The Alaskan King Crab 1·Ndustry

Total Page:16

File Type:pdf, Size:1020Kb

The Alaskan King Crab 1·Ndustry •1\) REVIEW OF BUSINESS AND ECONOMIC CONDITIONS UNIVERSITY OF ALASKA, INSTITUTE OF BUSINESS, ECONOMIC AND GOVERNMENT RESEARCH NOVEMBER, 1965 pounds. This harvest was more than double any king TheAlaskan King Crab 1·ndustry crab harvest previously taken from that area. The large The Alaskan king cmb industry is the fastest growing increase in the Aleutian Island area's produotion of crab segment of the United States fishing industiy. Over 86 was due to the utilization of additional floa,ting processors million pounds of king crab were caught in AJ.aska's king which were supplied with crab by vessels that had shifted cmb fishery in 1964. Just two decades previously, in 1944, from the Kodiak area. Kodia1<:suffered the loss of several l'he total annual harvest equalled only sl,ightly more than crab-processing facilities when the city was damaged by 15,000 pounds. (See Table I.) the seismic waves genemted by the great Alaskan earth­ The overall growth of the king cmb industry's harvest quake of March 27, 1964. during the last seven years has been a speotacular 674 Despite the seismic wave destruction , and the de­ percent, with increases in the annual catch ranging from pa1,ture of some vessels for the Aleutians, the second 10 to 68 percent. Current statistics indicate that the largest king crab production in 1964 took place in the Alaska king omb catch for 1965 will reach a record 100 Kodiak area, which registered a catch of 29.6 million million pounds. pounds. The area on the sourth side of the Alaska Penin­ sula provided a total harvest of 14.3 miUion pounds of King cmb is becoming an increasingly important part king crab in 1964, while the Cook Inlet production of Alaska's fisheries indushy. In 1960, less than 6 percent equalled 6.9 million pounds . Th e other four areas of of the total wholesale value of fisheries production in Alaska's king crab fishery in 1964 collectively produced Alaska resulted from the kiing crab segment of the indus­ approximately 2.2 million pounds of king crab. try. In 1964, however, king cmb production accounted for over 15 percent of the $140 million wholesale value During 1965 an estimated 50 million pounds of king of Alaska's fisheries production. (See Table II.) crab were taken in the Kodiak area. This was an increase of 67 percent above the 1964 Kodiak landings and about During the six-year period from 1959 to 1964, the 19 percent above the 1963 harvest. Much of the increased wholesale value of the state's king orab produotion has production in th~s area in 1965 apparently resulted from more than quadrupled, moving from $3,850,000 to $21,- the introduction of more efficient gear and vessels, and 262,340. the elimination of the limit on the numbe {· of crab pots The Alaskan king .crab fishe1y is diwded into eight each vessel could fish. In all other areas of Alaska, with general geographic areas. These areas are: Southeastern the exception of the Bering Sea area, the 1965 king crab (ranging from Dixon Entrance on the south to Cape St. harvest ran behind the harvest in 1964. Elias); Prince William Sound; Cook Inlet; Kodiak Mand; Chignik; Alaska Peninsula (south side); Aleutian Islands; HISTORY OF THE ALASKAN KING CRAB INDUSTRY and Alaska Perninsula (north side, including the Bering The Alaskan king crab has been fished commercially Sea). Alaskan king crab are harvested commeroiaily along by three nations - the United States, Japan, and Russia. more than 21,000 ~iles of Alaska's coast. Japan was the first of the three countries to develop an Produotion statistics for the eight areas listed above indushy based on the king orab. indicate that the Aleutian Island area in 1964 led all pro­ The Japanese originally established their king crab duotion areas with an estimated catch of 33.6 miUion fishery in the Sea of Japan in 1892. Dlll'ing this early PAGE 2 UNIVERSITY OF ALASKA, INSTITUTE OF BUSINESS, ECONOMIC AND GOVERNMENT RESEARCH have been engaged in spirited competition with the ALASKA REVIEW OF BUSINESS AND ECONOMIC CONDITIONS Japanese for king crab, and their production has increased VOL fl NO. 5 each year. In 1963, the Russians employed three factory Published by the ' Institute of Business, Economic and Government Research, ships to process an estimated catch of 2.3 million king University of Alaska, College, Alaska crab. William R. Wood-President, University of Alaska Kenneth M. Rae - Acting Director of the Institute of The Russian king crab fishery operating near Alaska Business, Economic and Government Research in 1964 consisted of three ultramodern faotoryships and ,Leo M. Loll, Jr.