Preview Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coasean Fictions: Law and Economics Revisited
Seattle Journal for Social Justice Volume 5 Issue 2 Article 28 May 2007 Coasean Fictions: Law and Economics Revisited Alejandro Nadal Follow this and additional works at: https://digitalcommons.law.seattleu.edu/sjsj Recommended Citation Nadal, Alejandro (2007) "Coasean Fictions: Law and Economics Revisited," Seattle Journal for Social Justice: Vol. 5 : Iss. 2 , Article 28. Available at: https://digitalcommons.law.seattleu.edu/sjsj/vol5/iss2/28 This Article is brought to you for free and open access by the Student Publications and Programs at Seattle University School of Law Digital Commons. It has been accepted for inclusion in Seattle Journal for Social Justice by an authorized editor of Seattle University School of Law Digital Commons. For more information, please contact [email protected]. 569 Coasean Fictions: Law and Economics Revisited Alejandro Nadal1 After the 1960s, a strong academic movement developed in the United States around the idea that the study of the law, as well as legal practice, could be strengthened through economic analysis.2 This trend was started through the works of R.H. Coase and Guido Calabresi, and grew with later developments introduced by Richard Posner and Robert D. Cooter, as well as Gary Becker.3 Law and Economics (L&E) is the name given to the application of modern economics to legal analysis and practice. Proponents of L&E have portrayed the movement as improving clarity and logic in legal analysis, and even as a tool to modify the conceptual categories used by lawyers and courts to think about -
Decisions and Games
DECISIONS AND GAMES. PART I 1. Preference and choice 2. Demand theory 3. Uncertainty 4. Intertemporal decision making 5. Behavioral decision theory DECISIONS AND GAMES. PART II 6. Static Games of complete information 7. Dynamic games of complete information 8. Static games of incomplete information 9. Dynamic games of incomplete information 10. Behavioral game theory References Gibbons, R. 1992. Game theory for applied economists. Princeton University Press. Princeton, New Jersey. Varian, H.1992. Microeconomic analysis. Norton & Company. New York. Chapters 7, 8, 9, 10, 11, 19. Camerer, C. , Loewenstein, G. , and Rabin, M. 2004. Advances in Behavioral Economics. Princeton University Press. Mas-Colell, A., Whinston, M., and Green, J. 1995. Microeconomic theory. Oxford University Press. Chapters 1, 2, 3, 4, 6. 1 Two approaches to analyze behavior of decision makers. 1. From an abstract construction generate choices that satisfy rationality restrictions. 2. Directly from choice, ask for some structure to these choices and derive properties. Relation between the two approaches. 2 1. Preference and choice Consider a set of alternatives (mutually exclusives) X and we consider a preference relation on X. Preferences The preference relation “at least as good as” is a binary relation − over the set of alternatives X. Preferences express the ordering between alternatives resulting from the objectives of the decision maker. Properties: Rational Preference Relation (or Weak order, or Complete preorder) if -Completeness, Transitivity (and Reflexivity) A relation is complete if ∀∈x,,yXxy or yx. A relation is transitive if and only if ∀∈x,yz, X, if x≺≺y and y z, then x≺z. 3 Transitiveness is more delicate than completeness. -
Francis Ysidro Edgeworth
Francis Ysidro Edgeworth Previous (Francis Xavier) (/entry/Francis_Xavier) Next (Francis of Assisi) (/entry/Francis_of_Assisi) Francis Ysidro Edgeworth (February 8, 1845 – February 13, 1926) was an Irish (/entry/Ireland) polymath, a highly influential figure in the development of neo classical economics, and contributor to the development of statistical theory. He was the first to apply certain formal mathematical techniques to individual decision making in economics. Edgeworth developed utility theory, introducing the indifference curve and the famous "Edgeworth box," which have become standards in economic theory. He is also known for the "Edgeworth conjecture" which states that the core of an economy shrinks to the set of competitive equilibria as the number of agents in the economy gets large. The high degree of originality demonstrated in his most important book on economics, Mathematical Psychics, was matched only by the difficulty in reading it. A deep thinker, his contributions were far ahead of his time and continue to inform the fields of (/entry/File:Edgeworth.jpeg) microeconomics (/entry/Microeconomics) and areas such as welfare economics. Francis Y. Edgeworth Thus, Edgeworth's work has advanced our understanding of economic relationships among traders, and thus contributes to the establishment of a better society for all. Life Contents Ysidro Francis Edgeworth (the order of his given names was later reversed) 1 Life was born on February 8, 1845 in Edgeworthstown, Ireland (/entry/Ireland), into 2 Work a large and wealthy landowning family. His aunt was the famous novelist Maria 2.1 Edgeworth conjecture Edgeworth, who wrote the Castle Rackrent. He was educated by private tutors 2.2 Edgeworth Box until 1862, when he went on to study classics and languages at Trinity College, 2.3 Edgeworth limit theorem Dublin. -
