Responding to the Growing Issue of Research Reproducibility Donald R

Total Page:16

File Type:pdf, Size:1020Kb

Responding to the Growing Issue of Research Reproducibility Donald R Responding to the growing issue of research reproducibility Donald R. Baer, and Ian S. Gilmore Citation: Journal of Vacuum Science & Technology A 36, 068502 (2018); doi: 10.1116/1.5049141 View online: https://doi.org/10.1116/1.5049141 View Table of Contents: https://avs.scitation.org/toc/jva/36/6 Published by the American Vacuum Society ARTICLES YOU MAY BE INTERESTED IN Transient behavior in quasi-atomic layer etching of silicon dioxide and silicon nitride in fluorocarbon plasmas Journal of Vacuum Science & Technology A 36, 06B101 (2018); https://doi.org/10.1116/1.5049225 Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development Journal of Vacuum Science & Technology A 36, 060801 (2018); https://doi.org/10.1116/1.5047237 Review Article: Stress in thin films and coatings: Current status, challenges, and prospects Journal of Vacuum Science & Technology A 36, 020801 (2018); https://doi.org/10.1116/1.5011790 Rapid atomic layer etching of Al2O3 using sequential exposures of hydrogen fluoride and trimethylaluminum with no purging Journal of Vacuum Science & Technology A 36, 061508 (2018); https://doi.org/10.1116/1.5043488 Tutorial on interpreting x-ray photoelectron spectroscopy survey spectra: Questions and answers on spectra from the atomic layer deposition of Al2O3 on silicon Journal of Vacuum Science & Technology B 36, 062902 (2018); https://doi.org/10.1116/1.5043297 Precise control of ion and radical production using electron beam generated plasmas Journal of Vacuum Science & Technology A 36, 060601 (2018); https://doi.org/10.1116/1.5053615 Responding to the growing issue of research reproducibility Donald R. Baer1,a) and Ian S. Gilmore2,b) 1Pacific Northwest National Laboratory, Richland, Washington 99352 2National Physical Laboratory, Teddington TW11 0LW, United Kingdom (Received 19 July 2018; accepted 28 September 2018; published 12 October 2018) An increasing number of studies, surveys, and editorials highlight experimental and computational reproducibility and replication issues that appear to pervade most areas of modern science. This per- spective examines some of the multiple and complex causes of what has been called a “reproduc- ibility crisis,” which can impact materials, interface/(bio)interphase, and vacuum sciences. Reproducibility issues are not new to science, but they are now appearing in new forms requiring innovative solutions. Drivers include the increasingly multidiscipline, multimethod nature of much advanced science, increased complexity of the problems and systems being addressed, and the large amounts and multiple types of experimental and computational data being collected and analyzed in many studies. Sustained efforts are needed to address the causes of reproducibility problems that can hinder the rate of scientific progress and lower public and political regard for science. The initial efforts of the American Vacuum Society to raise awareness of a new generation of reproduc- ibility challenges and provide tools to help address them serve as examples of mitigating actions that can be undertaken. Published by the AVS. https://doi.org/10.1116/1.5049141 I. INTRODUCTION reproducibility of the analysis of a set of results or the repeat- 6 A. Is there a reproducibility crisis? ability of a measurement. They all deal in different ways with the reliability and repeatability of scientific results. In a survey of 1576 scientists reported in Nature in 2016,1 Issues within the reproducibility and replication category 90% of those interviewed indicated they thought there was at include: (i) Are results within one study appropriately repro- least some level of reproducibility problem in the scientific ducible and appropriately measured and reported, and/or are literature. More than half of the scientists responding indi- only selected measurements reported with some others cated there was a “significant reproducibility crisis” and only “ignored”? (ii) Have research groups established and com- 3% indicated there were no reproducibility problems. In the municated adequately clear procedures, protocols, qualified fall of 2017, National Public Radio’s Science Correspondent measurement methods, and training to enable others within Richard Harris wrote a guest editorial in Chemical and their group (or close collaborator) to reproduce materials, Engineering News2 on “Reproducibility issues,” observing analysis results, and other aspects of research? (iii) Are that although discussion about a “reproducibility crisis” reports, measurement approaches, and information in publi- often focused on preclinical medical research and social psy- cations adequately detailed so other research teams can chology studies, based on the causes of nonreproducibility reproduce the work? there are many indications the issue extends to the physical The issue of reproducibility has received sufficient atten- sciences as well. tion that the U.S. Congress mandated the National Science Questions or concerns about reproducibility can be asked Foundation to fund a National Academies (NAs) study on at multiple levels, but they all address or impact the ability Reproducibility and Replicability in Science. Their charter is for the results of studies to be replicated by others. to “explore what is known and identify areas that may need Reproducibility issues can generally be categorized into two more information to ascertain the extent of reproducibility topics: (1) research integrity, which includes the ethics, mis- and replication, review current activities to improve repro- conduct, and deviation from