Abstract Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Introduction Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 PRELIMINARY SCREENING OF TELEGRAPH (CODARIOCALYX MOTORIUS) PLANT EXTRACT FOR SKIN WHITENING PROPERTY AND CYTOTOXICITY ACTIVITY K.N. Wijesekara, 1W.S de Silva Department of Biotechnology, Faculty of Science, Horizon Campus, Sri Lanka [email protected] ABSTRACT A perfect skin can be remained as a control was 478.800757±3.1567 µg/ml. dream if it does not maintain properly, Value of inhibition of tyrosinase was therefore most of the young women are significantly higher than to positive tempting to skin whitening products that control. The IC50 value of cytotoxicity can be composed of harmful chemicals activity for methanolic extract of leaves that cause dullness, uneven skin tone or of Telegraph plant was 1516.0538± acne breakout instead of making skin 2.407µg/ml. This analysis was revealed healthy and blooming. Natural products IC50 value of methanolic extract is are safe for consumption and will work nontoxic toxic to brine shrimps. on skin naturally and effectively by Therefore, it can be concluded that balancing skin tone and eliminating Codariocalyx motorius leaves possess harmful effects. This study was carried highly active antityrosinase substances out to determine skin whitening property which can be consumed for remedy of and cytotoxicity activity of Codariocalyx healthy and brighten skin. motorius. C. motorius is commonly known as “Pranajeewa” in Sinhala or Keywords: Telegraph (Codariocalyx “Telegraph Plant”. It is widely consumed motorius), Antityrosinase activity, as an antidote, cardiac-tonic and for Cytotoxicity activity, wound healing. The antityrosinase activity and cytotoxicity activity of the Mushroom tyrosinase methanolic extract of leaves of Telegraph plant have been studied on in-vitro INTRODUCTION models. The antityrosinase activity was evaluated based on inhibition of Skin is an important component of mushroom tyrosinase and cytotoxicity body image and has immense activity was evaluated based on brine physiological importance for both women shrimp lethality bioassay. The IC50 value and men. Skin pigmentation can be a of antityrosinase activity for methanolic source of significant emotional distress in extract of leaves of Telegraph plant was individuals (Stratigos and Katsambas, 282.2907299 ±4.521 µg/ml and SASAKI 2004). Both men and women have been Whitening Body Skin Serum as positive struggling with skin pigmentation Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 (hyper/hypo-pigmentation). Therefore from the harmful effects of ultraviolet most of the young women are tempting to (UV) radiations by absorbing UV use skin whitening products that can be sunlight, removing reactive oxygen composed of harmful chemicals that species (ROS) and scavenging toxic cause dullness, uneven skin tone or acne drugs and chemicals. Melanin also breakout instead of making skin healthy induces the expression and synthesis of a and blooming and also in long term variety of cytokines, primarily of usage, these chemicals might lead to keratinocyte origin, that act in a paracrine tumor and other unbearable diseases fashion to further induce melanogenesis instead of making skin healthy and (Yaar et al., 2006). The type and amount glowing. Even someone has a naturally of melanin synthesized by the light-skinned, external factors can melanocytes and its distribution in the generate melanin production. Some of surrounding keratinocytes determine the external factors are pollution, harmful actual color of the skin (Kim and Uyama, UV rays from the sun, stress, and 2005).If there’s formation of more unhealthy diet, hectic lifestyles, and many melanin in the skin, the darker the skin others. Considering these circumstances, tone will be arisen. Therefore, tyrosinase the best solution is to consume natural inhibition is the most common approach ingredients that are safe to use. And some to achieve skin hypopigmentation as this of benefits of consuming natural enzyme catalyses’ the rate-limiting step ingredients are skin brightening, of pigmentation (Solano et al., 2006). balancing skin tone, reducing blemishes Arbutin, a naturally occurring and marks, photo-protection, and beta-d-glucopyranoside of hydroquinone eliminating harmful bacteria. used traditionally for depigmentation, Tyrosinase (E: C: 1.14.18.1) is an involves inhibition of melanosomal essential enzyme, which contributes tyrosinase activity. Some other known towards pigment formation in natural compounds such as kojic acid, mammalian's body as well as in plants, kojic acid