9 Polar Lakes, Streams, and Springs As Analogs for the Hydrological Cycle on Mars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Bio)Chemical Complexity in Icy Satellites, with a Focus on Europa
Searching for (bio)chemical complexity in icy satellites, with a focus on Europa Contact Scientist: Olga Prieto-Ballesteros ([email protected]) Centro de Astrobiología (CSIC-INTA) Ctra. De Ajalvir km. 4, 28850 Torrejón de Ardoz. Madrid. Spain VOYAGE 2050. Searching for (bio)chemical complexity in icy satellites, with a focus on Europa TABLE OF CONTENTS TABLE OF CONTENTS 1 1. EXECUTIVE SUMMARY 2 2. THE SCIENCE QUESTION 3 2.1 BASIS OF THE STRATEGY TO SEARCH FOR LIFE IN THE SOLAR SYSTEM 3 2.2 THE SEARCH FOR COMPLEXITY 5 3. THE SPACE MISSION STRATEGY 7 3.1 MISSION DESTINATION: EUROPA 7 3.1.1 Main elements of the mission 8 3.1.2 Exploration of the plumes 10 3.2 THE MISSION IN A WORLDWIDE CONTEXT 11 4. TECHNOLOGICAL CHALLENGES 12 4.1 Europa orbiter 12 4.2 Europa lander 12 4.3 Europa ocean explorer 13 4.4 Europa jumper 14 4.5 Key Instrumentation 14 5. MEMBERS OF THE PROPOSER TEAM 16 6. REFERENCES 18 1 VOYAGE 2050. Searching for (bio)chemical complexity in icy satellites, with a focus on Europa SEARCHING FOR (BIO)CHEMICAL COMPLEXITY IN ICY SATELLITES, WITH A FOCUS ON EUROPA 1. EXECUTIVE SUMMARY Organic chemistry is ubiquitous in the Solar System. A significant repertoire of organic molecules has been detected in bodies outside the Earth (e.g., in meteorites, in cometary nuclei, on Mars or on icy moons), but none of the detected organic mixtures has enough complexity to indicate Life. There are a number of potentially habitable bodies in the solar system where water, chemical gradients and energy coexist, in particular Mars and the icy moons of the giant planets. -
NITROGEN on MARS: INSIGHTS from CURIOSITY. J. C. Stern1 , B. Sutter2, W. A. Jackson3, Rafael Na- Varro-González4, Christopher P
Lunar and Planetary Science XLVIII (2017) 2726.pdf 1 2 3 NITROGEN ON MARS: INSIGHTS FROM CURIOSITY. J. C. Stern , B. Sutter , W. A. Jackson , Rafael Na- varro-González4, Christopher P. McKay5, Douglas W. Ming6, P. Douglas Archer2, D. P. Glavin1, A. G. Fairen7,8 and Paul R. Mahaffy1. 1NASA GSFC, Code 699, Greenbelt, MD 20771, [email protected], 2Jacobs, NASA Johnson Space Center, Houston, TX 77058, 3Texas Tech University, Lubbock, TX 79409, 4Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico, 5NASA Ames Research Center, Moffett Field, CA 94035, 6NASA Johnson Space Center, Houston TX 77058, 7Centro de Astrobiologia, Madrid, Spain, 8Cornell University, Ithaca, NY 14853 Introduction: Recent detection of nitrate on Mars [1] indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars. Methods: The data presented are from analyses of solid Martian drilled and scooped samples by the Sam- ple Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover. SAM performs evolved gas analysis (EGA), in which a 3 Figure 1. -
Non-Collider Searches for Stable Massive Particles
Non-collider searches for stable massive particles S. Burdina, M. Fairbairnb, P. Mermodc,, D. Milsteadd, J. Pinfolde, T. Sloanf, W. Taylorg aDepartment of Physics, University of Liverpool, Liverpool L69 7ZE, UK bDepartment of Physics, King's College London, London WC2R 2LS, UK cParticle Physics department, University of Geneva, 1211 Geneva 4, Switzerland dDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden ePhysics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 fDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK gDepartment of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 Abstract The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be suffi- ciently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceiv- able accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unifi- cation of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in mat- ter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given. Contents 1 Introduction 4 2 Theory and cosmology of various kinds of SMPs 4 2.1 New particle states (elementary or composite) . -
Perchlorate and Chlorate Biogeochemistry in Ice-Covered Lakes of the Mcmurdo Dry Valleys, Antarctica
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 98 (2012) 19–30 www.elsevier.com/locate/gca Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica W. Andrew Jackson a,⇑, Alfonso F. Davila b,c, Nubia Estrada a, W. Berry Lyons d, John D. Coates e, John C. Priscu f a Department of Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, USA b NASA Ames Research Center, Moffett Field, CA 95136, USA c SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043-5203, USA d Byrd Polar Research Center, The Ohio State University, Columbus, OH 43210, USA e Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA f Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA Received 15 February 2012; accepted in revised form 5 September 2012; available online 19 September 2012 Abstract À À We measured chlorate (ClO3 ) and perchlorate (ClO4 ) concentrations in ice covered lakes of the McMurdo Dry Valleys À À (MDVs) of Antarctica, to evaluate their role in the ecology and geochemical evolution of the lakes. ClO3 and ClO4 are À À present throughout the MDV Lakes, streams, and other surface water bodies. ClO3 and ClO4 originate in the atmosphere and are transported to the lakes by surface inflow of glacier melt that has been differentially impacted by interaction with soils À À and aeolian matter. Concentrations of ClO3 and ClO4 in the lakes and between lakes vary based on both total evaporative concentration, as well as biological activity within each lake. -