Benchmark Two-Good Utility Functions
Tjalling C. Koopmans Research Institute Tjalling C. Koopmans Research Institute Utrecht School of Economics Utrecht University Janskerkhof 12 3512 BL Utrecht The Netherlands telephone +31 30 253 9800 fax +31 30 253 7373 website www.koopmansinstitute.uu.nl The Tjalling C. Koopmans Institute is the research institute and research school of Utrecht School of Economics. It was founded in 2003, and named after Professor Tjalling C. Koopmans, Dutch-born Nobel Prize laureate in economics of 1975. In the discussion papers series the Koopmans Institute publishes results of ongoing research for early dissemination of research results, and to enhance discussion with colleagues. Please send any comments and suggestions on the Koopmans institute, or this series to [email protected] ontwerp voorblad: WRIK Utrecht How to reach the authors Please direct all correspondence to the first author. Kris de Jaegher Utrecht University Utrecht School of Economics Janskerkhof 12 3512 BL Utrecht The Netherlands E-mail: [email protected] This paper can be downloaded at: http://www.koopmansinstitute.uu.nl Utrecht School of Economics Tjalling C. Koopmans Research Institute Discussion Paper Series 07-09 Benchmark Two-Good Utility Functions Kris de Jaeghera a Utrecht School of Economics Utrecht University February 2007 Abstract Benchmark two-good utility functions involving a good with zero income elasticity and unit income elasticity are well known. This paper derives utility functions for the additional benchmark cases where one good has zero cross-price elasticity, unit own-price elasticity, and zero own price elasticity. It is shown how each of these utility functions arises from a simple graphical construction based on a single given indifference curve. -
Giffen Behaviour and Asymmetric Substitutability*
Tjalling C. Koopmans Research Institute Tjalling C. Koopmans Research Institute Utrecht School of Economics Utrecht University Janskerkhof 12 3512 BL Utrecht The Netherlands telephone +31 30 253 9800 fax +31 30 253 7373 website www.koopmansinstitute.uu.nl The Tjalling C. Koopmans Institute is the research institute and research school of Utrecht School of Economics. It was founded in 2003, and named after Professor Tjalling C. Koopmans, Dutch-born Nobel Prize laureate in economics of 1975. In the discussion papers series the Koopmans Institute publishes results of ongoing research for early dissemination of research results, and to enhance discussion with colleagues. Please send any comments and suggestions on the Koopmans institute, or this series to [email protected] ontwerp voorblad: WRIK Utrecht How to reach the authors Please direct all correspondence to the first author. Kris De Jaegher Utrecht University Utrecht School of Economics Janskerkhof 12 3512 BL Utrecht The Netherlands. E-mail: [email protected] This paper can be downloaded at: http:// www.uu.nl/rebo/economie/discussionpapers Utrecht School of Economics Tjalling C. Koopmans Research Institute Discussion Paper Series 10-16 Giffen Behaviour and Asymmetric * Substitutability Kris De Jaeghera aUtrecht School of Economics Utrecht University September 2010 Abstract Let a consumer consume two goods, and let good 1 be a Giffen good. Then a well- known necessary condition for such behaviour is that good 1 is an inferior good. This paper shows that an additional necessary for such behaviour is that good 1 is a gross substitute for good 2, and that good 2 is a gross complement to good 1 (strong asymmetric gross substitutability). -
Illustrating the Difference Between Emissions Fees and Abatement Subsidies Using Isoquant and Isocost Geometry
Illustrating the Difference between Emissions Fees and Abatement Subsidies Using Isoquant and Isocost Geometry Emissions fees (taxes) and abatement subsidies are common policy solutions when negative externalities, such as pollution generated from production, impact market transactions. Textbook treatment of these two policies vary in exposition and detail and are generally more descriptive than analytical. This can leave students with limited insights regarding behavioral differences that arise with these policies. In illustrating unintended policy consequences, this graphical analysis illustrates that a subsidy policy is, paradoxically, more likely to generate more pollution than a fee policy, a result consistent with Metcalf’s (2009) empirical work and a result often not well articulated in textbooks. Christopher S Decker† †University of Nebraska at Omaha © 2020 Journal of Economics Teaching. All rights reserved. Decker / Journal of Economics Teaching (2020) 1. Introduction Since its inception, researchers in the field of environmental economics have developed a menu of policies for addressing the negative externality resulting when pollution results from production. Emissions fees (taxes) and abatement subsidies are some of the most common policy solutions discussed in most environmental economics courses. Textbook treatment of these two policies, however, vary in exposition and detail (e.g. Callan and Thomas, 2010; Field and Field, 2009; Kalstad, 2011; Perman, Ma, McGilvray, and Common, 2011; Tietenberg, 2003). However, it is fair to say that this approach, at least at the undergraduate level, is descriptive.1 Textbooks tend to offer examples of each policy as well as an overview of those states or countries that have implemented each. They correctly point out that emission fees tend to be more common in Europe than the United States. -
