Biological Pest Control 1 Biological Pest Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternanthera Philoxeroides (Mart.) Griseb
A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Alternanthera philoxeroides (Mart.) Griseb. Alligatorweed Family: Amaranthaceae Range: Mainly in the southeastern states, but also in California. Habitat: Shallow water in ditches, marshes, pond margins, and slow- moving waterways. May also be found terrestrially in wet soils. It can tolerate saline conditions up to 10% salt by volume. Alligatorweed requires a warm summer growing condition but can survive cold winters provided there are no prolonged periods of freezing temperatures. Origin: Native to South America. Impact: Alligatorweed forms dense floating mats on the surface of water Photo courtesy of Richard Old that decrease light penetration and change the natural ecology at the site. It also competes with native vegetation, can cause flooding, and has the potential to create anoxic conditions, increase mosquito breeding, and harbor diseases. Western states listed as Noxious Weed: Arizona, California California Invasive Plant Council (Cal-IPC) Inventory: High Invasiveness (Alert) Alligatorweed is an aquatic perennial that also has a terrestrial form. The aquatic form roots in shallow water and rarely grows in water deeper than 6 ft. -
Impact of Fipronil Residues on Mole Cricket (Orthoptera: Gryllotalpidae) Behavior and Mortality in Bermudagrass
Cummings et al.: Fipronil Impact on Mole Cricket Behavior and Mortality 293 IMPACT OF FIPRONIL RESIDUES ON MOLE CRICKET (ORTHOPTERA: GRYLLOTALPIDAE) BEHAVIOR AND MORTALITY IN BERMUDAGRASS HENNEN D. CUMMINGS1, RICK L. BRANDENBURG2, ROSS B. LEIDY3 AND FRED H. YELVERTON4 1Department of Agribusiness, Agronomy, Horticulture, and Range Management, Tarleton State University, Stephenville, TX 76402 2Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613 3Department of Molecular and Environmental Toxicology, North Carolina State University, Raleigh, NC 27695-7633 4Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620 ABSTRACT In a greenhouse experiment, fipronil was applied at 0.014 kg ai/ha to bermudagrass, Cyn- odon dactylon L., in plastic 5-liter containers 120, 90, 60, 30, and 0 days before adding one tawny mole cricket nymph, Scapteriscus vicinus Scudder to the container. After the exposure period, soil in the containers was divided into depth increments of 0-4, 4-8, and 8-18 cm, and cricket status was recorded as dead, absent, or alive by thoroughly examining soil. Soil in the 0-4 cm-increment was analyzed for fipronil and four fipronil metabolite residues. Fipronil residue concentrations decreased with time (C = 0.00002×2 – 0.0053× + 0.3675, R2 = 0.9998 where C = fipronil concentration (µg/g of soil) and x = days after treatment). Concen- trations of two metabolites, fipronil sulfone and fipronil sulfide, increased as fipronil resi- dues decreased. Each treatment’s affect on late instar mole crickets was significantly different from the non-treated; however, there were no significant differences in nymph sta- tus among fipronil-treated containers. -
The Buzz About Bees: Honey Bee Biology and Behavior
4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M. -
Screening on Allelopathic Potential of 12 Leguminous Plants on Germination and Growth of Barnyardgrass
Journal of Agricultural Technology 2015 Vol. 11(8): 2167-2175 Available online http://www.ijat-aatsea.com ISSN 1686-9141 Screening on allelopathic potential of 12 leguminous plants on germination and growth of barnyardgrass Poonpaiboonpipattana, T.1*, Suwunnamek, U1 and Laosinwattana, C2 1Department of Agricultural Science, Faculty of Agriculture, Natural resources and Environment, Naresuan University, Phitsanulok 65000, Thailand. 2Plant Production Technology, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, 10520, Thailand Poonpaiboonpipattana, T., Suwunnamek, U. and Laosinwattana, C. (2015). Screening on allelopathic potential of 12 leguminous plants on germination and growth of barnyardgrass. Journal of Agricultural Technology 2015 Vol. 11(8): 2167-2175. A preparatory study of leguminous plants on allelopathic potential was completed from January to June 2015. In laboratory conditions, entire plants of 12 leguminous plants at the blossoming stage were collected and ground into residue powder. The powders were measured by phytotoxicity on germination and development of barnyard grass (Echinochloa crus-galli (L.) Beauv.) by direct application in a Petri dish at the rate of 250 and 500 mg/Petri dish. Centrosema pascuorum cv. Cavalcade, Clitoria ternatea and Stylosanthes guianensis demonstrated the most phytotoxic impact on germination and seedling development of barnyard grass. The level of hindrance on germination at 500 mg/Petri dish was 86%, 98% and 98% respectfully. Macroptillium atropurpureum and Phaseolus lathyroides powders demonstrated the slightest phytotoxicity. Another trial was directed to test the powders on weed control in pot scale. Directed wet seeds were sowed in the pot for 10 days. Utilization of powder integrated with a water irrigation was included into the pot at the proportion of 250 and 500 kg./ha. -
Ooctonus Vulgatus[I] (Hymenoptera, Mymaridae), A