-Editor Francis R. Eels-Associate Editor nine tangle net setting trawlers. Each factorvship bmLts .trom which the tangle nets were entire catch was canned at picked. In addition, two scouting trawlern were used shore-based plants. Growth of the industry was slow by the Russ,fans to determine the most productive places until 1923, when the successful development of ,the float­ to set the tangle nets. The Soviet king crab fishery in ing cannery permitted expansion of the fishing operations 1964 opemted in the outer Bristol Bay flats area from away from Japan proper and into the Alaskan waters of near Port :Moller to Unimak Pass from April through the eastern Bering Sea. Shortly thereafter, Japan extend­ July, at which time the fishery left Alaskan waters. ed its king crab exploration into other water immediately Russia harvested king crab from the waters of the adjacent to United States territory. Utilizing floating Sea of Okhotsk and in the Bering Sea off Kamchatka in canneries, ·the Japanese began to harvest king crab in the 1965. Estimated production equalled 420,000 cases, which vicinrty of the Pribilof Islands, along ,the n011thside of the was 42,000 cases above the estimated 1964 production A1asfua Peninsula, and in the Bristol Bay area. level. The annual Japanese :kiing crab pack exceeded 400,- 000 cases by 1930. Beginning as early as 1906, much of UNITED STATES KING CRAB OPERATIONS Japan's king crab output was expmited in canned form United States fishermen began commercial king crab to the United States, and king crab imports from Japan fishing on a small scale in 1920, in Seldovia, Alaska. Only in 1933 exceeded 7 million pounds. a few oases of crab were packed that year, and produc­ The Japanese discontinued king crab fishing during tion in the Ame:11icanking crab industry remained sporadic World War II, but resumed harvesting the crab in the and weak during the next 30 years. A relatively small eastern Bering Sea in 1953. From 1953 to 1959, Japan's amount of king crab was canned during the earlier years annual pack ranged between 60,000 and 70,000 cases. in the three Alaskan communities of Seldovia, Kodiak By 1963, Japan's output had expanded to 235,000 standard and Hoonah. From 1926 to 1934 no commernial canning cases. The entire Japanese catch is processed on factory­ of king crab took place anywhere in the Alaskan Terri­ ships which accompany the fleets of crab-catching ves­ tory. sels. Although both Japan and Russia were using factory­ The Japanese roing crab fleet operating off the coast ships to process king crab during this period, such facili­ of Alaska in 1964 was composed of two foctoryships, ties were not utilized by American king crab processors twelve vessels to set the tangle nets, and about 16 small until 1946. boats to haul and pick the tangle nets. The Japanese The harvesting of king cmb by Amei,icans was pio­ king crab fleet arrived north of the Alaska Peninsula in neered by the operators of small salmon purse seiners. March and remained in that general area until September. These fishermen supplemented their summer income by They harvested enough king crab during this period to fishing for king crab during the winter months when the process 235,000 cases of canned cmb meat. salmon were not running. In this early period the crabs The Russians fost began to fish for filing crab in the were taken only from the areas adjacent to the fisher­ eastern Bering Sea in 1928. They employed two factory men's own villages, because the fishermen lacked the ships and an unknown number of catcher boats during -proper facilities for keeping crabs alive on board their that year and processed 35,000 cases of king crab. By vessels for any substantial length of time. King crab 1930, the Russian fleet had increased to ten vessels. Dur­ must be alive up to the time of processing, and ordinarily ing that year they processed 73,000 cases of king crab. these crustaceans cannot live out of water for more than Russia's annual catch from 1930 to 1939 averaged two and 12 consecutive hours. a quarter million pounds. Larger and more efficient vessels were developed During World War II, the Russians ceased king crab later, fitted with tanks in which crab could be kept alive. fishing in Alaskan waters, but resumed activities in the These vessels enabled the fishermen to harvest crabs eastern Bering Sea in 1959. Since then, the Russians from distances much farther from the processing areas UNIVERSITY OF ALASKA, INSTITUTE OF BUSINESS, ECONOMIC AND GOVERNMENT RESEARCH PAGE 3 without danger of the crabs dying and spoiling before lems of king crab biology and technology, and on the they could be processed. abundance and dist11ilbutionof bhe resource. The objec­ Several factors were responsible for the late develop­ tives of this research were to locate the areas where king ment of the American king crab industry.