Econ 337901 Financial Economics
ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2021 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. http://creativecommons.org/licenses/by-nc-sa/4.0/. 1 Mathematical and Economic Foundations A Mathematical Preliminaries 1 Unconstrained Optimization 2 Constrained Optimization B Consumer Optimization 1 Graphical Analysis 2 Algebraic Analysis 3 The Time Dimension 4 The Risk Dimension C General Equilibrium 1 Optimal Allocations 2 Equilibrium Allocations Mathematical Preliminaries Unconstrained Optimization max F (x) x Constrained Optimization max F (x) subject to c ≥ G(x) x Unconstrained Optimization To find the value of x that solves max F (x) x you can: 1. Try out every possible value of x. 2. Use calculus. Since search could take forever, let's use calculus instead. Unconstrained Optimization Theorem If x ∗ solves max F (x); x then x ∗ is a critical point of F , that is, F 0(x ∗) = 0: Unconstrained Optimization F (x) maximized at x ∗ = 5 Unconstrained Optimization F 0(x) > 0 when x < 5. F (x) can be increased by increasing x. Unconstrained Optimization F 0(x) < 0 when x > 5. F (x) can be increased by decreasing x. Unconstrained Optimization F 0(x) = 0 when x = 5. F (x) is maximized. Unconstrained Optimization Theorem If x ∗ solves max F (x); x then x ∗ is a critical point of F , that is, F 0(x ∗) = 0: Note that the same first-order necessary condition F 0(x ∗) = 0 also characterizes a value of x ∗ that minimizes F (x). -
A Sparsity-Based Model of Bounded Rationality
NBER WORKING PAPER SERIES A SPARSITY-BASED MODEL OF BOUNDED RATIONALITY Xavier Gabaix Working Paper 16911 http://www.nber.org/papers/w16911 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 March 2011 I thank David Laibson for a great many enlightening conversations about behavioral economics over the years. For very helpful comments, I thank the editor and the referees, and Andrew Abel, Nick Barberis, Daniel Benjamin, Douglas Bernheim, Andrew Caplin, Pierre-André Chiappori, Vincent Crawford, Stefano DellaVigna, Alex Edmans, Ed Glaeser, Oliver Hart, David Hirshleifer, Harrison Hong, Daniel Kahneman, Paul Klemperer, Botond Kőszegi, Sendhil Mullainathan, Matthew Rabin, Antonio Rangel, Larry Samuelson, Yuliy Sannikov, Thomas Sargent, Josh Schwartzstein, and participants at various seminars and conferences. I am grateful to Jonathan Libgober, Elliot Lipnowski, Farzad Saidi, and Jerome Williams for very good research assistance, and to the NYU CGEB, INET, the NSF (grant SES-1325181) for financial support. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2011 by Xavier Gabaix. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. A Sparsity-Based Model of Bounded Rationality Xavier Gabaix NBER Working Paper No. 16911 March 2011, Revised May 2014 JEL No. D03,D42,D8,D83,E31,G1 ABSTRACT This paper defines and analyzes a “sparse max” operator, which is a less than fully attentive and rational version of the traditional max operator. -
A PUBLIC GOODS APPROACH to AGRICULTURAL POLICY POST- BREXIT Dr Adam P Hejnowicz and Prof Sue E Hartley
NEW DIRECTIONS: A PUBLIC GOODS APPROACH TO AGRICULTURAL POLICY POST- BREXIT Dr Adam P Hejnowicz and Prof Sue E Hartley CONTENTS Summary .............................................................................................................................................................................................................................. 2 About The Authors .......................................................................................................................................................................................................... 3 1. All is for the Best in the Best of All Possible Worlds ........................................................................................................................................ 4 2. The Economic Public Goods Paradigm ................................................................................................................................................................ 8 2.1 Show Me the Goods! ........................................................................................................................................................................................... 8 3. An Environmental Turn: The Social-Ecological Public Goods Paradigm ............................................................................................... 10 3.1 Environmental Concerns Promote a Public Goods Agenda .................................................................................................................. 10 3.2 Public Goods and -
The Market A. Example of an Economic Model