A peer-reviewed version of this preprint was published in PeerJ on 24 March 2020. View the peer-reviewed version (peerj.com/articles/8591), which is the preferred citable publication unless you specifically need to cite this preprint. Mesmin X, Chartois M, Genson G, Rossi J, Cruaud A, Rasplus J. 2020. Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe. PeerJ 8:e8591 https://doi.org/10.7717/peerj.8591 Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe Xavier Mesmin 1, 2 , Marguerite Chartois 2 , Guenaelle Genson 2 , Jean-Pierre Rossi 2 , Astrid Cruaud 2 , Jean-Yves Rasplus Corresp. 2 1 AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, INRA, San Giuliano, France 2 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France Corresponding Author: Jean-Yves Rasplus Email address: [email protected] As vector of Xylella fastidiosa (Wells, 1987) in Europe, the meadow spittlebug, Philaenus spumarius (Linnaeus, 1758) (Hemiptera: Aphrophoridae) is a species of major concern. Therefore, tools and agents to control this ubiquitous insect that develops and feeds on hundreds of plant species are wanted. We conducted a field survey of P. spumarius eggs in Corsica and provide a first report of Ooctonus vulgatus Haliday, 1833 (Hymenoptera, Mymaridae) as a potential biocontrol agent of P. spumarius in Europe. To allow species identification, we summarized the main characters distinguishing O. vulgatus from other European species of Ooctonus and generated COI DNA barcodes. -
Feeding Habits of House and Feral Cats (Felis Catus) on Small Adriatic Islands (Croatia)
NORTH-WESTERN JOURNAL OF ZOOLOGY 12 (2): 336-348 ©NwjZ, Oradea, Romania, 2016 Article No.: e151708 http://biozoojournals.ro/nwjz/index.html Feeding habits of house and feral cats (Felis catus) on small Adriatic islands (Croatia) József LANSZKI1*, Eduard KLETEČKI2, Balázs TRÓCSÁNYI3, Jasmina MUŽINIĆ4, Gabriella L. SZÉLES1 and Jenő J. PURGER5 1. Department of Nature Conservation, Kaposvár University, H–7400 Kaposvár, Hungary. 2. Croatian Natural History Museum, HR–10000 Zagreb, Croatia. 3. Duna-Drava National Park Directorate, H–7625 Pécs, Hungary. 4. Institute for Ornithology CASA, HR–10000 Zagreb, Croatia. 5. Institute of Biology, University of Pécs, H–7624 Pécs, Hungary. *Corresponding author, J. Lanszki, e-mail: [email protected] Received: 17. March 2015 / Accepted: 18. July 2015 / Available online: 28. July 2015 / Printed: December 2016 Abstract. The domestic cat (Felis catus), a globally recognised invasive predator, was introduced to the Adriatic islands (Croatia), but its feeding ecology and impacts on biodiversity in this region is unknown. We studied the feeding habits of house cats living in villages and feral cats on the outskirts of villages on two small islands (Olib and Silba) by analysing faecal samples collected in the spring and autumn periods. Our hypothesis was that the feeding strategies of cats as top mammalian predators vary in different environments, due to significant dissimilarities in their food resources. We surveyed the abundance of cats and their primary food types, e.g. small mammals, birds, rabbits Oryctolagus cuniculus, and lizards. Our results suggest that house cats fed most often on birds and common household food, while feral cats ate mostly small mammals and lizards. -
Wisconsin Bee Identification Guide
WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows. -
Integrated Pest Managemnent ~~R, Him4 T
Integrated Pest Managemnent ~~r, him4 t. I~ f4 ,..,.. 9,.. i Ulf U k gA, fi 0I,. i f. Council on Environmental Quality Integrated Pest Management December 1979 Written by Dale G. Bottrell K' Preface For many centuries human settlements, both agricultural and urban, have had to contend with a variety of unwanted and sometimes harmful insects, weeds, microorgan isms, rodents, and other organisms-collectively, "pests." During the use of chemical last four decades, p'sticides has become the predominant method of controlling these unwanted organisms in much of the world, including the United States. synthetic Production of organic pesticides in this countty alone has increased from less than 500,000 pounds in 1951 to an estimated 1.4 billion pounds in 1977. A decade ago, there was rising public concern over the accumulation pesticides of in the environment, with resulting adverse effects on some fish and wildlife populations and hazards to human health. In response to the problems, the Council on Environmental Quality undertook a study of alternative methods Integrated of pest control. Pest Management, published in 1972, stimulated increased national and international interest in integrated pest management-IPM-as an cient, economically effi environmentally preferable approach to pest control, particularly in agriculture. Since then much has been learned about the effects of pesticides, and programs have been developed which put the concept of IPM into practice. began a In 1976 the Council more comprehensive review of integrated pest management in the United States, giving attention to the potential for IPM programs in forestry, public health, urban systems and as well as in agriculture. -
Chloroplast in Plant-Virus Interaction
REVIEW published: 04 October 2016 doi: 10.3389/fmicb.2016.01565 Chloroplast in Plant-Virus Interaction Jinping Zhao 1, 2, Xian Zhang 3, Yiguo Hong 3 and Yule Liu 1* 1 MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 2 State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 3 Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active Edited by: Nobuhiro Suzuki, roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins Okayama University, Japan (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus Reviewed by: interaction. -