Recommended publications
  • Challenging the Cold: Crabs Reconquer the Antarctic
    Ecology, 86(3), 2005, pp. 619±625 q 2005 by the Ecological Society of America CHALLENGING THE COLD: CRABS RECONQUER THE ANTARCTIC SVEN THATJE,1,5 KLAUS ANGER,2 JAVIER A. CALCAGNO,3 GUSTAVO A. LOVRICH,4 HANS-OTTO POÈ RTNER,1 AND WOLF E. ARNTZ1 1Alfred Wegener Institute for Polar and Marine Research, Columbusstr. D-27568 Bremerhaven, Germany 2Biologische Anstalt Helgoland, Foundation Alfred Wegener Institute, Helgoland, Germany 3Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente GuÈiraldes 2160, C1428EHA, Buenos Aires, Argentina 4Consejo Nacional de Investigaciones Cientõ®cas y TeÂcnicas, Centro Austral de Investigaciones Cientõ®cas, CC 92, V9410BFD Ushuaia, Tierra del Fuego, Argentina Abstract. Recent records of lithodid crabs in deeper waters off the Antarctic continental slope raised the question of the return of crabs to Antarctic waters, following their extinction in the lower Miocene ;15 million years ago. Antarctic cooling may be responsible for the impoverishment of the marine high Antarctic decapod fauna, presently comprising only ®ve benthic shrimp species. Effects of polar conditions on marine life, including lowered metabolic rates and short seasonal food availability, are discussed as main evolutionary driving forces shaping Antarctic diversity. In particular, planktotrophic larval stages should be vulnerable to the mismatch of prolonged development and short periods of food avail- ability, selecting against complex life cycles. We hypothesize that larval lecithotrophy and cold tolerance, as recently observed in Subantarctic lithodids, represent, together with other adaptations in the adults, key features among the life-history adaptations of lithodids, potentially enabling them to conquer polar ecosystems. The return of benthic top predators to high Antarctic waters under conditions of climate change would considerably alter the benthic communities.
    [Show full text]
  • Introduction Porcupine Crab (Neolithodes Grimaldii)
    Introduction as the king crab family of which 79 species have been identified throughout the oceans of the world. Male Porcupine Crab (Neolithodes grimaldii) specimens have been measured with a carapace length inhabits the sea bed off the Coast of Newfoundland (CL) of 180 mm and weighing 2.28 kg. Females of the and Labrador in depths beyond 500 fathoms (fm). species do not grow quite as large but carapace lengths This large crab is often caught as a by-catch in the up to 160 mm have been recorded. turbot gillnet fishery. Preliminary experiments with processing limited amounts have shown that marketable crab meat products can be produced from porcupine crab. Attempts have been made to increase the volume of raw material for processing by utilizing the by-catch, either by sectioning the crab onboard the vessel or landing whole crab, iced in boxes. This approach has not proven effective mainly because the crab has to be removed from gillnets which is extremely time consuming, especially when large quantities are involved. Also, fishermen try to avoid porcupine crab as turbot is their main species. It is generally accepted that if the fishery is to develop a method of potting the crab has to be devised. To date this has not been accomplished in spite of two The crab has three pairs of walking legs and separate projects in which various pot designs and bait one pair of claws. The right claw is larger than the left types were set in locations where porcupine crab had and is probably used for crushing while the smaller left been caught in turbot nets.
