WO 2017/180788 Al 19 October 2017 (19.10.2017) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/180788 Al 19 October 2017 (19.10.2017) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/180788 Al 19 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every Λ 61Κ 8/02 (2006.01) A61K 45/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 8/18 (2006.01) A61P 17/18 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/19 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 33/00 (2006.01) C07K 14/78 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 38/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, (21) International Application Number: MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, PCT/US20 17/027275 NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (22) International Filing Date: RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, 12 April 2017 (12.04.2017) TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/321,626 12 April 2016 (12.04.2016) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: ILLUSTRIS PHARMACEUTICALS, INC. DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, [US/US]; 4030 Fabian Way, Unit B, Palo Alto, California LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 94303 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventor: WAUGH, Jacob; 14 Point Loma Drive, Corona del Mar, California 92625 (US). Published: (74) Agent: WADSWORTH, Curtis C ; Pepper Hamilton — with international search report (Art. 21(3)) LLP, 500 Grant Street, Suite 5000, Pittsburgh, Pennsylvania 15219-2507 (US). 00 00 o 00 o (54) Title: COMPOSITIONS FOR TOPICAL APPLICATION OF COMPOUNDS (57) Abstract: Compositions for transdermal delivery of an active agent and methods for using such compositions are described herein. COMPOSITIONS FOR TOPICAL APPLICATION OF COMPOUNDS CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of U.S. Provisional Application No. 62/321,626, entitled "Compositions for Topical Application of Compounds," filed April 12, 2016, incorporated herein by reference in its entirety. BACKGROUND [0002] A topical route of drug administration is desirable because the risks and inconvenience of parenteral treatment can be avoided; the variable absorption and metabolism associated with oral treatment can be circumvented; drug administration can be continuous, thereby permitting the use of pharmacologically active agents with short biological half-lives; the gastrointestinal irritation associated with many compounds can be avoided; and cutaneous manifestations of diseases can be treated more effectively than by systemic approaches. Most transdermal and transmucosal delivery systems achieve penetration by using a penetration-enhancing vehicle. Such compounds or mixtures of compounds are known in the art as "penetration enhancers" or "skin enhancers." Many of the penetration enhancers in the literature enhance transdermal absorption, yet they also possess certain drawbacks in that some are regarded as toxic; some irritate the skin; some have a thinning effect on the skin on prolonged use; and most are incapable of delivering high molecular weight pharmaceuticals and cosmetic agents. Clearly, there remains a need for safe and effective transdermal delivery compositions and systems that can administer a wide- range of pharmaceuticals and cosmetic agents to and through the skin, mucosa, hair, nails, teeth, and various other surfaces. BRIEF SUMMARY [0003] Various embodiments of the invention include compositions containing one or more active agents and about 0.1 wt. % to about 5.0 wt. % of a extracellular matrix component or a fragment thereof having average molecular weight of about 2,000 daltons to about 60,000 daltons. In some embodiments, the decoy molecule may be selected from the group consisting of hyaluronic acid, collagen, fibronectin, elastin, lectin, and combinations thereof, and in certain embodiments, the collagen may be selected from the group consisting of collagen type I, collagen type II, collagen type III, collagen type IV, collagen type V, fibrillary collagen, non-fibrillary collagen, and combinations thereof. [0004] In particular embodiments, the compositions may include about 1 mg to about 1000 mg of the extracellular matrix component or a fragment thereof. In some embodiments, the compositions may include about 0.1 wt. % to about 25 wt. % active agent, and in some embodiments, the compositions may include about 1 g to about 1000 mg active agent. In various embodiments, the active agent may be selected from the group consisting of analgesic agents, antibacterial agents, antifungal agents, anesthetics, steroids, retinol, gabapentin, pregabalin, minocycline, salicylate, acetyl