Push-Pull Strategies for Insect Pest Management

Total Page:16

File Type:pdf, Size:1020Kb

Push-Pull Strategies for Insect Pest Management PUSH-PULL STRATEGY FOR INSECT PEST MANAGEMENT Zeyaur R. Khan International Centre of Insect Physiology and Ecology (ICIPE) Nairobi, Kenya and John A. Pickett Rothamsted Research Harpenden, Hertfordshire, United Kingdom The ‘push-pull’ strategy, a novel understanding of the pest’s biology and tool for integrated pest management the behavioral/chemical ecology of the programs, uses a combination of interactions with its hosts, conspecifics, behavior-modifying stimuli to manipulate and natural enemies. The specific the distribution and abundance of insect combination of components differs in pests and/or natural enemies. In this each strategy according to the pest to strategy, the pests are repelled or be controlled (its specificity, sensory deterred away from the main crop abilities, and mobility) and the resource (push) by using stimuli that mask host targeted for protection. apparency or are repellent or deterrent. Among several push-pull The pests are simultaneously attracted strategies under development or used in (pull), using highly apparent and practice for insect pest control, the most attractive stimuli, to other areas such as successful example of the push-pull traps or trap crops where they are strategy currently being used by farmers concentrated, facilitating their control. was developed in Africa for controlling The term ‘push-pull’ was first stemborers on cereal crops. This conceived as a strategy for insect pest strategy was developed using management by Pyke, Rice, Sabine and technologies appropriate to resource Zaluki in Australia in1987. They poor farmers and has shown a high investigated the use of repellent and adoption rate and spontaneous attractive stimuli, deployed in tandem, to technology transfer by farmers, resulting manipulate the distribution of in significant impact on food security by Heliocoverpa spp. in cotton to reduce increased farm production in the region. reliance on insecticides, to which the moths were becoming resistant. The Management of cereal stemborers in concept was later formalized and refined Africa through push-pull strategy by Miller and Cowles in the US in 1990, Maize and sorghum are the who termed the strategy ‘stimulo- principal food and cash crops for deterrent diversion’ while developing millions of the poorest people in the alternatives to insecticides for control of predominantly mixed crop-livestock the onion fly, Delia antiqua. farming systems of eastern Africa. The development of a reliable, Stemborers are one of the major robust, and sustainable push-pull constraints to increased maize strategy requires a clear scientific production. At least four species of stem borers (Chilo partellus, Eldana intercrops and trap crops, using plants saccharina, Busseola fusca and that are appropriate to the farmers. This Sesamia calamistis) infest maize and push-pull strategy does not use any sorghum crops in the region, causing chemical deterrents or toxins, but uses reported yield losses of 30-40% of repellent plants to deter the pest from potential output. Stemborers are difficult the main crop. The trap plants used in to control, largely because of the cryptic this push-pull strategy have the inherent and nocturnal habits of the adult moths ability of not allowing development of and the protection provided by the stem trapped stemborers, thus reducing the of the host crop for immature stages. number of trapped insects. The strategy The main method of stemborer control, also attempts to fully exploit the natural which is recommended to farmers by enemies in the cereal farming system. the Ministry of Agriculture in these The push-pull strategy for cereal countries, is use of chemical pesticides. stemborers involves trapping However, chemical control of stemborers on highly attractant trap stemborers is uneconomical and plants (pull) while driving them away impractical to many resource-poor, from the main crop using repellent small-scale farmers. Therefore, reducing intercrops (push). Plants that have been the losses caused by stemborers identified as effective in the push-pull through improved management tactics include Napier grass strategies is urgently needed which (Pennisetum purpureum), Sudan grass could significantly increase cereal (Sorghum vulgare sudanense), production, and result in better nutrition molasses grass (Melinis minutiflora), and