octanoates, salicylhydroxamic microorganisms and fungi (Momtaz et al., acid, catechins, hydroquinone, and more 2008). In humans and other mammals, recently resveratrol and oxyresveratrol the biosynthesis of melanin takes place in were also described for their tyrosinase a lineage of cells known as melanocytes, inhibition properties (Bourin et al., 2002). which contain the enzyme tyrosinase And some existing natural derivatives (Robb, 1984). Tyrosinase (phenol have got limitations in term of high oxidase) is known to be a key enzyme for toxicity. Therefore, in this study, melanin biosynthesis. This enzyme is Codariocalyx motorius (Telegraph Plant) mainly involved in the initial steps of the was investigated to determine its potential pathway which consist of the of decreasing skin pigmentation and hydroxylation of the p-monophenolic cytotoxicity by carrying out shrimp amino acid l-tyrosine (monophenolase lethality assay. The shrimp lethality assay activity of tyrosinase) and the oxidation was proposed by Michael et al., and later of the product of this reaction, the o- developed by Vanhaecke et al., and Sleet diphenolic amino acid L-DOPA and Brendel. It is based on the ability to (diphenolase activity), to give rise to o- kill laboratory-cultured Artemia nauplii dopaquinone (Bourin et al.,2002) . This brine shrimp. The assay is considered a o-quinone is transformed into melanins in useful tool for preliminary assessment of a series of non-enzymatic reactions toxicity, and it has been used for the (Prota, 1988, 1992). Melanin plays an detection of fungal toxins, plant extract important role in protecting human skin toxicity, heavy metals, cyanobacteria Author: - K.N. Wijesekara - W.S de Silva Department of Biotechnology, Horizon Campus, Sri Lanka GARI Publisher | Medicinal Plants | Volume: 04 | Issue: 07 Article ID: IN/GARI/ICATMMP/2018/115 | Pages: 33-42 (09) ISSN 2424-6492 | ISBN 978-955-7153-00-1 Edit: GARI Editorial Team | Received: 16.12.2018 | Publish: 20.01.2019 toxins, pesticides, and cytotoxicity testing This plant is famous for its rapid of dental materials (Carballo, 2002). movement of leaflets and it exists within a period of about three to five minutes. LITERATURE REVIEW The leaves move up and down rhythmically, as if the plant is dancing or Codariocalyx motorius (= D. gyrans sending out telegraphic messages. (Unnisa et al., 1994; Antkowiak & Therefore, the necessity of a time lapse Engelmann, 1995; Lev-Yadun, 2013; camera to see the movements can be Morse, 2018) = Hedysarum gyrans (Lev- avoided, as the rapid movements are Yadun, 2013; Morse, 2018) = observable to the naked eye. The leaf Desmodium motorium (Unnisa et al., system of Codariocalyx motorius consists 1994; Antkowiak & Engelmann, 1995; of a terminal leaflet and a maximum of Lev-Yadun, 2013; Morse, 2018)), is two lateral leaflets, all on the same stalk. known as the telegraph plant ("Taxonomy A set of one larger and two smaller - GRIN-Global Web v 1.10.3.6", 2018; leaflets are connected by a “hinge,” Ileperuma,2015), dancing plant which allows the leaflets to lift and rotate (Ileperuma,2015), or semaphore plant themselves. Moreover, the plant also (Ileperuma,2015;"Taxonomy - GRIN- produces small, purple colored flowers Global Web v 1.10.3.6", 2018). It belongs (Ileperuma, 2015). to the genus Codariocalyx ("Taxonomy - GRIN-Global Web v 1.10.3.6", 2018), In Siddha medicine, it is used as antidote, family Fabaceae (alt.Leguminosae) (Kim cardiac-tonic and wound healing et al., 2014; "Taxonomy - GRIN-Global ointment (Trout, 2002; Chidambaram et Web v 1.10.3.6", 2018), subfamily al., 2013; Kim et al., 2014; Uma et al., Faboideae ("Taxonomy - GRIN-Global 2014). It has also been used in curing Web v 1.10.3.6", 2018). snake bite poisons (Chidambaram et al., 2013). The roots are used as emollient, C. motorius is widely distributed laxative, antidysentric and to treat cough, throughout Asia-Temperate: China asthma and fever. The leaves exhibit (Fujian, Jiangxi, Guangdong, Guizhou, tonic, diuretic, febrifuge and aphrodisiac Sichuan, Yunnan, and Guangxi), Eastern properties. In Sikkim, Bengal, Bihar and Asia: Taiwan, Asia-Tropical :Indian Orissa, the root extract is used to cure Subcontinent[Bangladesh, Bhutan, India rheumatism (Jain 1991; Devi & (Andhra Pradesh, Arunachal Pradesh, Narmathabai, 2011). Its roots possess the Assam, Bihar, Delhi, Goa, Haryana, highly active antioxidant substance which Himachal Pradesh, Jammu and Kashmir, can be used
Recommended publications
  • Multiple Polyploidy Events in the Early Radiation of Nodulating And
    Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown.