salicylic acid, cyclosporine, tacrolimus (FK506), hydrocortisone, lidocaine, bimatoprost, botulinum toxin, tadalafil, an antibody, an antibody fragment, and the like or combinations thereof. [0005] The compositions of embodiments may be formulated as a liquid, cream, ointment, gel, or aerosol. In some embodiments, the compositions my further include one or more pharmaceutical additives selected from the group consisting of diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, preservatives, colorants, plastizers, carriers, excipients, or combinations thereof. In some embodiments, the compositions may further include one or more cosmetic additives selected from the group consisting of vitamins, cosmetic peptides, oil control agents, other skin care agents, and hydrating compositions. In some embodiments, the composition may further include a compound that absorbs or reflects UV photons. [0006] In particular embodiments, the compositions may include about 0.25 wt. % to about 2.0 wt. % of the decoy molecule wherein the active agent is selected from the group consisting of salicylate, lidocaine, sunblock, retinol, bimatoprost, steroids, and combinations thereof. In certain embodiments, the compositions may include about 1.0 wt. % to about 5.0 wt. % of the decoy molecule wherein the active agent is selected from the group consisting of antibiotics, antifungal agents, biologies, antibodies, macromolecule active agents, peptide- based therapeutics, and combinations thereof. [0007] Further embodiments include methods for delivering an active agent including the steps of applying to a surface tissue of a subject a composition comprising one or more active agents and about 0.25 wt. % to about 10 wt. % of a extracellular matrix component or a fragment thereof having average molecular weight of about 2,000 daltons to about 60,000 daltons. In particular embodiments, the decoy molecule may be selected from the group consisting of hyaluronic acid, collagen, fibronectin, elastin, lectin, and fragments and combinations thereof. [0008] In particular embodiments, the compositions of such methods may include about 1 mg to about 1000 mg of the extracellular matrix component or a fragment thereof. In some embodiments, the compositions of such methods may include about 0.1 wt. % to about 25 wt. % active agent, and in some embodiments, the compositions of such methods may include about 1 mg to about 1000 mg active agent. In various embodiments, the active agent may be selected from the group consisting of analgesic agents, antibacterial agents, antifungal agents, anesthetics, steroids, retinol, gabapentin, pregabalin, minocycline, salicylate, acetyl salicylic acid, cyclosporine, tacrolimus (FK506), hydrocortisone, lidocaine, bimatoprost, botulinum toxin, tadalafil, an antibody, an antibody fragment, and the like or combinations thereof. BRIEF DESCRIPTION OF THE DRAWINGS [0009] For a fuller understanding of the nature and advantages of the present invention, reference should be made to the following detailed description taken in connection with the accompanying drawings, in which: [0010] FIGS. 1A-1B are graphs showing the percent of peptide flux relative to flux of peptide from the composition of peptide alone, for peptide compositions comprising a decoy molecule of hyaluronic acid with a molecular weight of 10,000 Da, 20,000 Da, 40,000 Da, 60,000 Da, or 100,000 Da, where flux was measured in skin with stratum corneum intact (FIG. 1A) and in skin with stratum corneum stripped (FIG. IB) and each composition was measured in duplicate (solid line, dashed line). [0011] FIG. 2 is a bar graph showing the percent increase of salicylate flux from compositions of salicylate and a decoy molecule of hyaluronic acid with molecular weights designated as small (5,000 Da to 10,000 Da), small to mid (10,000 Da to 20,000 Da), low to mid (20,000 Da to 30,000 Da), and mid (30,000 Da to 40,000 Da) over a composition with no decoy molecule. [0012] FIG. 3 is a bar graph showing the percent increase of hydrocortisone flux from compositions of hydrocortisone and a decoy molecule of hyaluronic acid with molecular weights designated as very small (5,000 Da to 10,000 Da), small (10,000 Da to 20,000 Da), mid (30,000 Da to 40,000 Da), and large (40,000 Da to 60,000 Da) over a composition with no decoy molecule. [0013] FIG. 4 is a bar graph showing the percent of lidocaine in porcine skin from topically applied compositions of lidocaine and an elastin decoy molecule with a molecular weight designated as very very small (2,000 Da to 5,000 Da), very small (5,000 Da to 10,000 Da), and small (10,000 Da to 20,000 Da) and no decoy molecule.