    [Show full text]
  • Steaks & Chops
    SEAFOOD PLATEAUS USDA PRIME 45 DAY DRY-AGED *Shrimp, Oysters, Clams, Lobster and Crab STEAKS & CHOPS LARGE / COLOSSAL GF *Classic Porterhouse Steak For Two or Four (price per person) GF *Raw Bar Plate for One GF *Bone-in Rib GF *Filet Mignon GF *T-Bone Steak GF Two shrimp, ½ of a One Pound Lobster, Two clams, *Marinated Skirt Steak GF *Petite Filet Mignon GF *Sirloin Steak GF One East Coast oyster and One West Coast oyster GF Lobster Cocktail GF *Clams on the Half Shell GF *Milk Fed Long-Bone Veal Chop GF *Colorado Lamb Chops GF Shrimp Cocktail GF *Oysters on the Half Shell GF Colossal Crab Cocktail GF Add Truffle Foie Gras Butter GF Add Gorgonzola GF Add Cherry Peppers GF APPETIZERS SUSHI/SASHIMI CLASSIC ROLLS Lobster Bisque, Classic creamy bisque, lobster garnish * Toro, blue fin tuna belly GF * Yellowtail, inside out roll with Pan Seared Crab Cake, Lobster sauce, chive oil drizzle, chervil scallions GF Ebi, cooked Shrimp GF Crispy Calamari and Shrimp, Cherry peppers, Mango chili sauce * Spicy Tuna or Salmon or Yellowtail, * Hamachi, yellowtail GF spicy mayo Imported Burrata and Bacon, Applewood bacon, baby arugula, cherry tomato, * Uni, sea urchin GF California, crab meat, cucumber honey balsamic emulsion GF Tako, cooked octopus GF and avocado GF * Toasted Sesame Ahi Tuna, Wasabi aioli, sweet mustard, hoisin, avocado, cucumber, * Hirame, fluke GF Vegetable, tempura avocado asparagus and pickled radish GF Unagi, fresh water eel GF Spider, soft shell crab and avocado Grilled Spanish Octopus, Heirloom tomato, sliced red onion, capers,
    [Show full text]
  • King Crabs Shallow Water Tanner Crabs Shallow Water King Crabs • Bairdi Tanner Crab • Red King Crab • Opilio Tanner Crab • Blue King Crab
    NORTH PACIFC GROUND FISH OBSERVER PROGRAM CRAB IDENTIFICATION The Key Contains 20 Species or Species Groups Eight Prohibited Species of Crab Must be measured and sexed by groundfish observers if found in species composition sample May not be consumed or retained on vessel Twelve Non-Prohibited Species Prohibited Species Crabs Tanner Crabs King Crabs Shallow Water Tanner Crabs Shallow Water King Crabs • Bairdi Tanner crab • Red King crab • Opilio Tanner crab • Blue King crab ________________________ ________________________ Deep Water Tanner Crabs Deep Water King Crabs • Tanneri Tanner crab • Brown King crab • Angulatus Tanner crab • Couesi King crab Key Features of Tanner Crab Carapace Rostrum Eye Frontal Gastric Branchial Branchial Lateral Lateral margin margin Mid-dorsal Posterior margin (L.S. Jademec) Key Features of Ventral Side of Tanner Crabs Chela 6 5 1st, 2nd, 3rd, & 4th walking legs 4 3 2 2 - 6 Abdominal Somites (abdominal flap) (L.S. Jademec) Who’s Who among Tanner Crabs? Deep Water? Shallow Water? Shallow Vs. Deep Water Tanners Deep Water Shallow Water Does NOT Does protrude Lateral Margin protrude beyond beyond Branchial region Branchial region Prominent Branchial Ridges Not prominent branchial ridges Coloration Coloration Ventral Uniform coloration light Lower Lateral Margins Deep water Shallow Water Branchial Regions & Ridges Deep water Shallow Water SHALLOW WATER TANNER Bairdi Tanner Crab 1. 4 pairs of walking legs 2. Lower lateral margin protrudes beyond branchial region 3. Carapace wider than it is long Eyes usually RED 4. Prominently notched epistomal margin “M” 5. Tips of rostrum sharply pointed 6. Rostrum pointed upward Bairdi Tanner Crab Opilio Tanner Crab 1.
    [Show full text]
  • How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s).