purchasing power for many maize and desmodium (Desmodium uncinatum and sorghum producers. To put and Desmodium intortum). Napier grass stemborer control within the reach of and Sudan grass are used as trap African farmers, simple and relatively plants, whereas molasses grass and inexpensive measures need to be desmodium repel ovipositing developed and tailored to the diversity of stemborers. Molasses grass, when African farming systems. Several intercropped with maize, not only national and international agricultural reduced infestation of the maize by research centers continue to devote stemborers, but also increased increasingly scarce resources towards stemborer parasitism by a natural the development of technologies enemy, Cotesia sesamiae (Fig. 2). All intended to increase farm production four plants are of economic importance through stemborer management but to farmers in eastern Africa as livestock with little impact. fodder and have shown great potential A push-pull strategy for managing in stemborer and striga management in cereal stemborers in Africa was farmer participatory on-farm trials. developed by scientists of the These innovations have found ready International Centre of Insect Physiology acceptance among the resource-poor and Ecology (ICIPE) in Kenya and farmers in Africa. Although directed at Rothamsted Research in the United resource-poor farmers, lessons can be Kingdom, in collaboration with other learned and applied to organic or low- research organizations in eastern Africa. input agricultural systems. More than The strategy involves combined use of ten thousand farmers in eastern Africa are now using push-pull strategies to produced during damage to plants by protect their maize and sorghum from herbivorous insects. It is likely that these cereal stemborers. compounds, being associated with a high level of stemborer colonization and, How push-pull strategy works in some circumstances, acting as The push-pull strategy undertakes foraging cues for parasitoids, would be a holistic approach in exploiting repellent to ovipositing stemborers. This chemical ecology and agrobiodiversity. was subsequently demonstrated in The plant chemistry responsible for behavioral tests. Investigating the stemborer control involves release of legume volatiles, it was shown that D. attractive volatiles from the trap plants uncinatum also produced the ocimene and repellent volatiles from the and nonatriene, together with large intercrops. To understand the chemical amounts of other sesquiterpenes, ecology of the push-pull system, volatile including α-cedrene. chemicals from trap and repellent plants Six host volatiles were found to have been investigated using gas be attractive to gravid stemborers: chromatography (GC) coupled- nonanal, napthelene, 4-allylanisole, electroantennography on the antennae eugenol and linalool. Recent studies of stemborers and their natural enemies. have indicated that the differential GC peaks consistently associated with preference of moths between maize and EAG activity were tentatively identified sorghum and Napier grass trap crops is by GC coupled-mass spectrometry (GC- related to a large burst of four MS), and identity was confirmed using electrophysiologically active green leaf authentic samples (Fig. 1). volatiles released from the trap crop A general hypothesis developed plants within the two hours of the during this work on insect pests is that scotophase, the time at which non-host plants are recognized by stemborers fly and most oviposition colonizing insects through the release of occurs. Although stemborers oviposit repellent or masking semiochemicals, heavily on Napier grass, it produces a although it is almost inevitable that gummy substance which restricts larval compounds also produced by hosts will development and only few survive to be present (Fig. 2). In this case, the host adulthood. cereal plants and the non-host M. A trap crop of Sudan grass also minutiflora would be expected to have a increased efficiency of stemborer number of volatiles in common as they natural enemies. In a maize field are both members of the Poaceae surrounded by a border of Sudan grass, family. For M. minutiflora, five new the parasitization of stemborers peaks with EAG activity were identified, increased significantly relative to fields in addition to the attractant compounds without grass borders. and others normally produced by members of the Poaceae. These are: Benefits of push-pull strategy (E)-ß-ocimene, α-terpinolene, ß- The principles of the push-pull caryophyllene, humulene, and (E)-4,8- strategy are to maximize control dimethyl-1,3,7-nonatriene. Ocimene and efficacy, efficiency, sustainability, and nonatriene had already been outputs, while minimizing negative encountered as semiochemicals environmental effects. Although each individual component of the strategy Reduced soil erosion and increased soil may not be as effective as a broad- fertility. Soil erosion and low fertility are spectrum insecticide at reducing pest very common problems in eastern numbers, the efficacy is increased Africa. The push-pull strategy has through tandem deployment of push and exploited some of the existing practices
Recommended publications
  • Pharmacological Activity of Desmodium Triflorum- a Review
    Anu K Thankachan. et al. / Asian Journal of Phytomedicine and Clinical Research. 5(1), 2017, 33-41. Review Article CODEN: AJPCFF ISSN: 2321 – 0915 Asian Journal of Phytomedicine and Clinical Research Journal home page: www.ajpcrjournal.com PHARMACOLOGICAL ACTIVITY OF DESMODIUM TRIFLORUM- A REVIEW Anu K Thankachan *1 , Meena Chandran 1, K. Krishnakumar 2 1* Department of Pharmaceutical Analysis, St. James College of Pharmaceutical Sciences, Chalakudy, Thrissur, Kerala, India. 2St James Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Thrissur, Kerala, India. ABSTRACT Desmodium triflorum is a plant belongs to the family Fabaceae. It is a global species native to tropical regions and introduced to subtropical regions including the southern United States. The plant is having antipyretic, antiseptic, expectorant properties. A decoction is commonly used to treat diarrhoea and dysentery; quench thirst; and as mouthwash. The crushed plant, or a poultice of the leaves, is applied externally on wounds, ulcers, and for skin problems. In general the whole plant is used medicinally for inducing sweat and promoting digestion, anti-oxidant, anti-inflammatory, anti-convulsant and anti-bacterial actions. This review explains the different pharmacological activities of Desmodium triflorum. KEYWORDS Desmodium triflorum , Anti-oxidant, Anti-inflammatory and Anti-convulsa nt. INTRODUCTION Author for Correspondence: Plants have formed the basis for treatment of diseases in traditional medicine for thousands of years and continue to play a major role in the Anu K Thankachan, primary health care of about 80% of the world’s inhabitants 1. It is also worth noting that (a) 35% of Department of Pharmaceutical Analysis, drugs contain ‘principles’ of natural origin and (b) St.
    [Show full text]
  • Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
    New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D.
    [Show full text]
  • Combined Control of Striga Hermonthica and Stemborers by Maize–Desmodium Spp
    ARTICLE IN PRESS Crop Protection 25 (2006) 989–995 www.elsevier.com/locate/cropro Combined control of Striga hermonthica and stemborers by maize–Desmodium spp. intercrops Zeyaur R. Khana,Ã, John A. Pickettb, Lester J. Wadhamsb, Ahmed Hassanalia, Charles A.O. Midegaa aInternational Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi 00100, Kenya bBiological Chemistry Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Accepted 4 January 2006 Abstract The African witchweed (Striga spp.) and lepidopteran stemborers are two major biotic constraints to the efficient production of maize in sub-Saharan Africa. Previous studies had shown the value of intercropping maize with Desmodium uncinatum in the control of both pests. The current study was conducted to assess the potential role of other Desmodium spp., adapted to different agro-ecologies, in combined control of both pests in Kenya. Treatments consisted of intercropped plots of a Striga hermonthica- and stemborer-susceptible maize variety and one Desmodium sp. or cowpea, with a maize monocrop plot included as a control. S. hermonthica counts and stemborer damage to maize plants were significantly reduced in maize–desmodium intercrops (by up to 99.2% and 74.7%, respectively) than in a maize monocrop and a maize–cowpea intercrop. Similarly, maize plant height and grain yields were significantly higher (by up to 103.2% and 511.1%, respectively) in maize–desmodium intercrops than in maize monocrops or maize–cowpea intercrops. These results confirmed earlier findings that intercropping maize with D. uncinatum effectively suppressed S. hermonthica and stemborer infestations in maize resulting in higher crop yields.