    [Show full text]
  • 20. Tribe DESMODIEAE 116. TRIFIDACANTHUS Merrill, Philipp
    20. Tribe DESMODIEAE 山蚂蝗族 shan ma huang zu Huang Puhua (黄普华 Huang Pu-hwa); Hiroyoshi Ohashi, Yu Iokawa, Tomoyuki Nemoto Herbs or shrubs, rarely trees or twining. Leaves pinnately 3(–9)-foliolate or 1-foliolate; stipules mostly striate; stipels present or sometimes absent. Flowers in terminal or axillary racemes or arranged into a panicle, rarely an umbel or fascicle. Calyx 4- or 5- toothed or 2-lipped. Wings equal to or exceeding keel and often adherent to it near base. Vexillary filament free or connate with others, sometimes forming a closed tube; anthers uniform. Legumes transversely jointed, sometimes of only 1 article, or rarely 2- valved. Seeds without a strophiole, rarely arillate. About 30 genera and 520–530 species: distributed in tropical, subtropical, and warm-temperate regions, but extending into the cool-temperate and sub-boreal regions of E Asia and North America; 18 genera and 139 species (42 endemic, four introduced) in China. 1a. Stipels absent, rarely present; legumes 1-jointed, 1-seeded, not glochidiate. 2a. Lateral veins of leaflets strict, extending to margin; stipules large, ovate, strongly ribbed ........................... 133. Kummerowia 2b. Lateral veins of leaflets arcuate, not reaching to margin; stipules small, subulate. 3a. Bracts 1-flowered, usually caducous; pedicels articulate below calyx; keel falcate, acute ................... 131. Campylotropis 3b. Bracts 2-flowered, persistent; pedicels not articulate; keel strict, obtuse ..................................................... 132. Lespedeza 1b. Stipels present; legumes usually glochidiate, 2- to several jointed, rarely 1-jointed, 1-seeded. 4a. Branch nodes with 3-fid, hard spines; leaves 1-foliolate ............................................................................... 116. Trifidacanthus 4b. Branch nodes without 3-fid, hard spines; leaves 3(–9)-foliolate, rarely 1-foliolate.
    [Show full text]
  • Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
    Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources.