good research practices along ducibility and replication highlighting examples of good with the mechanisms to identify and correct research outputs practices, and examine factors that adversely affect reproduc- that fall short of these; and (2) reproducibility or replicability ibility and replication.” The study group has met four times, of an experiment, computation, or a whole study. In this dis- and the study webpage contains informative videos of speak- cussion, we focus entirely on the latter as the former is ers discussing the topic in different fields.7 already well-developed, for example, the United Kingdom A great deal of discussion and many articles have been Concordat on Research Integrity3 and the U.S.A., Federal dedicated to this topic at a high level and, as noted below, Research Misconduct Policy.4 concerns have been noted in specific areas of science. There Uses of the terms reproducibility, repeatability, and repli- is a growing recognition that as science and technology have cability have overlapping, distinctive, and inconsistent mean- evolved with advanced computation and experimental ings depending on the area of science.5 One common methods there are new issues and more needs to be done to distinction is the replicability of a study versus the address them. The term “crisis” is somewhat hyperbolic a)Electronic mail: [email protected] since research endeavors continue to productively bear fruit b)Electronic mail: [email protected] in new innovations and products. However, in addition to 068502-1 J. Vac. Sci. Technol. A 36(6), Nov/Dec 2018 0734-2101/2018/36(6)/068502/5/$30.00 Published by the AVS. 068502-1 068502-2 D. R. Baer and I. S. Gilmore: Responding to the growing issue of research reproducibility 068502-2 slowing scientific progress, nonreproducibility of high profile frameworks where 20% of the data reported could be classi- and other research results impacts public and political fied as outliers (significantly different or distant from the opinion, and the general regard for science that may have majority of other observations).9 In 2014, the National long lasting and significant impacts on science and society. Institute of Standards and Technology (NIST) highlighted The research community will learn more about the nature the reproducibility issue in biomedical research in Nature and extent of the problem and likely obtain useful guidance Methods10 and proposed a route to improve reproducibility from the NAs report and other studies. However, given the was through better measurements, appropriate controls, refer- systemic nature of the challenges and the possible long-range ence materials, and statistics. Recently, the U.K.’s National impacts, it is useful to identify and initiate efforts to improve Physical Laboratory (NPL) prepared a 2017 Nature editorial the current situation. This perspective identifies some of the on the importance of metrology in the efforts to improve sources of reproducibility problems and ways the research reproducibility.11 The reproducibility issue has been recog- community can respond now to address them. The perspec- nized by editors of AVS’ Biointerphases12 in presenting a tive is prepared in the context of materials, interface/(bio) list of publications identified as “Biointerphases Tutorials” interphase, vacuum, and other sciences important to the noting that “The following publications have been identified Journals of Vacuum Science and Technology ( JVST) parts by the Editors as foundational in furthering understanding of A and B, and the American Vacuum Society (AVS) and the biointerface. The methods and approaches used for char- highlights, as examples, some of the initial actions planned acterization at the biointerface are state-of-the-art and or undertaken in response to reproducibility issues. thorough.” In 2018, NIST and NPL co-organized a workshop on “ B. Are reproducibility issues relevant to areas of Improving Reproducibility
Recommended publications
  • Evolution of Clinical Trials Throughout History
    Evolution of clinical trials throughout history Emma M. Nellhaus1, Todd H. Davies, PhD1 Author Affiliations: 1. Office of Research and Graduate Education, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Todd H. Davies, PhD Director of Research Development and Translation Marshall University Joan C. Edwards School of Medicine Huntington, West Virginia Email: [email protected] Abstract The history of clinical research accounts for the high ethical, scientific, and regulatory standards represented in current practice. In this review, we aim to describe the advances that grew from failures and provide a comprehensive view of how the current gold standard of clinical practice was born. This discussion of the evolution of clinical trials considers the length of time and efforts that were made in order to designate the primary objective, which is providing improved care for our patients. A gradual, historic progression of scientific methods such as comparison of interventions, randomization, blinding, and placebos in clinical trials demonstrates how these techniques are collectively responsible for a continuous advancement of clinical care. Developments over the years have been ethical as well as clinical. The Belmont Report, which many investigators lack appreciation for due to time constraints, represents the pinnacle of ethical standards and was developed due to significant misconduct. Understanding the history of clinical research may help investigators value the responsibility of conducting human subjects’ research. Keywords Clinical Trials, Clinical Research, History, Belmont Report In modern medicine, the clinical trial is the gold standard and most dominant form of clinical research.
