi Goodrich-Blair, Erik Zinser, Frank Loeffler, Stephen Kania Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Investigating the microbial “dark matter” of the human oral microbiome using cultivation-dependent and –independent approaches A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Karissa Lynn Cross August 2019 Copyright © 2019 by Karissa Lynn Cross All rights reserved. ii ACKNOWLEDGEMENTS This acknowledgements section is no doubt one of the most difficult sections for me to write because there have been so many people along my journey who have supported me and have helped make this possible. There are not enough words to address them all but for all of them I am beyond thankful. First, I would like to thank my advisor Dr. Mircea Podar for his support and vision to encourage me to push the limits of what a PhD degree could mean. I thank all of the current and past Podar Lab members: Dr. Snehal Joshi, Shafer Belisle, Zamin Yang, Dr. Manasi Balachandran, Stephen Lebreux, Dr. Jim Campbell, Dr. Alisha Campbell, and Dr. Louie Wurch. I would also like to thank my committee Dr. Heidi Goodrich-Blair, Dr. Erik Zinser, Dr. Frank Loeffler, Dr. Stephen Kania, and formerly Dr. Igor Zhulin who have stood by my side year after year and offered their insight and support. Thank you to my collaborators both near and far throughout the years who have taught me how to listen and learn and have afforded me the opportunities to push my science beyond my comfort zone. Thank you to my friends both at ORNL and UTK whose companionship and love have no doubt made this possible. A special thank you goes to William Ellis Baltz who I met my first year of graduate school and has continued to be by my side through not just the good days but the bad ones as well. I told him if he could make it through law school and I through graduate school at the same time, there is no limit to what we could accomplish together, and he continues to support my dreams steadfast. Also, I am thankful for his family Liana, Billy, and Sarah (and many more) who have made me feel welcomed and loved. Lastly, and at the top of my list, I thank my family. My grandparents, Nancy and Lowell, raised my sister and I and have supported us through all of our ventures. With their support I have had the confidence to pursue my goals where no one in our family has yet gone. They have served as strong role models demonstrating where hard work and perseverance can take you, and about never giving up or backing down. To my sister Ashley, thank you for the many phone calls and advice as we transverse this life together. With every step you have given me the assurance and love to keep moving forward when at times it felt impossible and I look forward to where this life continues to take us. iii ABSTRACT The advancement of sequencing technology has provided a renewed appreciation for the diversity of life on earth with most environments being dominated by yet-uncultured microorganisms. Analysis of 16S rRNA gene sequencing libraries of the original Human Microbiome Project dataset revealed that approximately 70% of sequences belonged to bacteria that were uncultured in the laboratory and current metagenomic analysis of the human microbiome has proposed 77% of taxa lacked sequenced genomes. As the human microbiome is important for healthy host physiology, these findings emphasize just how little we currently know about the microorganisms that reside in the human body. Understanding the microorganisms that make up the normal human microbiome is the first logical step in determining, during dysbiosis and disease, how the community changes as a whole so as to permit investigation into preventative and/or treatment measures during disease. For example, many disease-associated lineages of bacteria in periodontal disease remain uncultured in the laboratory and therefore limited insight is available as to whether or not these organisms play a role in disease etiology or their presence is a secondary effect of the disease state. Therefore, cultivating more microorganisms from the human microbiome is critical as it enables hypothesis-driven experimentation into the roles of those organisms in human health and disease. The work presented here represents a two-fold approach for cultivation of bacteria from the human oral microbiome by both classical means and by the development of a novel, “reverse- genomics” approach. First, I identified a specific interaction between Desulfobulbus oralis and Fusobacterium nucleatum that resulted in the isolation of the first Desulfobulbus genus member from the human oral cavity and I characterized this bacterium both physiologically and genomically. Next, I investigated what causes the recalcitrance of some oral bacteria to cultivation and what contributes to their dependence on other bacteria, such as F. nucleatum. Lastly, we leveraged existing public sequence data to target specific TM7 bacteria from within the microbial community for both single-cell genomic characterization and cultivation. Collectively this work demonstrates how cultivation-dependent and cultivation-independent methodology can be combined to investigate the “dark microbial matter” in the human oral cavity. iv TABLE OF CONTENTS CHAPTER ONE - Introduction ......................................................................................................... 1 Publication Note ................................................................................................................................................ 2 The Human Microbiome and Uncultured Bacteria ............................................................................. 2 The Oral Microbiome and Oral Diseases ................................................................................................ 3 Cultivation-independent Studies ............................................................................................................... 5 Cultivation-dependent Studies ................................................................................................................... 7 Sulfate Reducing Bacteria ............................................................................................................................ 9 Candidate Phylum TM7 Bacteria ............................................................................................................. 10 Non-bacterial Diversity of the Human Oral Cavity .......................................................................... 11 Research Objectives ..................................................................................................................................... 12 CHAPTER TWO - Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, Desulfobulbus oralis ......................................................................................................................... 15 Publication Note ............................................................................................................................................. 16 Abstract .............................................................................................................................................................. 16 Importance ........................................................................................................................................................ 17 Introduction ...................................................................................................................................................... 17 Results and Discussion .............................................................................................................................. 19 Materials and Methods................................................................................................................................