    [Show full text]
  • Pharmacological Activity of Desmodium Triflorum- a Review
    Anu K Thankachan. et al. / Asian Journal of Phytomedicine and Clinical Research. 5(1), 2017, 33-41. Review Article CODEN: AJPCFF ISSN: 2321 – 0915 Asian Journal of Phytomedicine and Clinical Research Journal home page: www.ajpcrjournal.com PHARMACOLOGICAL ACTIVITY OF DESMODIUM TRIFLORUM- A REVIEW Anu K Thankachan *1 , Meena Chandran 1, K. Krishnakumar 2 1* Department of Pharmaceutical Analysis, St. James College of Pharmaceutical Sciences, Chalakudy, Thrissur, Kerala, India. 2St James Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Thrissur, Kerala, India. ABSTRACT Desmodium triflorum is a plant belongs to the family Fabaceae. It is a global species native to tropical regions and introduced to subtropical regions including the southern United States. The plant is having antipyretic, antiseptic, expectorant properties. A decoction is commonly used to treat diarrhoea and dysentery; quench thirst; and as mouthwash. The crushed plant, or a poultice of the leaves, is applied externally on wounds, ulcers, and for skin problems. In general the whole plant is used medicinally for inducing sweat and promoting digestion, anti-oxidant, anti-inflammatory, anti-convulsant and anti-bacterial actions. This review explains the different pharmacological activities of Desmodium triflorum. KEYWORDS Desmodium triflorum , Anti-oxidant, Anti-inflammatory and Anti-convulsa nt. INTRODUCTION Author for Correspondence: Plants have formed the basis for treatment of diseases in traditional medicine for thousands of years and continue to play a major role in the Anu K Thankachan, primary health care of about 80% of the world’s inhabitants 1. It is also worth noting that (a) 35% of Department of Pharmaceutical Analysis, drugs contain ‘principles’ of natural origin and (b) St.
    [Show full text]
  • Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
    New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D.
    [Show full text]
  • Combined Control of Striga Hermonthica and Stemborers by Maize–Desmodium Spp
    ARTICLE IN PRESS Crop Protection 25 (2006) 989–995 www.elsevier.com/locate/cropro Combined control of Striga hermonthica and stemborers by maize–Desmodium spp. intercrops Zeyaur R. Khana,Ã, John A. Pickettb, Lester J. Wadhamsb, Ahmed Hassanalia, Charles A.O. Midegaa aInternational Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi 00100, Kenya bBiological Chemistry Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Accepted 4 January 2006 Abstract The African witchweed (Striga spp.) and lepidopteran stemborers are two major biotic constraints to the efficient production of maize in sub-Saharan Africa. Previous studies had shown the value of intercropping maize with Desmodium uncinatum in the control of both pests. The current study was conducted to assess the potential role of other Desmodium spp., adapted to different agro-ecologies, in combined control of both pests in Kenya. Treatments consisted of intercropped plots of a Striga hermonthica- and stemborer-susceptible maize variety and one Desmodium sp. or cowpea, with a maize monocrop plot included as a control. S. hermonthica counts and stemborer damage to maize plants were significantly reduced in maize–desmodium intercrops (by up to 99.2% and 74.7%, respectively) than in a maize monocrop and a maize–cowpea intercrop. Similarly, maize plant height and grain yields were significantly higher (by up to 103.2% and 511.1%, respectively) in maize–desmodium intercrops than in maize monocrops or maize–cowpea intercrops. These results confirmed earlier findings that intercropping maize with D. uncinatum effectively suppressed S. hermonthica and stemborer infestations in maize resulting in higher crop yields.
    [Show full text]
  • An Important Medicinal Plant
    Int. J. Curr. Res. Biosci. Plant Biol. 4(8), 67-72 (2017) International Journal of Current Research in Biosciences and Plant Biology Volume 4 ● Number 8 (August-2017) ● ISSN: 2349-8080 (Online) Journal homepage: www.ijcrbp.com Original Research Article doi: https://doi.org/10.20546/ijcrbp.2017.408.009 Antifungal Activity and Quantitative Phytochemical Analysis of Phyllodium pulchellum L. Desv.- An Important Medicinal Plant Gopal Velmurugan* and Subramaniam Parvathi Anand PG and Research Department of Botany, National College (Autonomous), Tiruchirappalli – 620 001, Tamil Nadu, India *Corresponding author. A bs t r ac t Article Info Phyllodium pulchellum L. Desv. is an subshrub, belongs to the fabaceae family. The Accepted: 18 July 2017 present study has been attempted to antifungal activity and quantitative phytochemical Available Online: 06 August 2017 analysis of the leaf of P. pulchellum. The plant extracted with different organic solvents viz., aqueous, chloroform and ethanol. Antifungal activity of the leaf extract against some K e yw or ds pathogenic fungus like Aspergillus nigar, Pencillium notatum, Rhizhotonia solani and Colletotrichum falcatum. The inhibitory effect of leaf distillates was compared with the Antifungal activity standard fluconazole. Quantitative phytochemical analyses were performed using standard Fabaceae procedures. The ethanol leaf extracts of P. pulchellum showed maximum activity against Phyllodium pulchellum Aspergillus niger, followed by Colletotrichum falcatum, Penicillium notatum and Phytochemicals Rhizoctonia solani. The ethanolic extract showed higher level of phenol (88.68±2.081 mg/g), flavonoid (71.33±4.172 mg/g) tannin (30.23±3.025 mg/g) and than the other extracts which having secondary metabolites. These findings provide scientific evidence to support the traditional use of Phyllodium pulchellum and also indicate that the leaf of this species are a promising potential for the development of quantitative phytochemical and antifungal agent.
