Deserts Formandthephysical That Createtheconditionsinwhich Focus Ontheclimaticextremes Living Indesertareas

Total Page:16

File Type:pdf, Size:1020Kb

Deserts Formandthephysical That Createtheconditionsinwhich Focus Ontheclimaticextremes Living Indesertareas Chapter focus 7 Learning focus Deserts Deserts are sparse and extreme. Unlike rainforests and coral reefs, life struggles to exist. Human impact is limited but well adapted to the harsh conditions. At the other Deserts are stark but spectacular Geographical tools end of the atmospheric movements environments, portrayed in books and motion pictures as places of adventure and Maps that create the conditions suitable mystery. They have very little precipitation • use various types of maps for tropical rainforests, the and high levels of evaporation, leading • locate features using latitude and longitude, plants and animals of the desert to scattered vegetation and highly area and grid references live with little of Earth’s most adapted flora and fauna. Almost one • identify physical and cultural features on a Definitions map important compound—water. The third of Earth’s land surface is classified aeolian—processes to do with the wind GLOBAL ENVIRONMENTS • measure distances on a map using linear arable—land that is capable of growing crops as arid or semi‑arid desert. This global scale adaptations and ingenuity of its arid—dry, parched climate or land environment is located on every continent inhabitants make deserts fascinating • use the points of the compass to determine atmospheric pressure—the weight of the air on the environments to study. except Europe. Geographers study direction Earth’s surface the geographical processes in desert • identify and interpret relief desertification—the spread of desert lands and land Students can get a sense of the degradation across more arable land environments and the adaptations people • construct a sketch map desert through some of the many ecosystem—a community of organisms interacting with one have made to live in them. Graphs and statistics another and with the environment in which they live movies using the desert as their • identify and calculate maximum and evaporation—the process by which water turns from liquid backdrop. Some films, such as The minimum, total, range, rank and average to vapour • construct and interpret bar, column, climatic nomadic—a lifestyle where people move around an Gods Must Be Crazy and Walkabout environment to a range of locations, usually related to the Syllabus outcomes and proportional graphs also give a glimpse of the life and seasons and the availability of food A student: Photographs oasis—an area in the desert where groundwater is close to character of the indigenous people the surface and plants can grow 4.1 identifies and gathers geographical information • draw a line drawing playa—a flat basin in the desert that is covered in water every living in desert areas. • collect and interpret photographic images 4.2 organises and interprets geographical so often To study deserts, students will information • distinguish between oblique, aerial, ground‑ salinisation—the process by which soil and water become focus on the climatic extremes 4.3 uses a range of written, oral and graphic forms level photographs and satellite imagery salty due to salts moving in soils to communicate geographical information ICT semi-arid—the transition zone between desert and grassland that create the conditions in which that receives an average 250–500 millimetres of rain per year 4.4 uses a range of geographical tools • collect and interpret electronic information deserts form and the physical subsistence—crops or food grown to satisfy a community 4.6 describes the geographical processes that • design and create a multimedia presentation and not for sale processes that shape the desert form and transform environments subtropical—climates close to the Tropics of Cancer and landscape. Life is simple but 4.8 describes the interrelationships between Capricorn but not between them delicate, with each plant and people and environments sustainable—using resources in a way that does not degrade 4.10 explains how geographical knowledge, them animal depending on only a few understanding and skills combine with wadi—a stream or river course in a valley of a desert others for survival. Human impacts, knowledge of civics to contribute to informed xerophyte—a plant adapted to living in the desert or in citizenship drought directly through activities such as mining, or indirectly through climate change, can have marked effects on the environment. ICT/Research skills Sample pages The year 2006 was designated by the United Nations to be the International Year of Deserts and Desertification. World Environment Day 2006 was therefore dedicated to raising the awareness of the environmental issues facing desert regions and the large numbers of people who live in these areas. Look up the United Nations Environment Programme website at http://www. unep.org/wed/2006/english/Information_Material/index.asp