Recommended publications
  • Genome Signature-Based Dissection of Human Gut Metagenomes to Extract Subliminal Viral Sequences
    ARTICLE Received 16 Apr 2013 | Accepted 8 Aug 2013 | Published 16 Sep 2013 DOI: 10.1038/ncomms3420 OPEN Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences Lesley A. Ogilvie1, Lucas D. Bowler1, Jonathan Caplin2, Cinzia Dedi1, David Diston2,w, Elizabeth Cheek3, Huw Taylor2, James E. Ebdon2 & Brian V. Jones1 Bacterial viruses (bacteriophages) have a key role in shaping the development and functional outputs of host microbiomes. Although metagenomic approaches have greatly expanded our understanding of the prokaryotic virosphere, additional tools are required for the phage- oriented dissection of metagenomic data sets, and host-range affiliation of recovered sequences. Here we demonstrate the application of a genome signature-based approach to interrogate conventional whole-community metagenomes and access subliminal, phylogen- etically targeted, phage sequences present within. We describe a portion of the biological dark matter extant in the human gut virome, and bring to light a population of potentially gut- specific Bacteroidales-like phage, poorly represented in existing virus like particle-derived viral metagenomes. These predominantly temperate phage were shown to encode functions of direct relevance to human health in the form of antibiotic resistance genes, and provided evidence for the existence of putative ‘viral-enterotypes’ among this fraction of the human gut virome. 1 Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK. 2 School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK. 3 School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK. w Present address: Mikrobiologische and Biotechnologische Risiken Bundesamt fu¨r Gesundheit BAG, 3003 Bern, Switzerland.
    [Show full text]
  • Microbial Biogeography and Ecology of the Mouth and Implications for Periodontal
    bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Microbial biogeography and ecology of the mouth and implications for periodontal diseases Authors: Diana M. Proctor1,2,10, Katie M. Shelef3,10, Antonio Gonzalez4, Clara L. Davis Long5, Les Dethlefsen1, Adam Burns1, Peter M. Loomer6, Gary C. Armitage7, Mark I. Ryder7, Meredith E. Millman7, Rob Knight4, Susan P. Holmes8, David A. Relman1,5,9 Affiliations 1Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA 2National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA 3Department of Biology, Stanford University School of Medicine, Stanford, CA 94305 USA 4Departments of Pediatrics and Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093 USA 5Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA 6Ashman Department of Periodontology & Implant Dentistry, New York University College of Dentistry, New York, NY 10010 USA 7Division of Periodontology, University of California, San Francisco School of Dentistry, San Francisco, CA 94143 USA 8Department of Statistics, Stanford University, Stanford, CA 94305 USA 9Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA 10These authors contributed equally Corresponding author: David A. Relman: [email protected]; Address: Encina E209, 616 Serra Street, Stanford, California 94305-6165; Phone: 650-736-6822; Fax: 650-852-3291 1 bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019.
    [Show full text]
  • Ecology and Evolution of Metabolic Cross-Feeding Interactions in Bacteria† Cite This: Nat
    Natural Product Reports View Article Online REVIEW View Journal | View Issue Ecology and evolution of metabolic cross-feeding interactions in bacteria† Cite this: Nat. Prod. Rep.,2018,35,455 Glen D'Souza, ab Shraddha Shitut, ce Daniel Preussger,c Ghada Yousif,cde Silvio Waschina f and Christian Kost *ce Literature covered: early 2000s to late 2017 Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has fi fi Creative Commons Attribution 3.0 Unported Licence. shown that bacterial genotypes can signi cantly bene t from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution Received 25th January 2018 and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight DOI: 10.1039/c8np00009c general principles that underlie the adaptive evolution of interconnected microbial metabolic networks rsc.li/npr as well as the evolutionary consequences that result for cells living in such communities. 1 Introduction 2.5 Mechanisms of metabolite transfer This article is licensed under a 2 Metabolic cross-feeding interactions 2.5.1 Contact-independent mechanisms 2.1 Historical account 2.5.1.1 Passive diffusion 2.2 Classication of cross-feeding interactions 2.5.1.2 Active transport 2.2.1 Unidirectional by-product cross-feeding 2.5.1.3 Vesicle-mediated transport Open Access Article.