    [Show full text]
  • Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralithodes Camtschaticus) Fishery
    NOAA Technical Memorandum NMFS-AFSC-20 Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralithodes camtschaticus) Fishery by J. E. Reeves U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 1993 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Reeves, J. E. 1993. Use of lower minimum size limits to reduce discards in the Bristol Bay red king crab (Paralithodes camtschaticus) fishery. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-20, 16 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-20 Use of Lower Minimum Size Limits to Reduce Discards in the Bristol Bay Red King Crab (Paralifhodes camtschaticus) Fishery by J. E. Reeves Alaska Fisheries Science Center 7600 Sand Point Way N.E., BIN C-15700 Seattle, WA 98115-0070 U.S. DEPARTMENT OF COMMERCE Ronald H.
    [Show full text]
  • Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values
    water Article Cannibalism and Habitat Selection of Cultured Chinese Mitten Crab: Effects of Submerged Aquatic Vegetation with Different Nutritional and Refuge Values Qingfei Zeng 1,*, Erik Jeppesen 2,3, Xiaohong Gu 1,*, Zhigang Mao 1 and Huihui Chen 1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Z.M.); [email protected] (H.C.) 2 Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; [email protected] 3 Sino-Danish Centre for Education and Research, University of CAS, Beijing 100190, China * Correspondence: [email protected] (Q.Z.); [email protected] (X.G.) Received: 26 September 2018; Accepted: 26 October 2018; Published: 29 October 2018 Abstract: We examined the food preference of Chinese mitten crabs, Eriocheir sinensis (H. Milne Edwards, 1853), under food shortage, habitat choice in the presence of predators, and cannibalistic behavior by comparing their response to the popular culture plant Elodea nuttallii and the structurally more complex Myriophyllum verticillatum L. in a series of mesocosm experiments. Mitten crabs were found to consume and thus reduce the biomass of Elodea, whereas no negative impact on Myriophyllum biomass was recorded. In the absence of adult crabs, juveniles preferred to settle in Elodea habitats (appearance frequency among the plants: 64.2 ± 5.9%) but selected for Myriophyllum instead when adult crabs were present (appearance frequency among the plants: 59.5 ± 4.9%). The mortality rate of mitten crabs in the absence of plant shelter was higher under food shortage, primarily due to cannibalism.
    [Show full text]
  • Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2020 doi:10.20944/preprints202009.0263.v1 Article Prospects of Red King Crab Hepatopancreas Processing: Fundamental and Applied Biochemistry Tatyana Ponomareva 1, Maria Timchenko 1, Michael Filippov 1, Sergey Lapaev 1, and Evgeny Sogorin 1,* 1 Federal Research Center "Pushchino Scientific Center for Biological Research of the RAS", Pushchino, Russia * Correspondence: [email protected]; Tel.: +7-915-132-54-19 Abstract: Since the early 1980s, a large number of research works on enzymes from the red king crab hepatopancreas have been conducted. These studies have been relevant both from a fundamental point of view for studying the enzymes of marine organisms and in terms of the rational management of nature to obtain new and valuable products from the processing of crab fishing waste. Most of these works were performed by Russian scientists due to the area and amount of waste of red king crab processing in Russia (or the Soviet Union). However, the close phylogenetic kinship and the similar ecological niches of commercial crab species and the production scale of the catch provide the bases for the successful transfer of experience in the processing of red king crab hepatopancreas to other commercial crab species mined worldwide. This review describes the value of recycled commercial crab species, discusses processing problems, and suggests possible solutions to these problems. The main emphasis is placed on the enzymes of the hepatopancreas as the most highly salubrious product of waste processed from red king crab fishing. Keywords: marine fisheries; aquatic organisms; brachyura; anomura; commercial crab species; red king crab; Kamchatka crab; processing waste; hepatopancreas; waste recycling; enzymes; proteases; hyaluronidase 1.