and have a look at the multimedia presentation on the issue of deserts and desertification. This short film shows some graphic images on the environmental and human issues facing many of the desert regions of the world. The website also features other presentations, booklets and posters that can be used as stimulus material. They are free to download for non-commercial, educational purposes. Chapter 7 Deserts 157 ARCTIC OCEAN 1 662°N Siberia Arctic 7.1 7.4 The global distribution of desert environments Circle Focus 7.1 World deserts Kara Kum Syrian Gobi ATLANTIC OCEAN Answers to Desert Chihuahuan Desert Deserts are spread around the world. Negev Taklimakan Great activities 1 Basin 232°N Sahara Thar Desert Tropic of They are found in all continents and their people Desert Sonoran Cancer Desert Mojave except Europe. The people who Libyan Rub’ al-Khali Desert Peruvian Knowledge 0° Desert Nubian PACIFIC OCEAN Desert Equator make their homes in these harsh Deserts cover about 30 per cent of Earth’s land surface Desert SOUTH 1 Deserts are environments that and their area is increasing. They cover parts of at least environments are equally diverse. Great Sandy Desert AMERICA 40 countries. All deserts have low rainfall but they are 1 Tanami Desert Atacama receive low rainfall. They can 232°S Tropic of Many of these groups have been the not all the same in appearance—there are different Desert Namib INDIAN OCEAN Simpson Desert Capricorn be cold or hot, but they are types of deserts. People have always lived in the desert N stuff of stories and legends, such as Desert Gibson Desert Sturt Stony Desert environment and there are communities associated with always dry. the Navajo of the Mojave Desert in Kalahari Great Victoria Desert Patagonian Desert specific desert locations. Desert 2 Deserts cover 30 per cent of the the USA, the Mongols from the Gobi Earth’s land surface. 661°S Desert in Mongolia, and the Bedouin What are deserts? 2 SOUTHERN OCEAN Antarctic Circle 3 Typically, hot deserts are found from Saudi Arabia. In this unit, Deserts are environments that receive very low rainfall. Antarctica Deserts can be hot or cold, but they are always dry. They Key Hot dry desert Rainshadow desert Monsoon desert Cold Ocean in latitudes 30°N and 30°S. students will identify the location 0 2000 4000 km support sparse and specialised vegetation and limited Mid-latitude desert Coastal desert Polar desert currents 4 The six main types of deserts of deserts around the world and populations of animals and people. are: learn of the communities that have A desert environment can be classified as: 7.5 Deserts (excluding polar lands), their people and area • hot, dry deserts or trade • extremely arid—where there might be no precipitation survived in each location. 7.1 A Berber woman Activities for years, for example the Atacama Desert of Chile, of the Sahara Rank Name Location Communities Area wind deserts South America of people (× 1000 km2) Knowledge • mid-latitude or semi-arid • arid—where there is less than 250 millimetres of rain 1 Sahara North Africa Taureg, Berber, 9065 1 What is the definition of a desert? per year, for example the Sahara of northern Africa desert Nubian 2 How much of Earth’s land surface is covered by desert? • semi-arid—where there is between 250 and types of deserts • rainshadow deserts 2 Gobi Mongolia and Mongol 1295 3 Where are typical hot, dry deserts generally found? 500 millimetres of rain annually and usually in a There are six main types of deserts, as summarised in the • coastal deserts Vocabulary China 4 Name the six main types of deserts. distinct wet season, for example the Tanami Desert in table below. the Northern Territory, Australia. 3 Patagonia Argentina Mapuche 673 5 What is the largest desert in the world? Where is it located • monsoon deserts preview 7.3 Main types of desert environment and what communities of people live there? 4 Rub’ al-Khali Saudi Arabia Bedouin, 650 • polar deserts. Where are deserts Name Location Examples Qashquai Skills 5 The largest desert is the arid leeward located? Hot, dry desert or Close to or between Sahara, Simpson, 5 Kalahari Southern !Kung, San 582 6 Use an atlas and 7.3 to name 10 countries that contain Sahara, which is located trade wind desert 20º and 30ºN and Great Victoria, deserts. The world map in 7.4 shows the global distribution of Africa 20º and 30ºS Kalahari, Rub al-Khali in North Africa. Three Atacama Mojave deserts. Deserts are not restricted by latitude, longitude or 7 Refer to 7.4. Draw a column graph to show the area of the 6 Chihuahuan United States; Huichol 455 six largest deserts. communities of people live in height above sea level, but in general the typical hot, dry Mid-latitude or semi- Between 30º and 50º Sonoran, Gobi, Negev, Mexico global distribution rainshadow deserts are located between 20° and 30°N and between arid desert from the Equator Sinai, Patagonian, Application this desert: the Taureg, Berber 20° and 30°S due to global patterns of air circulation.