    [Show full text]
  • Shedding Light on Microbial Dark Matter with a Universal Language
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424215; this version posted December 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Shedding Light on Microbial Dark Matter with A 2 Universal Language of Life 1,* 2 3 2,* 3 Hoarfrost A , Aptekmann, A , Farfañuk, G , Bromberg Y 4 1 Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08873, USA 5 2 Department of Biochemistry and Microbiology, 76 Lipman Dr, Rutgers University, New Brunswick, NJ 08901, USA 6 3 Department of Biological Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 7 8 * Corresponding author: [email protected]; [email protected] 9 Running Title: LookingGlass: a universal language of life 10 11 Abstract 12 The majority of microbial genomes have yet to be cultured, and most proteins 13 predicted from microbial genomes or sequenced from the environment cannot be 14 functionally annotated. As a result, current computational approaches to describe 15 microbial systems rely on incomplete reference databases that cannot adequately 16 capture the full functional diversity of the microbial tree of life, limiting our ability to 17 model high-level features of biological sequences. The scientific community needs a 18 means to capture the functionally and evolutionarily relevant features underlying 19 biology, independent of our incomplete reference databases. Such a model can form 20 the basis for transfer learning tasks, enabling downstream applications in 21 environmental microbiology, medicine, and bioengineering.
    [Show full text]
  • Isolation and Identification of Oral Bacteria and Characterization for Bacteriocin Production and Antimicrobial Sensitivity
    Isolation and Identification of Oral Bacteria and Characterization for Bacteriocin Production and Antimicrobial Sensitivity Monzilur Rahman1, Md. Nahidul Islam1, Muhammad Nurul Islam2 and Mohammad Shahnoor Hossain1 1Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh 2Department of Botany, University of Dhaka, Dhaka-1000, Bangladesh Received: May 10, 2015; Accepted: June 03, 2015; Published (web): June 15, 2015 ABSTRACT: Oral bacteria play an important role in body homeostasis and the bacterial genus Streptococcus is the dominant microflora commonly found in oral bacterial community. Their ability to establish biofilm lifestyle in the oral cavity by outcompeting other bacteria has been attributed to the production of bacteriocin along with other strategies. The goal of the present study was to isolate and identify oral bacteria and characterize their ability to produce bacteriocin against other oral bacteria as well as their sensitivity to common antibiotics. We have employed deferred antagonism bacteriocin assay for bacteriocin production and disk diffusion assay for antibiotic susceptibility testing. We identified eight bacterial strains belonging to the genera Streptococcus and Enterococcus based on colony morphology, biochemical assays, 16S rDNA sequence analysis, and species-specific PCR. Antibiotic susceptibility assay indicated that some of the strains are resistant to one or more antibiotics. Our study also revealed that the isolated strains are capable of producing one or more bacteriocins
    [Show full text]
  • Numerous Uncharacterized and Highly Divergent Microbes Which Colonize Humans Are Revealed by Circulating Cell-Free DNA
    Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA Mark Kowarskya, Joan Camunas-Solerb, Michael Kerteszb,1, Iwijn De Vlaminckb, Winston Kohb, Wenying Panb, Lance Martinb, Norma F. Neffb,c, Jennifer Okamotob,c, Ronald J. Wongd, Sandhya Kharbandae, Yasser El-Sayedf, Yair Blumenfeldf, David K. Stevensond, Gary M. Shawd, Nathan D. Wolfeg,h, and Stephen R. Quakeb,c,i,2 aDepartment of Physics, Stanford University, Stanford, CA 94305; bDepartment of Bioengineering, Stanford University, Stanford, CA 94305; cChan Zuckerberg Biohub, San Francisco, CA 94158; dDepartment of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; ePediatric Stem Cell Transplantation, Lucille Packard Children’s Hospital, Stanford University, Stanford, CA 94305; fDivision of Maternal–Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; gMetabiota, San Francisco, CA 94104; hGlobal Viral, San Francisco, CA 94104; and iDepartment of Applied Physics, Stanford University, Stanford, CA 94305 Contributed by Stephen R. Quake, July 12, 2017 (sent for review April 28, 2017; reviewed by Søren Brunak and Eran Segal) Blood circulates throughout the human body and contains mole- the body (18, 19); combining this observation with the average cules drawn from virtually every tissue, including the microbes and genome sizes of a human, bacterium, and virus (Gb, Mb, and viruses which colonize the body. Through massive shotgun sequenc- kb, respectively) suggests that approximately 1% of DNA by ing of circulating cell-free DNA from the blood, we identified mass in a human is derived from nonhost origins. Previous hundreds of new bacteria and viruses which represent previously studies by us and others have shown that indeed approximately unidentified members of the human microbiome.