Recommended publications
  • CVMP Assessment Report for APOQUEL (EMEA/V/C/002688/0000) International Non-Proprietary Name: Oclacitinib Maleate
    18 July 2013 EMA/481054/2013 Veterinary Medicines and Product Data Management Committee for Medicinal Products for Veterinary Use CVMP assessment report for APOQUEL (EMEA/V/C/002688/0000) International non-proprietary name: oclacitinib maleate Assessment report as adopted by the CVMP with all information of a commercially confidential nature deleted. 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8447 E -mail info@ema.europa.eu Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2013. Reproduction is authorised provided the source is acknowledged. Introduction The applicant Pfizer Animal Health S.A. submitted on 26 July 2012 an application for marketing authorisation to the European Medicines Agency (The Agency) for APOQUEL, through the centralised procedure falling within Article 3(2)(a) of Regulation (EC) No 726/2004 (new active substance). During the procedure the applicant changed to Zoetis Belgium S.A. The eligibility to the centralised procedure was confirmed by the CVMP on 12 January 2012 falling under Article 3(2)(a) of Regulation (EC) No 726/2004 as APOQUEL contains a new active substance which was not authorised in the Community on the date of entry into force of the Regulation. APOQUEL film-coated tablets contain oclacitinib (as oclacitinib maleate) as the active substance. There are three different strengths of the (film-coated) tablets, containing 3.6 mg, 5.4 mg and 16 mg oclacitinib (as the maleate salt), and each is contained in blister packs (polychlorotrifluoroethylene (PCTFE)/polyvinylchloride (PVC)/aluminium) which are supplied in outer cartons containing 20 or 100 tablets.
    [Show full text]
  • Pain Management E-Book
    VetEdPlus E-BOOK RESOURCES Pain Management E-Book WHAT’S INSIDE Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Grapiprant for Control of Osteoarthritis Pain in Dogs Use of Acupuncture for Pain Management Regional Anesthesia for the Dentistry and Oral Surgery Patient A SUPPLEMENT TO Laser Therapy for Treatment of Joint Disease in Dogs and Cats Manipulative Therapies for Hip and Back Hypomobility in Dogs E-BOOK PEER REVIEWED CONTINUING EDUCATION Gabapentin and Amantadine for Chronic Pain: Is Your Dose Right? Tamara Grubb, DVM, PhD, DACVAA Associate Professor, Anesthesia and Analgesia Washington State University College of Veterinary Medicine Pain is not always a bad thing, and all pain is not Untreated or undertreated pain can cause myriad the same. Acute (protective) pain differs from adverse effects, including but not limited to chronic (maladaptive) pain in terms of function insomnia, anorexia, immunosuppression, and treatment. This article describes the types of cachexia, delayed wound healing, increased pain pain, the reasons why chronic pain can be sensation, hypertension, and behavior changes difficult to treat, and the use of gabapentin and that can lead to changes in the human–animal amantadine for treatment of chronic pain. bond.2 Hence, we administer analgesic drugs to patients with acute pain, not to eliminate the protective portion but to control the pain ACUTE PAIN beyond that needed for protection (i.e., the pain Acute pain in response to tissue damage is often that negatively affects normal physiologic called protective pain because it causes the processes and healing). This latter type of pain patient to withdraw tissue that is being damaged decreases quality of life without providing any to protect it from further injury (e.g., a dog adaptive protective mechanisms and is thus withdrawing a paw after it steps on something called maladaptive pain.