    [Show full text]
  • Vol: Ii (1938) of “Flora of Assam”
    Plant Archives Vol. 14 No. 1, 2014 pp. 87-96 ISSN 0972-5210 AN UPDATED ACCOUNT OF THE NAME CHANGES OF THE DICOTYLEDONOUS PLANT SPECIES INCLUDED IN THE VOL: I (1934- 36) & VOL: II (1938) OF “FLORA OF ASSAM” Rajib Lochan Borah Department of Botany, D.H.S.K. College, Dibrugarh - 786 001 (Assam), India. E-mail: [email protected] Abstract Changes in botanical names of flowering plants are an issue which comes up from time to time. While there are valid scientific reasons for such changes, it also creates some difficulties to the floristic workers in the preparation of a new flora. Further, all the important monumental floras of the world have most of the plants included in their old names, which are now regarded as synonyms. In north east India, “Flora of Assam” is an important flora as it includes result of pioneering floristic work on Angiosperms & Gymnosperms in the region. But, in the study of this flora, the same problems of name changes appear before the new researchers. Therefore, an attempt is made here to prepare an updated account of the new names against their old counterpts of the plants included in the first two volumes of the flora, on the basis of recent standard taxonomic literatures. In this, the unresolved & controversial names are not touched & only the confirmed ones are taken into account. In the process new names of 470 (four hundred & seventy) dicotyledonous plant species included in the concerned flora are found out. Key words : Name changes, Flora of Assam, Dicotyledonus plants, floristic works.
    [Show full text]
  • Desmodium Gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit
    Effects of Static Magnetic Field on the Ultradian Lateral Leaflet Movement Rhythm in Desmodium gyrans Vijay Kumar Sharma3, Wolfgang Engelmannb and Anders Johnssonc* a Chronobiology Laboratory, Evolutionary and Organismal Biology Unit. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore- 560 064, Karnataka, India b Department of Botany, Physiological Ecology of Plants, University of Tübingen, D-7400, Tübingen, Auf der Morgenstelle 1, Germany c Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Fax: 004773591852. E-mail: [email protected] * Author for correspondence and reprint request Z. Naturforsch. 55c, 638-642 (2000); received January 18/March 20, 2000 Oscillations, Video Imaging, Ion Movements The rhythmic leaflet movements of the plantDesmodium gyrans (L.f.) DC slow down in the presence of a static magnetic field. The leaflet positions were digitally retrieved from sequential CCD camera images of the moving leaflets. The experiments were performed under constant light (ca. 500 lux) and temperature (about 20 °C) conditions. The period of the leaflet was then around 5 min. Leaflets moving up and down in a magnetic field of approximately 50 mT flux density increased the period by about 10% due to a slower motion in the “up” position. Since during this position a rapid change of the extracellular potentials of the pulvinus occurs, it is proposed that the effects are mediated via the electric processes in the pulvinus tissue. Introduction the motor cells of the pulvinus. When direct cur­ Although ultradian rhythms of the lateral leaf­ rents (DC) of strength 10 to 100 ^xA was applied lets in the plant Desmodium gyrans have been for 10 sec to the tip of lateral leaflets, the phase of studied intensively, its functional significance still the rhythm was delayed.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Desmodium Intortum Scientific Name  Desmodium Intortum (Mill.) Urb