Recommended publications
  • 38 Antarctic Dry Valleys
    38 Antarctic Dry Valleys: 1. The Antarctic environment and the Antarctic Dry Valleys. 2. Cold-based glaciers and their contrast with wet-based glaciers. 3. Microclimate zones in the Antarctic Dry Valleys (ADV) and their implications. 4. Landforms on Earth and Mars: A comparative analysis of analogs. 5. Biological activity in cold-polar deserts. 6. Problems in Antarctic Geoscience and their application to Mars. The Dry Valleys: A Hyper-Arid Cold Polar Desert Temperate Wet-Based Glaciers Cold-Based Glaciers Antarctic Dry Valleys: Morphological Zonation, Variable Geomorphic Processes, and Implications for Assessing Climate Change on Mars Antarctic Dry Valleys • 4000 km2; Mountain topography – (2800 m relief). • Coldest, driest desert on Earth. • Mean annual temperature: -20o C. • Mean annual snowfall (CWV): – Min. = <0.6 cm; Max. = 10 cm. – Fate of snow: Sublimate or melt. • A hyperarid cold polar desert. • Topography controls katabatic wind flow: – Funneled through valleys, warmed by adiabatic compression. – Enhances surface temperatures, increases sublimation rates of ice and snow. • Bedrock topography governs local distribution of snow and ice: • Biology sparse: ~1 mm “Antarctic mite”; microscopic nematodes. • Environment very useful for understanding Mars climate change. Antarctic Dry Valleys • 4000 km2; Mountain topography – (2800 m relief). • Coldest and driest desert on Earth. • Mean annual temperature: -20o C. • Mean annual snowfall (CWV): – Minimum = <0.6 cm; Maximum = 10 cm. – Fate of snow: Sublimate or melt. • Generally a hyperarid cold polar desert. • Topography controls katabatic wind flow: – Funneled through valleys, warmed by adiabatic compression. – Enhance surface temperatures, increase sublimation rates of ice and snow. • Bedrock topography governs local distribution of snow and ice: • Biology sparse: ~1 mm-sized “Antarctic mite”; microscopic nematodes.
    [Show full text]
  • Educator Guide
    E DUCATOR GUIDE This guide, and its contents, are Copyrighted and are the sole Intellectual Property of Science North. E DUCATOR GUIDE The Arctic has always been a place of mystery, myth and fascination. The Inuit and their predecessors adapted and thrived for thousands of years in what is arguably the harshest environment on earth. Today, the Arctic is the focus of intense research. Instead of seeking to conquer the north, scientist pioneers are searching for answers to some troubling questions about the impacts of human activities around the world on this fragile and largely uninhabited frontier. The giant screen film, Wonders of the Arctic, centers on our ongoing mission to explore and come to terms with the Arctic, and the compelling stories of our many forays into this captivating place will be interwoven to create a unifying message about the state of the Arctic today. Underlying all these tales is the crucial role that ice plays in the northern environment and the changes that are quickly overtaking the people and animals who have adapted to this land of ice and snow. This Education Guide to the Wonders of the Arctic film is a tool for educators to explore the many fascinating aspects of the Arctic. This guide provides background information on Arctic geography, wildlife and the ice, descriptions of participatory activities, as well as references and other resources. The guide may be used to prepare the students for the film, as a follow up to the viewing, or to simply stimulate exploration of themes not covered within the film.