    [Show full text]
  • Bovine Somatotropin in Milk
    Utah State University DigitalCommons@USU Archived Food and Health Publications Archived USU Extension Publications 1999 Bovine Somatotropin in Milk Charlotte P. Brennand PhD Utah State University Extension Clell V. Bagley DVM Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/extension_histfood Part of the Animal Sciences Commons, Food Processing Commons, and the Nutrition Commons Warning: The information in this series may be obsolete. It is presented here for historical purposes only. For the most up to date information please visit The Utah State University Cooperative Extension Office Recommended Citation Brennand, Charlotte P. PhD and Bagley, Clell V. DVM, "Bovine Somatotropin in Milk" (1999). Archived Food and Health Publications. Paper 32. https://digitalcommons.usu.edu/extension_histfood/32 This Factsheet is brought to you for free and open access by the Archived USU Extension Publications at DigitalCommons@USU. It has been accepted for inclusion in Archived Food and Health Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu. EL 250.6 UTAH STATE UNIVERSITY COOPERATIVE EXTENSION FOOD SAFETY FACT 8UEET m1888 FOOD SAFTBY SBRIBS by Charlotte P. Brennand, PhD Clell V. Bagley, DVM Extension Food Safety Specialist Extension Veterinarian Bovine Somatotropin in Milk What is Bovine Sources of BST/BGH Biotechnology Somatotropin? production of BST Early research efforts used crude extracts from bovine pituitary Bovine Somatotropin (BST), The genes responsible for pro­ glands. Although the treated cows also called bovine growth hormone duction of BST in cattle were iden­ increased their milk production, the (BGH), is a hormone produced by tified in bovine tissue cells; they amount of available BST was too the cow's pituitary gland.
    [Show full text]
  • The Management of Common Skin Conditions in General Practice
    Management of Common Skin Conditions In General Practice including the “red rash made easy” © Arroll, Fishman & Oakley, Department of General Practice and Primary Health Care University of Auckland, Tamaki Campus Reviewed by Hon A/Prof Amanda Oakley - 2019 http://www.dermnetnz.org Management of Common Skin Conditions In General Practice Contents Page Derm Map 3 Classic location: infants & children 4 Classic location: adults 5 Dermatology terminology 6 Common red rashes 7 Other common skin conditions 12 Common viral infections 14 Common bacterial infections 16 Common fungal infections 17 Arthropods 19 Eczema/dermatitis 20 Benign skin lesions 23 Skin cancers 26 Emergency dermatology 28 Clinical diagnosis of melanoma 31 Principles of diagnosis and treatment 32 Principles of treatment of eczema 33 Treatment sequence for psoriasis 34 Topical corticosteroids 35 Combination topical steroid + antimicrobial 36 Safety with topical corticosteroids 36 Emollients 37 Antipruritics 38 For further information, refer to: http://www.dermnetnz.org And http://www.derm-master.com 2 © Arroll, Fishman & Oakley, Department of General Practice and Primary Health Care, University of Auckland, Tamaki Campus. Management of Common Skin Conditions In General Practice DERM MAP Start Is the patient sick ? Yes Rash could be an infection or a drug eruption? No Insect Bites – Crop of grouped papules with a central blister or scab. Is the patient in pain or the rash Yes Infection: cellulitis / erysipelas, impetigo, boil is swelling, oozing or crusting? / folliculitis, herpes simplex / zoster. Urticaria – Smooth skin surface with weals that evolve in minutes to hours. No Is the rash in a classic location? Yes See our classic location chart .