    [Show full text]
  • An Important Medicinal Plant
    Int. J. Curr. Res. Biosci. Plant Biol. 4(8), 67-72 (2017) International Journal of Current Research in Biosciences and Plant Biology Volume 4 ● Number 8 (August-2017) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2017.408.009 Antifungal Activity and Quantitative Phytochemical Analysis of Phyllodium pulchellum L. Desv.- An Important Medicinal Plant Gopal Velmurugan* and Subramaniam Parvathi Anand PG and Research Department of Botany, National College (Autonomous), Tiruchirappalli – 620 001, Tamil Nadu, India *Corresponding author. A bs t r ac t Article Info Phyllodium pulchellum L. Desv. is an subshrub, belongs to the fabaceae family. The Accepted: 18 July 2017 present study has been attempted to antifungal activity and quantitative phytochemical Available Online: 06 August 2017 analysis of the leaf of P. pulchellum. The plant extracted with different organic solvents viz., aqueous, chloroform and ethanol. Antifungal activity of the leaf extract against some K e yw or ds pathogenic fungus like Aspergillus nigar, Pencillium notatum, Rhizhotonia solani and Colletotrichum falcatum. The inhibitory effect of leaf distillates was compared with the Antifungal activity standard fluconazole. Quantitative phytochemical analyses were performed using standard Fabaceae procedures. The ethanol leaf extracts of P. pulchellum showed maximum activity against Phyllodium pulchellum Aspergillus niger, followed by Colletotrichum falcatum, Penicillium notatum and Phytochemicals Rhizoctonia solani. The ethanolic extract showed higher level of phenol (88.68±2.081 mg/g), flavonoid (71.33±4.172 mg/g) tannin (30.23±3.025 mg/g) and than the other extracts which having secondary metabolites. These findings provide scientific evidence to support the traditional use of Phyllodium pulchellum and also indicate that the leaf of this species are a promising potential for the development of quantitative phytochemical and antifungal agent.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Abstract Introduction
    Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 PRELIMINARY SCREENING OF TELEGRAPH (CODARIOCALYX MOTORIUS) PLANT EXTRACT FOR SKIN WHITENING PROPERTY AND CYTOTOXICITY ACTIVITY K.N. Wijesekara, 1W.S de Silva Department of Biotechnology, Faculty of Science, Horizon Campus, Sri Lanka [email protected] ABSTRACT A perfect skin can be remained as a control was 478.800757±3.1567 µg/ml. dream if it does not maintain properly, Value of inhibition of tyrosinase was therefore most of the young women are significantly higher than to positive tempting to skin whitening products that control. The IC50 value of cytotoxicity can be composed of harmful chemicals activity for methanolic extract of leaves that cause dullness, uneven skin tone or of Telegraph plant was 1516.0538± acne breakout instead of making skin 2.407µg/ml. This analysis was revealed healthy and blooming. Natural products IC50 value of methanolic extract is are safe for consumption and will work nontoxic toxic to brine shrimps. on skin naturally and effectively by Therefore, it can be concluded that balancing skin tone and eliminating Codariocalyx motorius leaves possess harmful effects. This study was carried highly active antityrosinase substances out to determine skin whitening property which can be consumed for remedy of and cytotoxicity activity of Codariocalyx healthy and brighten skin. motorius.
    [Show full text]
  • Desmodium Intortum Scientific Name  Desmodium Intortum (Mill.) Urb
    Tropical Forages Desmodium intortum Scientific name Desmodium intortum (Mill.) Urb. Synonyms Early flowering stage (cv. Greenleaf) Trailing, scrambling perennial herb or subshrub; image with Megathyrsus Basionym: Hedysarum intortum Mill.; Desmodium maximus cv. Petrie, S Qld, Australia hjalmarsonii (Schindl.) Standl.; Meibomia hjalmarsonii Schindl. Family/tribe Family: Fabaceae (alt. Leguminosae) subfamily: Faboideae tribe: Desmodieae subtribe: Desmodiinae. Morphological description Leaflets usually ovate-acute, Inflorescence a terminal or axillary with dark spots on the upper surface raceme Trailing, scrambling perennial herb or subshrub with (cv. Greenleaf) strong taproot. Stems 1.5 - 4.0 mm diameter, longitudinally grooved, often reddish-brown, sometimes ± glabrescent, mostly with dense, hooked or recurved hairs, glandular, sticky to the touch; ascendant, non- twining, rooting at the nodes if in prolonged contact with moist soil, to several metres long. Leaves pinnately trifoliolate; stipules 2 - 6 mm long, usually recurved, often persistent; petiole 3 - 5(- 9) cm long, pubescent; terminal leaflet usually ovate sometimes broadly elliptic, 5 Immature pods - 13 cm long, 2 - 7 cm wide, petiolule 6 - 12 mm long; Pods up to 12-articulate; articles semicircular or rhombic breaking up at lateral leaflets 3-10 cm long, 1.5 - 6 cm wide, petiolule 2 - maturity 4 mm; all laminae covered with ascending hairs on both surfaces; base rounded to truncate, apex acute, often with sparse reddish-brown/purplish marks on the upper surface. Racemes terminal or axillary, to 30 cm long; rachis with dense appressed to spreading hooked hairs, 2-flowered at each node; pedicel filiform, 6-10 mm; calyx 2.5-3 mm, 5-lobed, lowest lobe longest; corolla pink, purplish red to violet becoming bluish or greenish white, 9-11 mm.