    [Show full text]
  • Atlantic King Crab (Lithodes Maja)
    Emerging Species Profile Sheets Department of Fisheries and Aquaculture Atlantic King Crab (Lithodes maja) Common Names: Northern Stone Crab Description, Distribution and Biology The Atlantic King crab or stone crab is a bottom dwelling crustacean from the family Lithodidae. It is one of two species of king crab found in the northwest Atlantic, the other being the red atlantic king crab (Neolithodes grimaldii). Like other members of the family, it has a pear shaped carapace and appendages covered with short sharp spines (Fig.1). This species can grow to a similar size as snow crab, generally not exceeding 2.0 kg in weight and a carapace length of 12 cm. It also possesses unique characteristics associated with deep-sea crab, including a bright orange Figure 1. Atlantic King crab. Source: Department of Fisheries and or red colouring and highly developed Aquaculture, St. John’s, NL. bronchial chambers. Males reach maturity at a carapace width of approximately 9.8 cm while females mature at a carapace width of 6.5 cm. There is little information regarding the life history and biology of this species, however it is not considered exceptionally fertile, in comparison to other crab species such as the snow crab (Chionoecetes opilio). Like all other crab species, the atlantic king crab will moult or shed its shell to grow. After discarding the old shell the crab will take in water and swell to a larger size. The new shell hardens after several months. Moulting decreases as the crab matures and its growth increment diminishes. The atlantic king crab typically targets small mussels, snail, scallop, worms and crustaceans as a food source.
    [Show full text]
  • King Crab Life History Poster V3
    Early Life History of King Crabs, Paralithodes camtschaticus and P. platypus Bradley G. Stevens1, Kathy Swiney2, and Sara Persselin2 Red and blue king crabs (Paralithodes camtschaticus and P. platypus, respectively) supported valuable commercial fisheries in the Bering Sea. In 1998, populations of blue king crabs declined dramatically and its fishery was closed. Research on king crab life history has focused on the first year of life, from fertilization, through embryo development, hatching, larval development, settling, and juvenile growth. This poster documents important events in the life cycle of the king crab. King crabs extrude eggs within 24 hr of mating, and they Blue king crab female with fertilized eggs Red king crab female are fertilized with spermatophores deposited by the male crab. Stages of development are shown below. On day 1, the fertilized egg is about 1 mm in By day 12, the eggs are at the 256-512 cell stage. The embryo becomes apparent after about 4 months. diameter. It does not start to divide until day 4, At this point, only the eyes, abdomen, and mouthparts after which it undergoes one division daily are visible. Yolk Eye Heart Abdomen At 13 months (388 days), the eyes are large, and the About 6 months after fertilization, the eyes begin to embryo is almost ready to hatch. The egg is 1.3 mm in form as small crescent slivers. Yolk occupies most of diameter, and only a small amount of yolk remains. the egg. Chromatophores (red color cells) are easily seen. The abdomen (tail) is wrapped around and over the head.
    [Show full text]
  • Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
    DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays).
    [Show full text]
  • Alaska King Crab Expedition Begins Second Part Of
    DEPARTMENTOF THE INTERIOR ~NFORMATZ~N SERVICE FIS4 AKD W1LDLJ.F~ S4RVICE For Belease FRIDAY, FEBRUARY28, 1941. AIXSYA KIiiJG CR45 EXPEDITION BEGIMS SECOKDPART OF STUDY With the departure from Seattle of the seiners Chamnion and Locks, explora- tory operations for the giant King crab are being resumed for the spring season in Alaskan waters, the Fish and Wildlife Service reported to Secretary of the In- terior Harold L. Ickes today. The newer schooner, Dorothy, preceded the seiners, and is now in southeastern Alaska waters. To locate the areas in Alaskan waters where King crabs are found in greatest abundance is the main objective of this second ?art of the crab investigation, for which Congress appropriated $100,000. The chief purpose of the entire venture is to determine the possibility of establishing an American commercial fishery for this sqecies of crab. Although Japanese 2ackers havs conducted a fishery for these crabs for many years off the Asiatic Coast, United States firms have not exploited a similar American fishery. This has been dxe principally to lack of adequate information regarding the areas in which the crabs are found, their abundance, movement, or methods by which they can be taken <ommercially. The first nhase of the investigation, which began last September, was con- cerned primarily with seeking data on seasonal migration of these crabs, their habitat and habits, as well as the most efficient and economical methods for catching and packing them. This was concluded in December when the floating can- nery Tondeleyo and the fishing boat Dorothy returned to Seattle frem a successful 3-month trip to Alaskan waters, bringing back their pack of United States canned crab meat for testing in the food laboratories of the Service.
    [Show full text]