    [Show full text]
  • 268 Part 522—Implantation Or Injectable Dosage Form
    § 520.2645 21 CFR Ch. I (4–1–18 Edition) (ii) Indications for use. For the control 522.82 Aminopropazine. of American foulbrood (Paenibacillus 522.84 Beta-aminopropionitrile. larvae). 522.88 Amoxicillin. 522.90 Ampicillin injectable dosage forms. (iii) Limitations. The drug should be 522.90a Ampicillin trihydrate suspension. fed early in the spring or fall and con- 522.90b Ampicillin trihydrate powder for in- sumed by the bees before the main jection. honey flow begins, to avoid contamina- 522.90c Ampicillin sodium. tion of production honey. Complete 522.144 Arsenamide. treatments at least 4 weeks before 522.147 Atipamezole. main honey flow. 522.150 Azaperone. 522.161 Betamethasone. [40 FR 13838, Mar. 27, 1975, as amended at 50 522.163 Betamethasone dipropionate and FR 49841, Dec. 5, 1985; 59 FR 14365, Mar. 28, betamethasone sodium phosphate aque- 1994; 62 FR 39443, July 23, 1997; 68 FR 24879, ous suspension. May 9, 2003; 70 FR 69439, Nov. 16, 2005; 73 FR 522.167 Betamethasone sodium phosphate 76946, Dec. 18, 2008; 75 FR 76259, Dec. 8, 2010; and betamethasone acetate. 76 FR 59024, Sept. 23, 2011; 77 FR 29217, May 522.204 Boldenone. 17, 2012; 79 FR 37620, July 2, 2014; 79 FR 53136, 522.224 Bupivacaine. Sept. 8, 2014; 79 FR 64116, Oct. 28, 2014; 80 FR 522.230 Buprenorphine. 34278, June 16, 2015; 81 FR 48702, July 26, 2016] 522.234 Butamisole. 522.246 Butorphanol. § 520.2645 Tylvalosin. 522.275 N-Butylscopolammonium. 522.300 Carfentanil. (a) Specifications. Granules containing 522.304 Carprofen. 62.5 percent tylvalosin (w/w) as 522.311 Cefovecin.
    [Show full text]
  • Review Article
    REVIEW ARTICLE COLLAGEN METABOLISM COLLAGEN METABOLISM Types of Collagen 228 Structure of Collagen Molecules 230 Synthesis and Processing of Procollagen Polypeptides 232 Transcription and Translation 233 Posttranslational Modifications 233 Extracellular Processing of Procollagen and Collagen Fibrillogenesis 240 Functions of Collagen in Connective rissue 243 Collagen Degradation 245 Regulation of the Metabolism of Collagen 246 Heritable Diseases of Collagen 247 Recessive Dermatosparaxis 248 Recessive Forms of EDS 251 EDS VI 251 EDS VII 252 EDS V 252 Lysyl Oxidase Deficiency in the Mouse 253 X-Linked Cutis Laxa 253 Menke's Kinky Hair Syndrome 253 Homocystinuria 254 EDS IV 254 Dominant Forms of EDS 254 Dominant Collagen Packing Defect I 255 Dominant and Recessive Forms of Osteogenesis Imperfecta 258 Dominant and Recessive Forms of Cutis Laxa 258 The Marfan Syndrome 259 Acquired Diseases and Repair Processes Affecting Collagen 259 Acquired Changes in the Types of Collagen Synthesis 260 Acquired Changes in Amounts of Collagen Synthesized 263 Acquired Changes in Hydroxylation of Proline and Lysine 264 Acquired Changes in Collagen Cross-Links 265 Acquired Defects in Collagen Degradation 267 Conclusion 267 Bibliography 267 Collagen Metabolism A Comparison of Diseases of Collagen and Diseases Affecting Collagen Ronald R. Minor, VMD, PhD COLLAGEN CONSTITUTES approximately one third of the body's total protein, and changes in synthesis and/or degradation of colla- gen occur in nearly every disease process. There are also a number of newly described specific diseases of collagen in both man and domestic animals. Thus, an understanding of the synthesis, deposition, and turnover of collagen is important for the pathologist, the clinician, and the basic scientist alike.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Treatment of Diseases and Conditions Mediated By