    [Show full text]
  • Drought-Tolerant Desmodium Species Effectively Suppress Parasitic Striga Weed and Improve Cereal Grain Yields in Western Kenya
    Crop Protection 98 (2017) 94e101 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya * Charles A.O. Midega a, , Charles J. Wasonga a, Antony M. Hooper b, John A. Pickett b, Zeyaur R. Khan a a International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya b Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK article info abstracts Article history: The parasitic weed Striga hermonthica Benth. (Orobanchaceae), commonly known as striga, is an Received 7 February 2017 increasingly important constraint to cereal production in sub-Saharan Africa (SSA), often resulting in Received in revised form total yield losses in maize (Zea mays L.) and substantial losses in sorghum (Sorghum bicolor (L.) Moench). 14 March 2017 This is further aggravated by soil degradation and drought conditions that are gradually becoming Accepted 17 March 2017 widespread in SSA. Forage legumes in the genus Desmodium (Fabaceae), mainly D. uncinatum and Available online 24 March 2017 D. intortum, effectively control striga and improve crop productivity in SSA. However, negative effects of climate change such as drought stress is affecting the functioning of these systems. There is thus a need Keywords: Striga to identify and characterize new plants possessing the required ecological chemistry to protect crops Climate change against the biotic stress of striga under such environmental conditions. 17 accessions comprising 10 Desmodium species of Desmodium were screened for their drought stress tolerance and ability to suppress striga.
    [Show full text]
  • How to Control Striga and Stemborer in Maize Alternative Ways of Controlling Striga and Stemborer How Does a ‘Push-Pull’ System Work?
    CTA Practical Guide Series, No. 2 CTA Practical Guide Series, No. 2 CTA Practical Guide Series, No. 2 CTA Practical Guide Series, No. 2 Stop the spread of Striga For more information contact: Case study Striga Striga seeds are very small, like dust, and can easily be carried between fields. Avoid spreading Ministry of Agriculture and Rural Development (MoARD) How to control We are in western Kenya not far from Lake Victoria. The small maize field in front of us Striga by taking these precautions: looks dreadful: the plants are only one metre high, the leaves yellow and full of holes, P. O. Box 62347, Addis Ababa, Ethiopia there are almost no cobs but there are plenty of plants with beautiful pinkish-purple Tel: +251-11-538134 Striga spread by Action flowers. Close by, Mrs Ouzo, the owner of this field, shows us another maize field. Here and stemborer in maize Maize or sorghum seed Collect maize cobs or sorghum heads to save seed the plants are over two metres high, with dark green leaves, healthy cobs and there are National Agricultural Advisory Services (NAADS) contaminated with Striga directly from the growing plant very few of the pink-flowered plants. She explains that it is the same maize variety in both Plot 39A Lumumba Avenue, 2nd Floor Mukwasi House, Nakasero, Uganda fields, planted on exactly the same day. seeds P. O. Box 25235, Kampala, Uganda Do not drop the cobs or seed heads on the soil or thresh Tel: +256-41-345440/345065/345066, Fax: +256-41-347843 them in fields infested with Striga The difference between the two fields is striking.
    [Show full text]
  • 1 Grow Desmodium for Seed
    Grow Desmodium for Seed WHY DESMODIUM SEED? • Farmers should plant desmodium because it is a good source of feed for cows, and it inreases soil fertility. • In areas where striga weed is a problem, desmodiodium planted between the rows of maize will stop striga growing and farmers get higher yields. desmodium is not liked by the maize stalkborer, it "pushes" the stalkborer away from maize. • Desmodium seed is hard to obtain and is nsive but can be grown by local farmers. farmer could produce seed and supply 20 neighbouring farmers. • HOW TO GROW IT • You need 2 kg of seed per acre. • Prepare a fine seedbed. • Make furrows 11/2 feet apart and 1 inch • Mix seed with triple superphosphate fertilizer (2 kg seed with 1 bag of TSP per acre). • Sow seed mixed with phosphate into the furrows and cover thwm with a little soil. MANAGEMENT • Hand weed your plot regularly, at least 6 weeks after planting and when weeds appear. • Spray desmodium against aphids and bollworms at flowering. Use Dimethoate at 2-week intervals if needed. 1 WHEN AND HOW TO HARVEST • Harvest the seed weekly when the pods turn hand stripping the ripe pods. • Sun-dry and thresh the pods on a hard surface using a stone. • Winnow to get clean seed. • Store the seeds in a dry place to avoid rotting. • An acre produces 30 to 60 kg of seed, which can sell for up to 1000 Ksh per kg. OTHER BENEFITS FROM DESMODIUM • Surplus green feed can be conserved as hay for use during the dry season.