38 Antarctic Dry Valleys
38 Antarctic Dry Valleys: 1. The Antarctic environment and the Antarctic Dry Valleys. 2. Cold-based glaciers and their contrast with wet-based glaciers. 3. Microclimate zones in the Antarctic Dry Valleys (ADV) and their implications. 4. Landforms on Earth and Mars: A comparative analysis of analogs. 5. Biological activity in cold-polar deserts. 6. Problems in Antarctic Geoscience and their application to Mars. The Dry Valleys: A Hyper-Arid Cold Polar Desert Temperate Wet-Based Glaciers Cold-Based Glaciers Antarctic Dry Valleys: Morphological Zonation, Variable Geomorphic Processes, and Implications for Assessing Climate Change on Mars Antarctic Dry Valleys • 4000 km2; Mountain topography – (2800 m relief). • Coldest, driest desert on Earth. • Mean annual temperature: -20o C. • Mean annual snowfall (CWV): – Min. = <0.6 cm; Max. = 10 cm. – Fate of snow: Sublimate or melt. • A hyperarid cold polar desert. • Topography controls katabatic wind flow: – Funneled through valleys, warmed by adiabatic compression. – Enhances surface temperatures, increases sublimation rates of ice and snow. • Bedrock topography governs local distribution of snow and ice: • Biology sparse: ~1 mm “Antarctic mite”; microscopic nematodes. • Environment very useful for understanding Mars climate change. Antarctic Dry Valleys • 4000 km2; Mountain topography – (2800 m relief). • Coldest and driest desert on Earth. • Mean annual temperature: -20o C. • Mean annual snowfall (CWV): – Minimum = <0.6 cm; Maximum = 10 cm. – Fate of snow: Sublimate or melt. • Generally a hyperarid cold polar desert. • Topography controls katabatic wind flow: – Funneled through valleys, warmed by adiabatic compression. – Enhance surface temperatures, increase sublimation rates of ice and snow. • Bedrock topography governs local distribution of snow and ice: • Biology sparse: ~1 mm-sized “Antarctic mite”; microscopic nematodes. -
NO ONE KNOWS ABOUT US by Bridget Canning. a Creative Writing
NO ONE KNOWS ABOUT US By Bridget Canning. A Creative Writing Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Masters of Arts in English (Creative Writing) Department of English, Memorial University of Newfoundland Abstract: No One Knows about Us is a collection of twelve contemporary short stories. As the title suggests, the characters in each story deal with secrets: relationships, longings, grudges, addictions, and trickery. For them, these secrets are simultaneously overwhelming and futile; their importance within their small worlds reflect a deeper feeling of insignificance in the greater scheme of life in a small city in a northern province hemmed on to the side of a continent. Here are a range of characters and situations set in St. John’s, Newfoundland and Labrador. The stories are mapped out in different areas of the city and move chronologically over a year, starting in fall and ending in late summer. They work together to create a small sample of life in modern-day St. John’s – one that is informed by the influences of history, economy, and weather. i Acknowledgements: This thesis would not have been accomplished without the help of the English department faculty at Memorial such as Robert Finley, Robert Chafe, and especially my thesis advisor, Lisa Moore. Thanks to the Graduate Society for their financial support. Thanks to Jonathan Weir, Deirdre Snook, and the members of the Naked Parade Writing Collective for their guidance and encouragement. ii Contents: 1. Seen, p. 1 2. With Glowing Hearts, p. 19 3. -
Educator Guide
E DUCATOR GUIDE This guide, and its contents, are Copyrighted and are the sole Intellectual Property of Science North. E DUCATOR GUIDE The Arctic has always been a place of mystery, myth and fascination. The Inuit and their predecessors adapted and thrived for thousands of years in what is arguably the harshest environment on earth. Today, the Arctic is the focus of intense research. Instead of seeking to conquer the north, scientist pioneers are searching for answers to some troubling questions about the impacts of human activities around the world on this fragile and largely uninhabited frontier. The giant screen film, Wonders of the Arctic, centers on our ongoing mission to explore and come to terms with the Arctic, and the compelling stories of our many forays into this captivating place will be interwoven to create a unifying message about the state of the Arctic today. Underlying all these tales is the crucial role that ice plays in the northern environment and the changes that are quickly overtaking the people and animals who have adapted to this land of ice and snow. This Education Guide to the Wonders of the Arctic film is a tool for educators to explore the many fascinating aspects of the Arctic. This guide provides background information on Arctic geography, wildlife and the ice, descriptions of participatory activities, as well as references and other resources. The guide may be used to prepare the students for the film, as a follow up to the viewing, or to simply stimulate exploration of themes not covered within the film. -