    (19) TZZ_ ___T (11) EP 1 572 115 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 38/07 (2006.01) A61K 38/08 (2006.01) 21.01.2015 Bulletin 2015/04 A61K 38/17 (2006.01) A61K 38/38 (2006.01) (21) Application number: 03799853.1 (86) International application number: PCT/US2003/037901 (22) Date of filing: 25.11.2003 (87) International publication number: WO 2004/050023 (17.06.2004 Gazette 2004/25) (54) TREATMENT OF DISEASES AND CONDITIONS MEDIATED BY INCREASED PHOSPHORYLATION BEHANDLUNG VON ERKRANKUNGEN UND ZUSTÄNDEN,DIE DURCH ERHÖHTE PHOSPHORYLIERUNG VERMITTELT WERDEN TRAITEMENT DE MALADIES ET D’ETATS A MEDIATION DE PHOSPHORYLATION ACCRUE (84) Designated Contracting States: • JIANG B ET AL: "Phosphopeptides derived from AT BE BG CH CY CZ DE DK EE ES FI FR GB GR hen egg yolk phosvitin: effect of molecular size HU IE IT LI LU MC NL PT RO SE SI SK TR on the calcium-binding properties." BIOSCIENCE, BIOTECHNOLOGY, AND (30) Priority: 27.11.2002 US 429924 P BIOCHEMISTRY MAY 2001, vol. 65, no. 5, May 2001 (2001-05), pages 1187-1190, XP002549556 (43) Date of publication of application: ISSN: 0916-8451 14.09.2005 Bulletin 2005/37 • KATAYAMA SHIGERU ET AL: "Antioxidative stress activity of oligophosphopeptides derived (73) Proprietor: Ampio Pharmaceuticals, Inc. from hen egg yolk phosvitin in Caco-2 cells." Englewood, CO 80112 (US) JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 8 FEB 2006, vol. 54, no. 3, 8 February (72) Inventor: BAR-OR, David 2006 (2006-02-08), pages 773-778, XP002549557 Englewood, CO 80110 (US) ISSN: 0021-8561 • OKAMOTO ET AL: ’The interleukin-8 AP-1 and (74) Representative: Weber, Joachim kappa B-like sites are genetic end targets of Hoefer & Partner FK506-sensitive pathway accompanied by Patentanwälte calcium mobilization.’ JOURNAL OF Pilgersheimer Strasse 20 BIOLOGICAL CHEMISTRY vol.
    [Show full text]
  • A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies
    Comparative Medicine Vol 69, No 6 Copyright 2019 December 2019 by the American Association for Laboratory Animal Science Pages 520–534 Overview A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies George J DeMarco1* and Elizabeth A Nunamaker2 One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to bal- ance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particu- lar immune function or model are incomplete or don’t exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function. Abbreviations and acronyms: CB,Endocannabinoid receptor; CD,Crohn disease; CFA, Complete Freund adjuvant; CGRP,Calcitonin gene-related
    [Show full text]
  • Grapiprant: an EP4 Prostaglandin Receptor Antagonist and Novel Therapy for Pain and Inflammation
    DOI: 10.1002/vms3.13 Review Grapiprant: an EP4 prostaglandin receptor antagonist and novel therapy for pain and inflammation † Kristin Kirkby Shaw , Lesley C. Rausch-Derra* and Linda Rhodes* † *Aratana Therapeutics, Inc., Kansas City, Kansas, USA and Animal Surgical Clinic of Seattle, Seattle, Washington, USA Abstract There are five active prostanoid metabolites of arachidonic acid (AA) that have widespread and varied physio- logic functions throughout the body, including regulation of gastrointestinal mucosal blood flow, renal haemo- dynamics and primary haemostasis. Each prostanoid has at least one distinct receptor that mediates its action. Prostaglandin E2 (PGE2) is a prostanoid that serves important homeostatic functions, yet is also responsible for regulating pain and inflammation. PGE2 binds to four receptors, of which one, the EP4 receptor, is primar- ily responsible for the pain and inflammation associated with osteoarthritis (OA). The deleterious and patho- logic actions of PGE2 are inhibited in varying degrees by steroids, aspirin and cyclo-oxygenase inhibiting NSAIDs; however, administration of these drugs causes decreased production of PGE2, thereby decreasing or eliminating the homeostatic functions of the molecule. By inhibiting just the EP4 receptor, the homeostatic function of PGE2 is better maintained. This manuscript will introduce a new class of pharmaceuticals known as the piprant class. Piprants are prostaglandin receptor antagonists (PRA). This article will include basic physiol- ogy of AA, prostanoids and piprants, will review available evidence for the relevance of EP4 PRAs in rodent models of pain and inflammation, and will reference available data for an EP4 PRA in dogs and cats. Piprants are currently in development for veterinary patients and the purpose of this manuscript is to introduce veteri- narians to the class of drugs, with emphasis on an EP4 PRA and its potential role in the control of pain and inflammation associated with OA in dogs and cats.