The Market 1 The Market A. Example of an economic model — the market for apartments 1. models are simplifications of reality 2. for example, assume all apartments are identical 3. some are close to the university, others are far away 4. price of outer-ring apartments is exogenous — determined outside the model 5. price of inner-ring apartments is endogenous — determined within the model B. Two principles of economics 1. optimization principle — people choose actions that are in their interest 2. equilibrium principle — people’s actions must eventually be consistent with each other C. Constructing the demand curve 1. line up the people by willingness-to-pay. See Figure 1.1. RESERVATION PRICE 500 ...... 490 ...... 480 ... ...... ...... Demand curve ...... ...... 1 2 3 ... NUMBER OF APARTMENTS Figure 1.1 2. for large numbers of people, this is essentially a smooth curve as in Figure 1.2. The Market 2 RESERVATION PRICE Demand curve NUMBER OF APARTMENTS Figure 1.2 D. Supply curve 1. depends on time frame 2. but we’ll look at the short run — when supply of apartments is fixed. E. Equilibrium 1. when demand equals supply 2. price that clears the market F. Comparative statics 1. how does equilibrium adjust when economic conditions change? 2. “comparative” — compare two equilibria 3. “statics” — only look at equilibria, not at adjustment 4. example — increase in supply lowers price; see Figure 1.5. 5. example — create condos which are purchased by renters; no effect on price; see Figure 1.6. G. Other ways to allocate apartments 1. discriminating monopolist 2. ordinary monopolist 3. -
Exchange Economy in Two-User Multiple-Input Single-Output
1 Exchange Economy in Two-User Multiple-Input Single-Output Interference Channels Rami Mochaourab, Student Member, IEEE, and Eduard Jorswieck, Senior Member, IEEE Abstract—We study the conflict between two links in a Pareto optimal point is an achievable utility tuple from which it multiple-input single-output interference channel. This setting is is impossible to increase the performance of one link without strictly competitive and can be related to perfectly competitive degrading the performance of another. Consequently, Pareto market models. In such models, general equilibrium theory is used to determine equilibrium measures that are Pareto optimal. optimality ensures efficient exploitation of the wireless channel First, we consider the links to be consumers that can trade resources. For this purpose, there has been several work on goods within themselves. The goods in our setting correspond to characterizing the set of beamforming vectors that are relevant beamforming vectors. We utilize the conflict representation of the for Pareto optimal operation in the MISO IFC [4]–[8]. Next, consumers in the Edgeworth box, a graphical tool that depicts we will discuss these approaches. the allocation of the goods for the two consumers, to provide closed-form solution to all Pareto optimal outcomes. Afterwards, we model the situation between the links as a competitive market A. Characterization of Pareto Optimal Points which additionally defines prices for the goods. The equilibrium in this economy is called Walrasian and corresponds to the prices Designing a Pareto optimal mechanism requires finding the that equate the demand to the supply of goods. We calculate joint beamforming vectors used at the transmitters that lead the unique Walrasian equilibrium and propose a coordination process that is realized by an arbitrator which distributes the to the Pareto optimal point. -
Title: Rice Consumption: Giffen Behavior in Rural Bangladesh
Lekhe, Islam, Islam and Akter, International Journal of Applied Economics, 11(1), 48-59 48 Giffen Behavior for Rice Consumption in Rural Bangladesh Fatima S. Lekhe1, Lamya B. Islam1, Silvia Z. Islam2 and Aysha Akter2 Eastern University1 and RMIT University2 Abstract: Rice is the staple food in Bangladesh. Thus, the price of rice is an important economic factor in Bangladesh especially for poor people. In Bangladesh, during the price hike of 2008-09, rice price increased by 40% on an average across the country. Interestingly, the consumption of rice in some rural parts of Bangladesh also increased during that period. Thus, the focus of this paper is to examine the practical evidence of this positive relationship between the consumption of rice and increasing price which is addressed as Giffen behavior (inverse of normal behavior) for rice consumption in Bangladesh. By analyzing secondary data obtained from some specific rural parts namely Patharghata (Barguna), Chaddagham (Comilla), Sadar (Jamalpur), Kaligang (Jhenaidaha), Sreemangal (Moulvibazar) and Sadar (Naogaon) of Bangladesh, we have found a new insight in this context. We find that the price elasticity of staple food for the poor people depends significantly and nonlinearly on the severity of their poverty. In order to have an effective design of welfare for the poor people, we need to understand this heterogeneity of their consumption behavior. Keywords: Rice, Price, Bangladesh, Giffen behavior, Elasticity JEL Classification: D01, D12, I30, O12 1. Introduction Alfred Marshall first established the concept of Giffen good in the 1895 edition of his Principles of Economics. He pointed out that a poor consumer facing a price rise in a staple food, has to cut back the consumption of the protein or fancy food to increase the consumption of the staple item.