    [Show full text]
  • U.S. Investments in Medical and Health Research and Development 2013 - 2017 Advocacy Has Helped Bring About Five Years of Much-Needed Growth in U.S
    Fall 2018 U.S. Investments in Medical and Health Research and Development 2013 - 2017 Advocacy has helped bring about five years of much-needed growth in U.S. medical and health research investment. More advocacy is critical now to ensure our nation steps up in response to health threats that we can—we must—overcome. More Than Half Favor Doubling Federal Spending on Medical Research Do you favor or oppose doubling federal spending on medical research over the next five years? 19% Not Sure 23% 8% Strongly favor Strongly oppose 16% 35% Somewhat oppose Somewhat favor Source: A Research!America survey of U.S. adults conducted in partnership with Zogby Analytics in January 2018. Research!America 3 Introduction Investment1 in medical and health research and development (R&D) in the U.S. grew by $38.8 billion or 27% from 2013 to 2017. Industry continues to invest more than any other sector, accounting for 67% of total spending in 2017, followed by the federal government at 22%. Federal investments increased from 2016 to 2017, the second year of growth after a dip from 2014 to 2015. Overall, federal investment increased by $6.1 billion or 18.4% from 2013 to 2017, but growth has been uneven across federal health agencies. Investment by other sectors, including academic and research institutions, foundations, state and local governments, and voluntary health associations and professional societies, also increased from 2013 to 2017. Looking ahead, medical and health R&D spending is expected to move in an upward trajectory in 2018 but will continue to fall short relative to the health and economic impact of major health threats.
    [Show full text]
  • Clinical Research Services
    Clinical Research Services Conducting efficient, innovative clinical research from initial planning to closeout WHY LEIDOS LIFE SCIENCES? In addition to developing large-scale technology programs for U.S. federal f Leidos has expertise agencies with a focus on health, Leidos provides a broad range of clinical supporting all product services and solutions to researchers, product sponsors, U.S. government development phases agencies, and other biomedical enterprises, hospitals, and health systems. for vaccines, drugs, and Our broad research experience enables us to support programs throughout biotherapeutics the development life cycle: from concept through the exploratory, f Leidos understands the development, pre-clinical, and clinical phases, as well as with product need to control clinical manufacturing and launching. Leidos designs and develops customized project scope, timelines, solutions that support groundbreaking medical research, optimize business and cost while remaining operations, and expedite the discovery of safe and effective medical flexible amidst shifting products. We apply our technical knowledge and experience in selecting research requirements institutions, clinical research organizations, and independent research f Leidos remains vendor- facilities to meet the specific needs of each clinical study. We also manage neutral while fostering and team integration, communication, and contracts throughout the project. managing collaborations Finally, Leidos has a proven track record of ensuring that research involving with
    [Show full text]
  • Adaptive Designs in Clinical Trials: Why Use Them, and How to Run and Report Them Philip Pallmann1* , Alun W
    Pallmann et al. BMC Medicine (2018) 16:29 https://doi.org/10.1186/s12916-018-1017-7 CORRESPONDENCE Open Access Adaptive designs in clinical trials: why use them, and how to run and report them Philip Pallmann1* , Alun W. Bedding2, Babak Choodari-Oskooei3, Munyaradzi Dimairo4,LauraFlight5, Lisa V. Hampson1,6, Jane Holmes7, Adrian P. Mander8, Lang’o Odondi7, Matthew R. Sydes3,SofíaS.Villar8, James M. S. Wason8,9, Christopher J. Weir10, Graham M. Wheeler8,11, Christina Yap12 and Thomas Jaki1 Abstract Adaptive designs can make clinical trials more flexible by utilising results accumulating in the trial to modify the trial’s course in accordance with pre-specified rules. Trials with an adaptive design are often more efficient, informative and ethical than trials with a traditional fixed design since they often make better use of resources such as time and money, and might require fewer participants. Adaptive designs can be applied across all phases of clinical research, from early-phase dose escalation to confirmatory trials. The pace of the uptake of adaptive designs in clinical research, however, has remained well behind that of the statistical literature introducing new methods and highlighting their potential advantages. We speculate that one factor contributing to this is that the full range of adaptations available to trial designs, as well as their goals, advantages and limitations, remains unfamiliar to many parts of the clinical community. Additionally, the term adaptive design has been misleadingly used as an all-encompassing label to refer to certain methods that could be deemed controversial or that have been inadequately implemented. We believe that even if the planning and analysis of a trial is undertaken by an expert statistician, it is essential that the investigators understand the implications of using an adaptive design, for example, what the practical challenges are, what can (and cannot) be inferred from the results of such a trial, and how to report and communicate the results.