Adsorptive Treatment of Textile Wastewater Using Activated Carbon Produced from Mucuna Pruriens Seed Shells
World Journal of Engineering and Technology, 2016, 4, 21-37 Published Online February 2016 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/10.4236/wjet.2016.41003 Adsorptive Treatment of Textile Wastewater Using Activated Carbon Produced from Mucuna pruriens Seed Shells Chinenye Adaobi Igwegbe1*, Pius Chukwukelue Onyechi2, Okechukwu Dominic Onukwuli1, Ikenna Chukwudi Nwokedi1 1Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria 2Department of Industrial and Production Engineering, Nnamdi Azikiwe University, Awka, Nigeria Received 6 October 2015; accepted 11 January 2016; published 18 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Mucuna pruriens seed shells (abundantly available agricultural waste) were processed, treated and activated using 60% orthophosphoric acid for removal of congo red and malachite green from an aqueous solution. Its physicochemical properties and its removal efficiencies on the textile dyes were determined. The effect of particle size, adsorbent dose, initial pH of solution, adsorbate concentration and contact time on the process of adsorption was investigated. The equilibrium, kinetic and thermodynamic properties of the dyes removal were also investigated. The experi- mental data were modeled using linear regression method of analysis. The correlation coefficient was used as a criterion for model adequacy and acceptance. Sum of squares error was used to va- lidate the isotherm models. The pseudo second-order kinetic model was found to best correlate the experimental data. The intraparticle diffusion is not the only rate controlling step in the process. -
Pharmacological Activity of Desmodium Triflorum- a Review
Anu K Thankachan. et al. / Asian Journal of Phytomedicine and Clinical Research. 5(1), 2017, 33-41. Review Article CODEN: AJPCFF ISSN: 2321 – 0915 Asian Journal of Phytomedicine and Clinical Research Journal home page: www.ajpcrjournal.com PHARMACOLOGICAL ACTIVITY OF DESMODIUM TRIFLORUM- A REVIEW Anu K Thankachan *1 , Meena Chandran 1, K. Krishnakumar 2 1* Department of Pharmaceutical Analysis, St. James College of Pharmaceutical Sciences, Chalakudy, Thrissur, Kerala, India. 2St James Hospital Trust Pharmaceutical Research Centre (DSIR Recognized), Chalakudy, Thrissur, Kerala, India. ABSTRACT Desmodium triflorum is a plant belongs to the family Fabaceae. It is a global species native to tropical regions and introduced to subtropical regions including the southern United States. The plant is having antipyretic, antiseptic, expectorant properties. A decoction is commonly used to treat diarrhoea and dysentery; quench thirst; and as mouthwash. The crushed plant, or a poultice of the leaves, is applied externally on wounds, ulcers, and for skin problems. In general the whole plant is used medicinally for inducing sweat and promoting digestion, anti-oxidant, anti-inflammatory, anti-convulsant and anti-bacterial actions. This review explains the different pharmacological activities of Desmodium triflorum. KEYWORDS Desmodium triflorum , Anti-oxidant, Anti-inflammatory and Anti-convulsa nt. INTRODUCTION Author for Correspondence: Plants have formed the basis for treatment of diseases in traditional medicine for thousands of years and continue to play a major role in the Anu K Thankachan, primary health care of about 80% of the world’s inhabitants 1. It is also worth noting that (a) 35% of Department of Pharmaceutical Analysis, drugs contain ‘principles’ of natural origin and (b) St. -
Desmodium Cuspidatum (Muhl.) Loudon Large-Bracted Tick-Trefoil
New England Plant Conservation Program Desmodium cuspidatum (Muhl.) Loudon Large-bracted Tick-trefoil Conservation and Research Plan for New England Prepared by: Lynn C. Harper Habitat Protection Specialist Massachusetts Natural Heritage and Endangered Species Program Westborough, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Desmodium cuspidatum (Muhl.) Loudon (Fabaceae) is a tall, herbaceous, perennial legume that is regionally rare in New England. Found most often in dry, open, rocky woods over circumneutral to calcareous bedrock, it has been documented from 28 historic and eight current sites in the three states (Vermont, New Hampshire, and Massachusetts) where it is tracked by the Natural Heritage programs. The taxon has not been documented from Maine. In Connecticut and Rhode Island, the species is reported but not tracked by the Heritage programs. Two current sites in Connecticut are known from herbarium specimens. No current sites are known from Rhode Island. Although secure throughout most of its range in eastern and midwestern North America, D. cuspidatum is Endangered in Vermont, considered Historic in New Hampshire, and watch-listed in Massachusetts. It is ranked G5 globally. Very little is understood about the basic biology of this species. From work on congeners, it can be inferred that there are likely to be no problems with pollination, seed set, or germination. As for most legumes, rhizobial bacteria form nitrogen-fixing nodules on the roots of D. cuspidatum. It is unclear whether there have been any changes in the numbers or distribution of rhizobia capable of forming effective mutualisms with D.