    Tropical Forages Desmodium intortum Scientific name Desmodium intortum (Mill.) Urb. Synonyms Early flowering stage (cv. Greenleaf) Trailing, scrambling perennial herb or subshrub; image with Megathyrsus Basionym: Hedysarum intortum Mill.; Desmodium maximus cv. Petrie, S Qld, Australia hjalmarsonii (Schindl.) Standl.; Meibomia hjalmarsonii Schindl. Family/tribe Family: Fabaceae (alt. Leguminosae) subfamily: Faboideae tribe: Desmodieae subtribe: Desmodiinae. Morphological description Leaflets usually ovate-acute, Inflorescence a terminal or axillary with dark spots on the upper surface raceme Trailing, scrambling perennial herb or subshrub with (cv. Greenleaf) strong taproot. Stems 1.5 - 4.0 mm diameter, longitudinally grooved, often reddish-brown, sometimes ± glabrescent, mostly with dense, hooked or recurved hairs, glandular, sticky to the touch; ascendant, non- twining, rooting at the nodes if in prolonged contact with moist soil, to several metres long. Leaves pinnately trifoliolate; stipules 2 - 6 mm long, usually recurved, often persistent; petiole 3 - 5(- 9) cm long, pubescent; terminal leaflet usually ovate sometimes broadly elliptic, 5 Immature pods - 13 cm long, 2 - 7 cm wide, petiolule 6 - 12 mm long; Pods up to 12-articulate; articles semicircular or rhombic breaking up at lateral leaflets 3-10 cm long, 1.5 - 6 cm wide, petiolule 2 - maturity 4 mm; all laminae covered with ascending hairs on both surfaces; base rounded to truncate, apex acute, often with sparse reddish-brown/purplish marks on the upper surface. Racemes terminal or axillary, to 30 cm long; rachis with dense appressed to spreading hooked hairs, 2-flowered at each node; pedicel filiform, 6-10 mm; calyx 2.5-3 mm, 5-lobed, lowest lobe longest; corolla pink, purplish red to violet becoming bluish or greenish white, 9-11 mm.
    [Show full text]
  • The Arts of Science in the Contact Zone: a Satirical Picture
    Sria Chatterjee The Arts of Science in the Contact Zone: A Satirical Picture Abstract This chapter focusses on a print by the artist Gaganendranath Tagore done in 1922, which features the biophysicist Jagadish Chandra Bose and his experiments in plant science. Considering the overlapping networks of art, science, and nationalist politics within a particular sphere in early twentieth-century British India, the chapter explores the connec- tions between human and non-human contact zones as well as questions around religion and science and the politics of colonial knowledge be- tween the metropole and the colony. Keywords Art and Science, Expanded Contact Zone, Plants, Caricature, Nationalism, Politics Chatterjee, Sria. 2021. “The Arts of Science in the Contact Zone: A Satirical Picture.” 181 In Reading Objects in the Contact Zone, edited by Eva-Maria Troelenberg, Kerstin Schankweiler, and Anna Sophia Messner, 181–187. Heidelberg Studies on Transculturality 9. Heidelberg: Heidelberg University Publishing. DOI: https://doi.org/110.17885/heiup.766. c10423 SRIA ChatteRJEE The object I focus on in this short essay is a black and white print by Gaganendranath Tagore (1867–1938) from a portfolio of “satirical pic- tures” published in 1921 by Thacker and Spink titled Reform Screams. While the portfolio serves to establish a context of political feeling and social reform in pre-independence India through satire, the print I have chosen allows for access into a contact zone that is not only geo- graphic but also one that lies between human and non-human worlds (à⏵Expanded Contact Zone). In this image, Gaganendranath depicts the Indian scientist Jagadish Chandra Bose (1858–1937) who pioneered the investigation of radio waves and experiments in plant science.
    [Show full text]