    [Show full text]
  • Plants, Volume 1, Number 1 (August 1979)
    Desert Plants, Volume 1, Number 1 (August 1979) Item Type Article Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 02/10/2021 01:18:53 Link to Item http://hdl.handle.net/10150/528188 Volume I. Number 1. August 1979 Desert Published by The University of Arizona for the Plants Boyce Thompson Southwestern Arboretum Assisting Nature with Plant Selection4 Larry K. Holzworth Aberrant Sex -Ratios in Jojoba Associated with Environmental Factors 8 Serena L. Cole 'J. G. Lemmon & Wife,' Plant Explorers in Arizona, California, and Nevada12 Frank S. Crosswhite 'Extinct' Wire -Lettuce, Stephanomeria schottii (Compositae), Rediscovered in Arizona after More Than One Hundred Years22 Elinor Lehto Southwestern Indian Sunflowers23 Gary Paul Nabhan Transition from a Bermudagrass Lawn to a Landscape of Rock or Gravel Mulch 27 Charles Sacamano Preliminary Evaluation of Cold- hardiness in Desert Landscaping Plants at Central Arizona College29 William A. Kinnison Effects of the 1978 Freeze on Native Plants of Sonora, Mexico33 Warren D. Jones The Severe Freeze of 1978 -79 in the Southwestern United States37 The National Climate Program Act of 197840 Reviews42 Arboretum Progress46 R. T. McKittrick Volume 1. Number 1. August 1979 Published by The University of Arizona Desert Plants for the Boyce Thompson Southwestern Arboretum The Severe Freeze of 1978 -79 in the Contents Southwestern United States37 Correspondents: Editorial Barrie D. Coate, Saratoga Horticultural Foundation; Dara E. Emery, Santa Barbara Botanic Garden; Louis C. Assisting Nature with Plant Selection 4 Erickson, Botanic Gardens, University of California, River- Larry K. Holzworth, USDA Soil Conservation side; Wayne L.
    [Show full text]
  • World Deserts
    HISTORY AND GEOGRAPHY World Deserts Reader Frog in the Australian Outback Joshua tree in the Mojave Desert South American sheepherder Camel train across the Sahara Desert THIS BOOK IS THE PROPERTY OF: STATE Book No. PROVINCE Enter information COUNTY in spaces to the left as PARISH instructed. SCHOOL DISTRICT OTHER CONDITION Year ISSUED TO Used ISSUED RETURNED PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted. 1. Teachers should see that the pupil’s name is clearly written in ink in the spaces above in every book issued. 2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad. World Deserts Reader Creative Commons Licensing This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You are free: to Share—to copy, distribute, and transmit the work to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation (www.coreknowledge.org) made available through licensing under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial—You may not use this work for commercial purposes. Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • Water Tracks and Permafrost in Taylor Valley, Antarctica: Extensive and Shallow Groundwater Connectivity in a Cold Desert Ecosystem
    Downloaded from gsabulletin.gsapubs.org on October 11, 2011 Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem Joseph S. Levy1,†, Andrew G. Fountain1, Michael N. Gooseff2, Kathy A. Welch3, and W. Berry Lyons4 1Department of Geology, Portland State University, Portland, Oregon 97210, USA 2Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA 3Byrd Polar Research Center and the School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, USA 4The School of Earth Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT sent a new geological pathway that distrib- 1999). The goal of this paper is to integrate utes water, energy, and nutrients in Antarctic permafrost processes that route water through Water tracks are zones of high soil mois- Dry Valley, cold desert, soil ecosystems, pro- active-layer soils into the Antarctic cold desert ture that route water downslope over the viding hydrological and geochemical connec- hydrogeological paradigm. ice table in polar environments. We present tivity at the hillslope scale. Do Antarctic water tracks represent isolated physical, hydrological, and geochemical evi- hydrological features, or are they part of the dence collected in Taylor Valley, McMurdo INTRODUCTION larger hydrological system in Taylor Valley? Dry Valleys, Antarctica, which suggests that How does water track discharge compare to previously unexplored water tracks are a sig- The polar desert of the McMurdo Dry Val- Dry Valleys stream discharge, and what roles do nifi cant component of this cold desert land leys, the largest ice-free region in Antarctica, water tracks play in the Dry Valleys salt budget? system and constitute the major fl ow path is a matrix of deep permafrost, soils, glaciers, What infl uence do water tracks have on Antarc- in a cryptic hydrological system.
