Rimae Sirsalis

Total Page:16

File Type:pdf, Size:1020Kb

Rimae Sirsalis RIMAE SIRSALIS Nieves del Río, José Castillo, Eduardo Adarve, Jorge Arranz y Alberto Martos del Grupo de Estudios Lunares “Enrique Silva”. [Página dejada intencionadamente en blanco] - 2 - INTRODUCCIÓN Rimae Sirsalis es un sistema de grietas que comprende dos estructuras de esta clase, Rima Sirsalis y Rima Sirsalis I, siendo la primera mucho más larga y mucho más perceptible que la segunda. Pertenecen a la clase de grietas rectas, cuyo aspecto es diferente del aspecto de las grietas circulares que bordean las cuencas de las grandes estructuras de impacto. Lo que tiene de particular este sistema, para que haya merecido figurar como objetivo 1 en el apartado “Call for Observations 2”, del boletín TLO 3 de ALPO 4, son sus dos características principales: siendo Rima Sirsalis la grieta más larga existente en la cara cislunar (la visible), está situada en una región cuyo suelo es geológicamente distinto de la naturaleza de suelos por los que discurren en general las grietas lunares. En efecto, las grietas lunares (llamadas en latín rimae ) son siempre estructuras volcánicas, generalmente túneles de lava cuyo techo se ha desplomado, o surcos por los cuales fluyó la lava en su día, en favor de la pendiente del suelo. Por esta razón, se las encuentra siempre sobre terrenos magmáticos, como los maria (plural de mare ), los sini (plural de sinus ), los laci (plural de lacus ), o los paludes (plural de palus ), o sea sobre los “mares”, las “bahías”, los “lagos” o las “marismas” lunares. Como ejemplos de esta condición se puede citar a Rimae Hypatia, situada en el Mare Tranquillitatis, a Rima Oppolzer, en Sinus Medii, a Rimae Bürg y Rimae Daniell, en Lacus Mortis y Lacus Somniorum, respectivamente y Rima Hesiodus en Palus Epidemiarum. Pero el sistema Rimae Sirsalis no se encuentra asentado sobre alguna zona de esa clase, sino sobre las terrae , o “tierras altas”, que constituyen los suelos más antiguos (4,5 millares de millones de años) de la superficie lunar, cuya formación es muy anterior a la de los episodios volcánicos (entre 3,8 y 3,2 millares de millones de años) que rellenaron de lava las cuencas de impacto, que se habían formado durante la debatida “época cataclísmica” del Sistema Solar. Por tanto, no parece probable que su origen pueda ser volcánico. La alternativa es que el origen de Rimae Sirsalis sea tectónico. Ahora bien, siendo la Luna un astro geológicamente “casi” muerto y carente de placas tectónicas (mejor dicho, constituyendo toda la superficie lunar una única placa tectónica), no puede atribuirse su origen a movimientos tectónicos horizontales. En la Luna, los únicos movimientos tectónicos de naturaleza endógena posibles, son los verticales, producidos por isostasia (equilibrio de presiones) debida al enfriamiento del astro. Estos movimientos, detectados recientemente por la cámara del satélite LRO 5, han originado fallas de encabalgamiento (thrust faults) sobre terrenos situados en latitudes boreales altas (>60º N) de la superficie lunar 6. Pero estas estructuras tectónicas de origen endógeno no afectan a la latitud media (15º S) de las Rimae Sirsalis, ni han producido estructuras geológicas morfológicamente similares a ellas. 1 Focus On 2 “Propuesta de observación” 3 The Lunar Observer. 4 Association of Lunar and Planetary Observers 5 Lunar Reconnaissance Orbiter. 6 http://lunarnetworks.blogspot.com.es/2010/08/incredible-shrinking-moon.html - 3 - Queda por considerar la posibilidad de que su origen sea tectónico de naturaleza exógena, es decir que fuera una estructura de impacto de segundo orden. En este caso Rimae Sirsalis constituiría una fosa tectónica producida como resultado de un impacto próximo, capaz de desarrollar la energía necesaria para excavar una gran estructura circular, como una cuenca o un gran circo. Bajo esa inmensa cantidad de energía mecánica 7, la onda de choque que sacudiera el suelo lunar circundante, bien podría haber provocado una resquebrajadura del tamaño de la grieta que nos ocupa. La observación telescópica de la Luna ofrece algunos ejemplos elocuentes, quizá bien conocidos del lector, de fallas tectónicas originadas como subproducto de la excavación de una gran estructura de impacto. Como ejemplos de esta