    [Show full text]
  • Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy
    Review Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy Yuxi Zhao and Lifeng Lin * Department of Statistics, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews and meta-analyses have been increasingly used to pool research find- ings from multiple studies in medical sciences. The reliability of the synthesized evidence depends highly on the methodological quality of a systematic review and meta-analysis. In recent years, several tools have been developed to guide the reporting and evidence appraisal of systematic reviews and meta-analyses, and much statistical effort has been paid to improve their methodological quality. Nevertheless, many contemporary meta-analyses continue to employ conventional statis- tical methods, which may be suboptimal compared with several alternative methods available in the evidence synthesis literature. Based on a recent systematic review on COVID-19 in pregnancy, this article provides an overview of select good practices for performing meta-analyses from sta- tistical perspectives. Specifically, we suggest meta-analysts (1) providing sufficient information of included studies, (2) providing information for reproducibility of meta-analyses, (3) using appro- priate terminologies, (4) double-checking presented results, (5) considering alternative estimators of between-study variance, (6) considering alternative confidence intervals, (7) reporting predic- Citation: Zhao, Y.; Lin, L. Good tion intervals, (8) assessing small-study effects whenever possible, and (9) considering one-stage Statistical Practices for Contemporary methods. We use worked examples to illustrate these good practices. Relevant statistical code Meta-Analysis: Examples Based on a is also provided.
    [Show full text]
  • Short List of Commonly Used Acronyms in Clinical Research
    Short List of Commonly Used Acronyms in Clinical Research ACRP Association of Clinical Research Professionals AE Adverse Event ADR Adverse Drug Reaction AMA American Medical Association BAA Business Associate Agreement BIND Biological IND CA Coverage Analysis CAP College of American Pathologists CBCTN Community Based Clinical Trials Network CCRA Certified Clinical Research Associate (ACRP) CCRC Certified Clinical Research Coordinator (ACRP) CCRT Center for Clinical Research & Technology CCRP Certified Clinical Research Professional (SoCRA) CDA Confidential Disclosure Agreement CDC Center for Disease Control CFR Code of Federal Regulations CIRBI Center for IRB Intelligence CITI Collaborative Institutional Training Initiative CLIA Clinical Laboratory Improvement Amendments CME Continuing Medical Education CMS Central Management System COI Conflict of Interest CRA Clinical Research Associate CRC Clinical Research Coordinator CREC Continuing Research Education Credit CRF Case Report Form CRO Clinical Research Organization CTA Clinical Trial Agreement CTSC Clinical & Translational Science Collaborative CV Curriculum Vitae DCF Data Correction Form / Data Clarification Form DEA Drug Enforcement Agency (law enforcement division of FDA) DHHS Department of Health and Human Services DOS Date of Service DSMB or Data and Safety Monitoring Board (Plan or Committee) DSMP/C EAB Ethical Advisory Board (similar to IRB, used by other nations) EDC Electronic Data Capture FDA Food and Drug Administration FDA-482 Notice of Inspection FDA-483 Notice of Adverse
    [Show full text]
  • A Framework to Assess Empirical Reproducibility in Biomedical Research Leslie D
    McIntosh et al. BMC Medical Research Methodology (2017) 17:143 DOI 10.1186/s12874-017-0377-6 RESEARCH ARTICLE Open Access Repeat: a framework to assess empirical reproducibility in biomedical research Leslie D. McIntosh1, Anthony Juehne1*, Cynthia R. H. Vitale2, Xiaoyan Liu1, Rosalia Alcoser1, J. Christian Lukas1 and Bradley Evanoff3 Abstract Background: The reproducibility of research is essential to rigorous science, yet significant concerns of the reliability and verifiability of biomedical research have been recently highlighted. Ongoing efforts across several domains of science and policy are working to clarify the fundamental characteristics of reproducibility and to enhance the transparency and accessibility of research. Methods: The aim of the proceeding work is to develop an assessment tool operationalizing key concepts of research transparency in the biomedical domain, specifically for secondary biomedical data research using electronic health record data. The tool (RepeAT) was developed through a multi-phase process that involved coding and extracting recommendations and practices for improving reproducibility from publications and reports across the biomedical and statistical sciences, field testing the instrument, and refining variables. Results: RepeAT includes 119 unique variables grouped into five categories (research design and aim, database and data collection methods, data mining and data cleaning, data analysis, data sharing and documentation). Preliminary results in manually processing 40 scientific manuscripts indicate components of the proposed framework with strong inter-rater reliability, as well as directions for further research and refinement of RepeAT. Conclusions: The use of RepeAT may allow the biomedical community to have a better understanding of the current practices of research transparency and accessibility among principal investigators.