    [Show full text]
  • Abundance of Microflora in S08s of Desert Regions
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-7378 Abundance of Microflora in S08s of Desert Regions Roy E. Cameron i JET PROP ON LABORATORY CALIFORNIA TUTE OF TECHNOLOGY PASADENA, CALIFORNIA May 15,1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Report 32-7378 Abundance of Microflora in Soils of Desert Regions Roy E. Cameron JET PROPULSION LABORATORY CALlFORNlA INSTITUTE OF TECHNOLOGY PASAD E NA, CA 1 I FO RN IA May 15,1969 TECHNICAL REPORT 32-1378 Copyright 0 1969 Jet Propulsion laboratory California Institute of Technology Prepared Under Contract No. NAS 7-100 National Aeronautics and Space Administration Preface The work described in this report was performed by the Space Sciences Division of the Jet Propulsion Laboratory. JPL TECHNlCAL REPORT 32-I378 iii Acknowledgment The author wishes to acknowledge the assistance of the Office of Antarctic Programs, National Science Foundation, for arranging the logistic support for the Antarctic portion of this study and to acknowledge the soil analyses assistance: most of the soil physical and chemical analyses were performed by G. B. Blank, G. Conrey, H. P. Conrow, E. S. Babcock and Sons (Riverside, Calif.), and Elek Microanalytical Labs. (Torrance, Calif.), and most of the soil microbiological analyses were performed by D. R. Gensel with some of the analyses performed by C. N. David, J. King, and F. A. Morelli. Also, the author wishes to thank the photograph contributors: G. B. Blank (Fig. l), J. C. F. Tedrow (Fig. 6), and H. Weetall (Fig. 7). iv JPL TECHNICAL REPORT 32- 1378 Contents 1. Introduction . 1 II. Materials and Methods .
    [Show full text]
  • {FREE} Desert Ebook
    DESERT PDF, EPUB, EBOOK J. M. G. Le Clezio,C. Dickson | 368 pages | 01 Feb 2010 | ATLANTIC BOOKS | 9781848873803 | English | London, United Kingdom Desert PDF Book Desert Desertification Polar desert List of deserts List of deserts by area. In spite of the dryness, however, some animals and plants have adapted to desert life and thrive in these harsh environments. Annual Review of Anthropology. Reinhold, Desert emphasizes lack of water though not specifically high temperature ; it refers to a dry, barren, treeless region, usually sandy: a high-altitude frozen desert. Project Category Commons. Amphibians that pass through larval stages have accelerated life cycles, which improves their chances of reaching maturity before the waters evaporate. Great to make with the kids, especially for cupcakes. Most deserts have a considerable amount of specialized vegetation, as well as specialized vertebrate and invertebrate animals. This cake was sent home from our children's school. Soft Oatmeal Cookies Rating: Unrated. While different animals live in different types of deserts, the dominant animals of warm deserts are reptiles, including snakes and lizards, small mammals, such as ground squirrels and mice, and arthropods, such as scorpions and beetles. They took with them their tents made of cloth or skins draped over poles and their diet included milk, blood and sometimes meat. Phrases Related to desert desert island just deserts. The whirling airborne grains act as a sand blasting mechanism which grinds away solid objects in its path as the kinetic energy of the wind is transferred to the ground. A meringue-utan. The mean annual precipitation ranges from cm.