    [Show full text]
  • Desmodium Intercropping Eliminates Striga Threat and Improves Food Security in Africa
    70 – 202 19 0 e In if s L e cts for Desmodium intercropping eliminates striga threat and improves food security in Africa cientists at the International Centre of Insect Physiology and Ecology (icipe) in Kenya, in collaboration with colleagues at Rothamsted Research in the UK, have discovered that intercropping cereals with Sa perennial forage crop, desmodium, effectively eliminates the most significant constraint to cereal production in Sub- Saharan Africa, the parasitic weed striga. Striga (Striga hermonthica and S. asiatica) greatly reduces the productivity of maize, sorghum, millet, rice and tef by attaching itself to the roots of the crop and robbing it of nutrients. An individual striga plant produces many thousands of tiny seeds that can remain viable in the soil for 15–20 years. Scientists at icipe have been working since 1998 to develop and extend an approach to striga control that is appropriate to the needs and capacities of Sub-Saharan African smallholders. They have focused on identifying companion Mary Atemo’s farm in Kenya’s Vihiga County used to be dominated by striga, and she was scarcely able to produce crops containing chemicals that naturally suppress striga, as any grain at all. well as having other economic uses for farmers. Their research led them to the discovery that desmodium, a leguminous plant valued for its qualities as a nutritious animal fodder, also has a unique capacity to suppress striga growth and reduce the seed bank in the soil. Planting rows of desmodium between rows of cereal crops can effectively reverse declining crop yields by controlling striga and improving soil fertility, at the same time as providing farmers with a year-round supply of fodder.
    [Show full text]
  • The Genus Codariocalyx Hassk. (Leguminosae-Papilionoideae) in Thailand: Taxonomy and Anatomy of Leaf and Stem
    Songklanakarin J. Sci. Technol. 41 (4), 788-794, Jul. – Aug. 2019 Original Article The genus Codariocalyx Hassk. (Leguminosae-Papilionoideae) in Thailand: taxonomy and anatomy of leaf and stem Witsanu Saisorn and Pranom Chantaranothai* Center of Excellence on Biodiversity, Department of Biology, Faculty of Science, Khon Kaen University, Mueang, Khon Kaen, 40002 Thailand Received: 21 November 2017; Revised: 20 March 2018; Accepted: 26 March 2018 Abstract The genus Codariocalyx Hassk. in Thailand is revised. Three species viz. C. gyroides (Roxb. ex Link) X.Y.Zhu, C. microphyllus (Thunb.) H.Ohashi and C. motorius (Houtt.) H.Ohashi are recognized. A key, descriptions, photographs, distribution maps, ecological and phenological data and vernacular names are provided. The anatomy of the leaf and stem are also presented. Keywords: anatomy, Desmodieae, Fabaceae, taxonomic revision 1. Introduction 2. Materials and Methods The genus Codariocalyx Hassk. was described by Our taxonomic study was based on herbarium Hasskarl (1842), to accommodate four species: C. capitatus specimens from AAU, ABD, BCU, BK, BKF, BM, BO, C, Hassk., C. conicus Hassk., C. gyrans (L.f.) Hassk., and C. CMU, CMUB, E, FOF, G, HN, HNU, K, KEP, KKU, KYO, gyroides (Roxb. ex Link) X.Y.Zhu. In The Plant List L, NHL, P, PSU, QBG, SING, TI and online type specimens (http://www.theplantlist.org), C. capitatus is listed as an from BRI, G, PE, R and S. Herbarium acronyms are followed unresolved name and C. conicus as a synonym of C. gyroides. Thiers (2016). Living plants of all three species were observed Desmodium microphyllum (Thunb.) DC., which appears as an in various parts of Thailand and herbarium material was accepted name in The Plant List, was transferred to collected.
    [Show full text]