    [Show full text]
  • A Framework for Simplification of Clinical Trials in Regulated Medical Devices
    A Framework for Simplification of Clinical Trials in Regulated Medical Devices Medical Device Innovation Consortium (MDIC) Clinical Trial Innovation and Reformation (CTIR) Committee Rick Kuntz, MD, MSc, Medtronic – CTIR Chair Karim Benali, MD, MSc, Abiomed Willian D. Voorhees, III, PhD, Med Institute Susan Alpert, MD, PhD Wes Cetnarowski, MD, B Braun Chip Hance, Creganna Medical Stephanie Christopher, MDIC Bill Murray, MDIC Dan Schwartz, MDIC September 2016 www.mdic.org MDIC Framework for Simplification of Clinical Trials in Regulated Medical Devices The Medical Device Innovation Consortium (MDIC) is the first-ever public-private partnership created with the sole objective of advancing the regulatory science around the development and assessment of medical devices. Members of MDIC share a vision of providing U.S. citizens with timely access to high-quality, safe, and effective medical devices without unnecessary delay. Background on the MDIC CTIR Committee The MDIC Clinical Trial Innovation & Reform Steering Committee (CTIR Committee) was established to address issues of growing inefficiencies in the clinical trial ecosystem for the medical device industry. MDIC aims to improve the medical device clinical trial enterprise, driving a coordinated effort to fundamentally change how medical research is conducted. Clinical Trial Simplification is one of the projects the CTIR initiated to achieve their goal. The MDIC CTIR Committee comprises leaders from the medical device industry, Food & Drug Association (FDA), National Institutes of Health (NIH), patient groups, and academia. Problem Statement Presently, medical device companies following the FDA Pre-Market Approval (PMA) pathway employ increasingly complex clinical trial structures that are inefficient and burden the clinical research and regulatory evaluation processes.
    [Show full text]
  • Some Aspects of Meningococcal Virulence: a Report to the Medical
    SOME ASPECTS OF MENINGOCOCCAL VIRULENCE A REPORT TO THE MEDICAL RESEARCH COUNCIL ON WORK CARRIED OUT AT THE UNIVERSITY OF CAMBRIDGE FIELD LABORATORIES BY E. G. D. MUREAY. CONTENTS. PAGE I. Introduction 175 II. Conditions influencing the determination of the minimal lethal dose . 177 (a) Viability and purity of culture ....... 178 (b) The health of the experimental animal 178 (c) The general influence of the nutrient medium . .178 (d) The correct measurement of the dose of living cocci . 180 (e) The strict correlation of dose to body weight of animal . 180 (/) The influence of sub-culture and age - 181 (g) Summary 183 III. The graduation of doses and the selection of the minimal lethal dose . 183 IV. The variation in virulence of freshly isolated strains .... 185 V. The fate of meningococci injected intraperitoneally into mice . 186 VI. Interference with the activity of the leucocytes and the peritoneal folds 190 VII. The raising of the virulence of the meningococcus by animal passage m. 194 VIII. The raising of the virulence of the meningococcus in vitro . 196 IX. The influence of desiccation, on virulence ...... 202 X. Discussion ........... 203 XI. Conclusions 206 XII. References 207 I. INTRODUCTION. "VIRULENCE" is an ill-defined term and its use frequently gives rise to dis- putes, which remain unresolved because the disputants have no common basis other than that the term applies to organisms which cause disease. Thus it is imperative that the writer clearly defines the meaning of the term virulence as used in this paper, that the issue may not be confused by the reader approaching the subject from a different point of view.