    [Show full text]
  • 9 Polar Lakes, Streams, and Springs As Analogs for the Hydrological Cycle on Mars
    9 Polar Lakes, Streams, and Springs as Analogs for the Hydrological Cycle on Mars Christopher P. McKay, Dale T. Andersen, Wayne H. Pollard, Jennifer L. Heldmann, Peter T. Doran, Christian H. Fritsen, John C. Priscu The extensive fluvial features seen on the surface of Mars attest to the stable flow of water on that planet at some time in the past. However the low erosion rates, the sporadic distribution of the fluvial features, and computer simulations of the climate of early Mars all suggest that Mars was quite cold even when it was wet. Thus, the polar regions of the Earth provide potentially important analogs to conditions on Mars during its wet, but cold, early phase. Here we review studies of polar lakes, streams, and springs and compare the physical and geological aspects of these features with their possible Martian counterparts. Fundamentally, liquid water produced by summer melts can persist even when the mean annual temperature is below freezing because ice floats over liquid and provides an insulating barrier. Life flourishes in these liquid water habitats in Earth’s polar regions and similarly life may have been present in ice-covered lakes and permafrost springs on Mars. Evidence for past life on Mars may therefore be preserved in the sediments and mineral precipitates associated with these features. 9.1 Polar Hydrology There are several regions on Earth where mean annual temperatures are well below freezing and yet liquid water persists in these locales. Such polar regions provide an excellent analog to study the hydrological cycle under conditions that have prevailed in the polar desert environment of Mars.
    [Show full text]
  • Aeolian Sediments of the Mcmurdo Dry Valleys, Antarctica a Thesis Presented in Partial Fulfillment of the Requirements for the D
    Aeolian Sediments of the McMurdo Dry Valleys, Antarctica A Thesis Presented in Partial Fulfillment of the Requirements for The Degree Master of Science in the Graduate School of The Ohio State University By Kelly Marie Deuerling, B.S. Graduate Program in Geological Sciences The Ohio State University 2010 Master‘s Examination Committee: Dr. W. Berry Lyons, Advisor Dr. Michael Barton Dr. Garry D. McKenzie Copyright by Kelly Marie Deuerling 2010 ABSTRACT The role of dust has become a topic of increasing interest in the interface between climate and geological/ecological sciences. Dust emitted from major sources, the majority of which are desert regions in the Northern Hemisphere, is transported via suspension in global wind systems and incorporated into the biogeochemical cycles of the ecosystems where it is ultimately deposited. While emissions within the McMurdo Dry Valleys (MDV) region of Antarctica are small compared to other source regions, the redistribution of new, reactive material by wind may be important to sustaining life in the ecosystem. The interaction of the dry, warm foehn winds and the cool, moist coastal breezes ―recycles‖ soil particles throughout the landscape. The bulk of sediment movement occurs during foehn events in the winter that redistribute material throughout the MDV. To understand the source and transfer of this material samples were collected early in the austral summer (November 2008) prior to the initiation of extensive ice melt from glacial and lake surfaces, aeolian landforms, and elevated sediment traps. These were preserved and processed for grain size distribution and major element composition at the sand and silt particle sizes.
    [Show full text]
  • A Guide to North American Grasslands
    Desert Volume 29, Number 2 Published by The University of Arizona for Plants the Boyce Thompson Arboretum A Guide to North American Grasslands David E. Brown and Elizabeth Makings Relict Great Basin Shrub-Grassland near Wupatki National Monument northeast of Flagstaff, Coconino County, Arizona, 1,650 m (5,413 ft). Volume 29, Number 2 Desert Plants Published by The University of Arizona for the Boyce Thompson Arboretum A journal devoted to broadening knowledge of plants 37615 E US Highway 60 indigenous or adapted to arid and sub-arid regions and Superior, AZ 85173 to encouraging the appreciation of these plants. Copyright 2014. The Arizona Board of Regents on Mark D. Siegwarth, editor behalf of The University of Arizona. The Boyce [email protected] Thompson Arboretum at Superior, Arizona, is cooperatively managed by the Boyce Thompson Production Director: Kim Stone Southwestern Arboretum, Inc., The University of Arizona, and Arizona State Parks. Boyce Thompson Arboretum From the editor As Desert Plants begins its 35th year with a new staff, it in editorship comes the opportunity to rethink what Desert seems somewhat appropriate that as we begin a new chap- Plants is and could be. Desert Plants is devoted to broad- ter in the history of Desert Plants, we start with A Guide ening knowledge of plants indigenous or adapted to arid to North American Grasslands by David E. Brown and Eliza- and sub-arid regions and to encouraging the appreciation of beth Makings. Probably one of the most quoted, used and these plants. With such a broad mandate, it is open to vari- reprinted issues of Desert Plants to this day is Volume 4, ous interpretations.