    [Show full text]
  • 5.10.20 Final Part 1 No Prelimeary Pages
    IDENTIFICATION OF NOVEL TREATMENT APPROACHES FOR HUMAN AND CANINE OSTEOSARCOMA By Ya-Ting Yang A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Comparative Medicine and Integrative Biology- Doctor of Philosophy 2020 ABSTRACT IDENTIFICATION OF NOVEL TREATMENT APPROACHES FOR HUMAN AND CANINE OSTEOSARCOMA By Ya-Ting Yang Osteosarcoma (OSA) is an aggressive neoplasm, characterized with high level of heterogeneity, high metastatic potential and poor prognosis in both humans and dogs. In this study, I used drug screening studies including existing therapeutic agents and novel compounds to identify more effective approaches to treat human and canine osteosarcoma. One of the challenges in the field of OSA is to identify optimal tools for study. A limited number of human and canine OSA cell lines are available. In this study, I established and characterized a new cell line, BZ, derived from a German shepherd dog with OSA and studied key oncogenic pathways in BZ. Our findings revealed activation of STAT3 and ERK pathways in BZ, as well as in a number of other cell lines, indicating that these two pathways are critical for cell survival and proliferation in OSA and the potential of using STAT3 and ERK inhibitors. Furthermore, I screened ten tyrosine kinase inhibitors (TKIs) on two dog and one human OSA cell lines. Among the selected TKIs, sorafenib showed promising results in effectively inhibited cell growth and migration in vitro studies. In addition, the effects of combing sorafenib with current chemotherapeutics (cisplatin, carboplatin, and doxorubicin) for OSA were investigated. Data from the combination index pointed to synergistic effects of sorafenib combined with doxorubicin and resulted in profound cell arrest at G2/M phase.
    [Show full text]
  • Bovine Somatotropin (Bst) – Possible Increased Use of Antibiotics to Treat Mastitis in Cows, October 30, 2013
    Bovine Somatotropin (bST) – Possible Increased Use of Antibiotics to Treat Mastitis in Cows, October 30, 2013 Suzanne J. Sechen, Ph.D. Leader, Ruminant Drugs Team Division of Production Drugs Office of New Animal Drug Evaluation Center for Veterinary Medicine, Food and Drug Administration Rockville, MD, U.S.A. The following report was submitted by FDA’s Center for Veterinary Medicine for consideration in the re-evaluation of bovine somatotropin at the seventy-eighth meeting on residues of veterinary drugs by the Joint FAO/WHO Expert Committee (JECFA) on Food Additives, held November 5-14, 2013 BACKGROUND The United States Food and Drug Administration (FDA) approved a formulation of recombinant bovine growth hormone (bST) in 1993, sometribove zinc, for administration to lactating dairy cows to increase milk production. The FDA concluded that use of the drug increased the risk of clinical mastitis in treated cows, and that it may also increase milk somatic cell count1. Approved labeling for the product communicates these risks. These conclusions were reconfirmed in 2003 when the FDA approved a supplemental application for this bST product following reanalysis by the sponsor of the original data and new, post- approval monitoring program (PAMP) data using more accurate mixed-model analyses, not available at the time of the original approval2. At the time of the original approval, FDA concluded that the increase in clinical mastitis in sometribove-treated cows was not a public health concern in terms of antibiotic residues in milk being increased above tolerance due to therapeutic treatment of mastitis1. When examined on a per unit milk basis, the increase in the incidence of clinical mastitis due to sometribove (approximately 0.1 case per cow per year) was about 4 to 9 times less than the effects due to other sources of variation, such as season, parity, stage of lactation, and herd-to-herd variation.
    [Show full text]