    [Show full text]
  • Study Designs and Methodologic Sources of Error
    General Articles E REVIEW ARTICLE CME Clinical Research Methodology 1: Study Designs and Methodologic Sources of Error Daniel I. Sessler, MD, and Peter B. Imrey, PhD * † Clinical research can be categorized by the timing of data collection: retrospective or pro- spective. Clinical research also can be categorized by study design. In case-control studies, investigators compare previous exposures (including genetic and other personal factors, envi- ronmental infuences, and medical treatments) among groups distinguished by later disease status (broadly defned to include the development of disease or response to treatment). In cohort studies, investigators compare subsequent incidences of disease among groups dis- tinguished by one or more exposures. Comparative clinical trials are prospective cohort stud- ies that compare treatments assigned to patients by the researchers. Most errors in clinical research fndings arise from 5 largely distinguishable classes of methodologic problems: selec- tion bias, confounding, measurement bias, reverse causation, and excessive chance variation. (Anesth Analg 2015;121:1034–42) or most of medical history, practice has been largely evidence-based medicine, midwifed by Sackett et al.,14 have ad hoc, based on suboptimal evidence from personal contributed greatly to revolutionary advances in clinical Fexperience and anecdotes shared among physicians. understanding and practice. The application of formal meta- Although individual cases and experiences often yield invalu- analytic techniques from education and social science to med- able insights to perceptive physicians, multiple anecdotes icine and epidemiology, through evidence-based medicine do not replace systematically collected data and organized centers and the Cochrane Collaboration,15,16 has systematized comparisons, and practice mostly based on personal experi- aggregation of research evidence for the medical community.
    [Show full text]
  • Global Report for Research on Infectious Diseases of Poverty 2012
    global reporT for research on infectious diseases of poverty 2012 wiTh financial supporT of European Union global report for research on infectious diseases of poverty with financial support of European Union WHo library Cataloguing-in-publication Data: Global report for research on infectious diseases of poverty. 1.communicable disease control. 2.research 3.poverty. 4.health behavior. 5.developing countries. i.World health organiza- tion. ii.unicef/undp/World Bank/Who special programme for research and training in tropical diseases. isBn 978 92 4 156 448 9 (nLM classification: aW 110) Copyright © World Health organization on behalf of the Special programme for research and training in tropical Diseases 2012 all rights reserved. the use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated. a copy of any resulting product with such content should be sent to tdr, World health organization, avenue appia, 1211 Geneva 27, switzerland. tdr is a World health organi- zation (Who) executed unicef/undp/World Bank/World health organization special programme for research and training in tropical diseases. this information product is not for sale. the use of any information or content whatsoever from it for publicity or advertising, or for any commercial or income-generating purpose, is strictly prohibited. no elements of this information product, in part or in whole, may be used to promote any specific individual, entity or product, in any manner whatsoever.
    [Show full text]
  • Implementation of Medical Research in Clinical Practice
    FORWARD LOOK Implementation of Medical Research in Clinical Practice www.esf.org European Science Foundation European Medical Research Councils The European Science Foundation (ESF) is an independ- The European Medical Research Councils (EMRC) is the ent, non-governmental organisation, the members of membership organisation for all the Medical Research which are 78 national funding agencies, research per- Councils in Europe under the ESF. forming agencies, academies and learned societies from The mission of EMRC is to promote innovative medical 30 countries. research and its clinical application towards improved The strength of ESF lies in its influential membership human health. EMRC offers authoritative strategic advice and in its ability to bring together the different domains for policy making, research management, ethics and of European science in order to meet the challenges of better health services. In its activities, EMRC serves as the future. a voice of its Member Organisations and the European Since its establishment in 1974, ESF, which has its scientific community through its science policy. headquarters in Strasbourg with offices in Brussels and EMRC has an important role in the future development of Ostend, has assembled a host of organisations that span medical research in Europe and it invites the European all disciplines of science, to create a common platform Commission, the European Research Council, learned for cross-border cooperation in Europe. societies, universities and academic medical centres ESF is dedicated to promoting collaboration in scientific for debate and action to bring its recommendations to research, funding of research and science policy across fruition. Europe. Through its activities and instruments ESF has www.esf.org/emrc made major contributions to science in a global context.
    [Show full text]