Physiological Characteristics of Fungi Associated With
PHYSIOLOGICAL CHARACTERISTICS OF FUNGI ASSOCIATED WITH ANTARCTIC ENVIRONMENTS by Priyanka Sushil Kudalkar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Resources and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2016 ©COPYRIGHT by Priyanka Sushil Kudalkar 2016 All Rights Reserved ii DEDICATION To my dearest Manjiri, Mumma and Pappa, for always believing in me and letting me follow my dreams. iii ACKNOWLEDGEMENTS First and foremost, I would like to thank my academic advisor Dr. John Priscu, for accepting me as a graduate student and guiding me through research and thesis work. Without his valuable guidance, feedback, and unending patience, this project would not have been possible. I would also like to convey my deepest thanks to my committee members, Dr. Cathy Cripps and Dr. Gary Strobel for serving on my committee and for providing me with their valuable inputs. They both have been instrumental in amplifying my interest in Science since my undergraduate research and have always strived to make research a wonderful learning experience for all their students. I am grateful to Dr. Lillian Lin and Christopher Barbour from the Statistical Consulting and Research Service for providing statistical advice and R code. Thanks to Edward Barge for generously helping me with the initial DNA sequencing of my samples. I would like to thank my labmates for all their help, friendship and advice. My sincere appreciation to Dr. Cathy Cripps and Trista Vick- Majors for providing valuable feedback during earlier iterations of this thesis. I would also like to thank all my friends from India and Bozeman who have played such an important role in making sure that I was not alone during this process. -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
Plants, Volume 1, Number 1 (August 1979)
Desert Plants, Volume 1, Number 1 (August 1979) Item Type Article Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 02/10/2021 01:18:53 Link to Item http://hdl.handle.net/10150/528188 Volume I. Number 1. August 1979 Desert Published by The University of Arizona for the Plants Boyce Thompson Southwestern Arboretum Assisting Nature with Plant Selection4 Larry K. Holzworth Aberrant Sex -Ratios in Jojoba Associated with Environmental Factors 8 Serena L. Cole 'J. G. Lemmon & Wife,' Plant Explorers in Arizona, California, and Nevada12 Frank S. Crosswhite 'Extinct' Wire -Lettuce, Stephanomeria schottii (Compositae), Rediscovered in Arizona after More Than One Hundred Years22 Elinor Lehto Southwestern Indian Sunflowers23 Gary Paul Nabhan Transition from a Bermudagrass Lawn to a Landscape of Rock or Gravel Mulch 27 Charles Sacamano Preliminary Evaluation of Cold- hardiness in Desert Landscaping Plants at Central Arizona College29 William A. Kinnison Effects of the 1978 Freeze on Native Plants of Sonora, Mexico33 Warren D. Jones The Severe Freeze of 1978 -79 in the Southwestern United States37 The National Climate Program Act of 197840 Reviews42 Arboretum Progress46 R. T. McKittrick Volume 1. Number 1. August 1979 Published by The University of Arizona Desert Plants for the Boyce Thompson Southwestern Arboretum The Severe Freeze of 1978 -79 in the Contents Southwestern United States37 Correspondents: Editorial Barrie D. Coate, Saratoga Horticultural Foundation; Dara E. Emery, Santa Barbara Botanic Garden; Louis C. Assisting Nature with Plant Selection 4 Erickson, Botanic Gardens, University of California, River- Larry K. Holzworth, USDA Soil Conservation side; Wayne L. -
World Deserts
HISTORY AND GEOGRAPHY World Deserts Reader Frog in the Australian Outback Joshua tree in the Mojave Desert South American sheepherder Camel train across the Sahara Desert THIS BOOK IS THE PROPERTY OF: STATE Book No. PROVINCE Enter information COUNTY in spaces to the left as PARISH instructed. SCHOOL DISTRICT OTHER CONDITION Year ISSUED TO Used ISSUED RETURNED PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted. 1. Teachers should see that the pupil’s name is clearly written in ink in the spaces above in every book issued. 2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad. World Deserts Reader Creative Commons Licensing This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You are free: to Share—to copy, distribute, and transmit the work to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation (www.coreknowledge.org) made available through licensing under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial—You may not use this work for commercial purposes. Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work. -
2010-2011 Science Planning Summaries
Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.