    [Show full text]
  • Identification of Pasteurella Species and Morphologically Similar Organisms
    UK Standards for Microbiology Investigations Identification of Pasteurella species and Morphologically Similar Organisms Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 1 of 28 © Crown copyright 2015 Identification of Pasteurella species and Morphologically Similar Organisms Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 2 of 28 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Pasteurella species and Morphologically Similar Organisms Contents ACKNOWLEDGMENTS .........................................................................................................
    [Show full text]
  • Thesis Final
    THESIS/DISSERTATION APPROVED BY 4-24-2020 Barbara J. O’Kane Date Barbara J. O’Kane, MS, Ph.D, Chair Margaret Jergenson Margret A. Jergenson, DDS Neil Norton Neil S. Norton, BA, Ph.D. Gail M. Jensen, Ph.D., Dean i COMPARISON OF PERIODONTIUM AMONG SUBJECTS TREATED WITH CLEAR ALIGNERS AND CONVENTIONAL ORTHODONTICS By: Mark S. Jones A THESIS Presented to the Faculty of The Graduate College at Creighton University In Partial Fulfillment of Requirements For the Degree of Master of Science in the Department of Oral Biology Under the Supervision of Dr. Marcelo Mattos Advising from: Dr. Margaret Jergenson, Dr. Neil S. Norton, and Dr. Barbara O’Kane Omaha, Nebraska 2020 i iii Abstract INTRODUCTION: With the wider therapeutic use of clear aligners the need to investigate the periodontal health status and microbiome of clear aligners’ patients in comparison with users of fixed orthodontic has arisen and is the objective of this thesis. METHODS: A clinical periodontal evaluation was performed, followed by professional oral hygiene treatment on a patient under clear aligner treatment, another under fixed orthodontics and two controls that never received any orthodontic therapy. One week after, supragingival plaque, swabs from the orthodontic devices, and saliva samples were collected from each volunteer for further 16s sequencing and microbiome analysis. RESULTS: All participants have overall good oral hygiene. However, our results showed increases in supragingival plaque, higher number of probing depths greater than 3mm, higher number of bleeding sites on probing, and a higher amount of gingival recession in the subject treated with fixed orthodontics. A lower bacterial count was observed colonizing the clear aligners, with less diversity than the other samples analyzed.
    [Show full text]
  • What Would You Do If You Could Sequence Everything?
    PERspECTIVE What would you do if you could sequence everything? Avak Kahvejian1, John Quackenbush2 & John F Thompson1 It could be argued that the greatest transformative aspect ing technologies, be leveraged with insightful approaches to biology and of the Human Genome Project has been not the sequencing medicine to maximize the benefits to all? DNA sequence is no longer just of the genome itself, but the resultant development of new an end in itself, but it is rapidly becoming the digital substrate replac- technologies. A host of new approaches has fundamentally ing analog chip-based hybridization signals; it is the barcode tracking of changed the way we approach problems in basic and enormous numbers of samples; and it is the readout indicating a host of translational research. Now, a new generation of high-throughput chemical modifications and intermolecular interactions. Sequence data sequencing technologies promises to again transform the allow one to count mRNAs or other species of nucleic acids precisely, to scientific enterprise, potentially supplanting array-based determine sharp boundaries for interactions with proteins or positions technologies and opening up many new possibilities. By allowing of translocations and to identify novel variants and splice sites, all in one http://www.nature.com/naturebiotechnology DNA/RNA to be assayed more rapidly than previously possible, experiment with digital accuracy. these next-generation platforms promise a deeper understanding The brief history of molecular biology and genomic technologies has of genome regulation and biology. Significantly enhancing been marked by the introduction of new technologies, their rapid uptake sequencing throughput will allow us to follow the evolution and then a steady state or slow decline in use as newer techniques are of viral and bacterial resistance in real time, to uncover the developed that supersede them.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert
    Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Scientific Reports 2017, 7(1), 8373. Copyright: © The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. DOI link to article: https://doi.org/10.1038/s41598-017-08937-4 Date deposited: 18/10/2017 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk www.nature.com/scientificreports OPEN Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Received: 13 April 2017 Accepted: 4 July 2017 Desert Published: xx xx xxxx Hamidah Idris1, Michael Goodfellow1, Roy Sanderson1, Juan A. Asenjo2 & Alan T. Bull3 The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils.
    [Show full text]