    [Show full text]
  • Polar Regions (Arctic and Antarctic)
    16 Polar Regions (Arctic and Antarctic) OLEG ANISIMOV (RUSSIA) AND BLAIR FITZHARRIS (NEW ZEALAND) Lead Authors: J.O. Hagen (Norway), R. Jefferies (Canada), H. Marchant (Australia), F. Nelson (USA), T. Prowse (Canada), D.G. Vaughan (UK) Contributing Authors: I. Borzenkova (Russia), D. Forbes (Canada), K.M. Hinkel (USA), K. Kobak (Russia), H. Loeng (Norway), T. Root (USA), N. Shiklomanov (Russia), B. Sinclair (New Zealand), P. Skvarca (Argentina) Review Editors: Qin Dahe (China) and B. Maxwell (Canada) CONTENTS Executive Summary 80 3 16 . 2 . 6 . Arctic Hydrology 82 1 16 . 2 . 6 . 1 . Changes in Precipitation, Snow 16 . 1 . Po l a r Re g i o n s 80 7 Accumulation, and Spring Melt 82 3 16 . 1 . 1 . Previous Work—Summary of Special Report 16 . 2 . 6 . 2 . Surface Water Budgets on Regional Impacts of Climate Change 80 7 and Wet l a n d s 82 3 16 . 1 . 2 . Distinctive Characteristics of Polar Regions 80 9 16 . 2 . 6 . 3 . Ecological Impact of 16 . 1 . 3 . Climate Change in the 20th Century 81 0 Changing Runoff Regimes 82 3 16 . 1 . 3 . 1 . The Arctic 81 0 16 . 2 . 6 . 4 . Sensitivity of Arctic Ocean 16 . 1 . 3 . 2 . The An t a r c t i c 81 2 to River Flow 82 4 16 . 1 . 4 . Scenarios of Future Change 81 3 16 . 2 . 7 . Changes in Arctic Biota 82 4 16 . 2 . 7 . 1 . Impacts of Climate Change on 16 . 2 . Key Regional Concerns 81 4 Arctic Terrestrial Environments 82 4 16 . 2 . 1 .
    [Show full text]
  • Exposure-Age Data from Across Antarctica Reveal Mid-Miocene Establishment of Polar Desert Climate
    https://doi.org/10.1130/G47783.1 Manuscript received 20 April 2020 Revised manuscript received 30 July 2020 Manuscript accepted 3 August 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 September 2020 Exposure-age data from across Antarctica reveal mid-Miocene establishment of polar desert climate Perry Spector and Greg Balco Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA ABSTRACT erosion occurs. Hence, for surfaces that have High-elevation rock surfaces in Antarctica have some of the oldest cosmogenic-nuclide been eroded and/or covered by ice, till, or other exposure ages on Earth, dating back to the Miocene. A compilation of all available 3He, material for a portion of their history, apparent 10Be, and 21Ne exposure-age data from the Antarctic continent shows that exposure histo- exposure ages underestimate true cumulative ries recorded by these surfaces extend back to, but not before, the mid-Miocene cooling at exposure durations, and thus they are strictly 14–15 Ma. At high elevation, this cooling entailed a transition between a climate in which lower limits. liquid water and biota were present and could contribute to surface weathering and erosion, The ICE-D:ANTARCTICA database docu- and a polar desert climate in which virtually all weathering and erosion processes had been ments ∼3700 samples that were collected for shut off. This climate appears to have continued uninterrupted between the mid-Miocene exposure-dating purposes, ∼2600 of which and the present. have measurements of 3He, 10Be, and/or 21Ne.
    [Show full text]