condición se puede citar a la grieta más conocida, Vallis Alpina, una fosa tectónica de 180 Km de longitud por 3000 m de anchura, que surgió tras la monstruosa explosión que excavó la cuenca del Mare Imbrium. También son tectónicas Rima Ariadaeus y Rima Hyginus, situadas entre el Mare Vaporum y Sinus Medii. La característica geológica que nos autoriza a adjudicar el origen de una estructura tectónica longitudinal a la formación de otra circular, es su posición radial con respecto a ella: en efecto, tanto Vallis Alpina, como Rima Ariadaeus y Rima Hyginus, apuntan ortográficamente (siguiendo un círculo máximo) al centro de la cuenca del Mare Imbrium. ¿Puede ser Rimae Sirsalis una fosa tectónica bifurcada? Para dar una respuesta afirmativa tendríamos que identificar previamente la gran estructura de impacto capaz de haberla producido. Para ello, empezaremos por visualizar la zona por la que se extienden ambas grietas en la foto 1, en la que se ve que hay dos cuencas de impacto candidatas, la del Oceanus Procellarum y la del Mare Orientale (invisible en la foto). Como puede deducirse al mirar la foto, se trata de una región muy occidental de la cara visible, cuya visibilidad al telescopio está siempre afectada por la oblicuidad de la posición, razón por la cual se debe aprovechar las condiciones de libración en longitud negativa, tanto para la observación visual, como para la fotografía. En la foto 1, tomada el 15 de Marzo de 2014, la libración en longitud 8 era sólo ligeramente favorable, -3º. En la foto 2, tomada el mismo día interponiendo una lente Barlow x2, se identifica las principales estructuras de impacto que salpican la zona de interés, así como una estructura volcánica, Lacus Aestatis. Esta fotografía ilustra la dificultad de asignar origen volcánico al sistema de Rimae Sirsalis, por cuanto la gran mayoría de las estructuras visibles en la zona son de impacto (tectónicas exógenas) y solamente el lacus es de origen volcánico. Aunque el Mare Orientale no es visible desde la Tierra, es fácil comprobar que Rima Sirsalis (la más larga del sistema), al menos en su último tramo, no guarda una posición radial con respecto a esa cuenca, sino que es más bien tangencial a ella. Esta comprobación se puede efectuar mediante cualquier buen programa lunar, como el Atlas Virtual de la Luna (AVL), en cuyo caso conviene seleccionar la pestaña del “Globo Entero” para poder situar el Mare Orientale en el centro de la pantalla. De este modo se podrá comprobar que Rima Darwin, que cruza el circo del mismo nombre y a Rima Sirsalis al Este de dicha estructura de impacto, está mejor situada para este asunto. En suma, el impacto del Mare Orientale no pudo haber originado Rimae Sirsalis. 7 Para ampliar información sobre esta materia, puede consultarse el artículo “Mecánica de Impacto”, A. Martos, Neomenia núm. 45, 9/13. 8 Al final del texto hemos incluido una tabla con los datos de todas las fotografías incluidas en este artículo, así como del instrumental utilizado para obtener cada una. - 4 - Foto 1.- Situación del sistema Rimae Sirsalis en el globo lunar. Nuestra atención se vuelve ahora hacia el Oceanus Procellarum, en busca de la estructura de impacto posible causante de la supuesta grieta tectónica. Un examen detallado de esta región, expuesta en las fotos 3 y 4, cuya calidad deterioraron las condiciones atmosféricas del momento de su captura, revela que Rima Sirsalis (la grieta más larga) arranca del pequeño cráter Sirsalis K (7 Km) y corre en dirección a su hermano algo mayor, Sirsalis J (12 Km). Debido a la consabida oblicuidad de la visión en esta zona y a que en la ocasión de esta fotografía la libración en longitud era muy poco favorable (0º 48’ O), esta trayectoria puede no antojársenos radial con respecto al Oceanus Procellarum. Pero si recurrimos al mapa del programa AVL, entonces ya no nos cabrá duda de que su posición es radial. ¿Hemos dado con la clave? Aunque durante mucho tiempo se ha creído así, por desgracia (¿o por suerte para los investigadores?), últimamente se ha recibido “ novissima argumenta ” que han venido a demostrar que tampoco esta suposición se sostiene. - 5 - Foto 2.- Estructuras de impacto y volcánicas en la zona de Rimae Sirsalis. - 6 - En efecto, los resultados que ha aportado el Proyecto GRAIL 9 (Gravity Recovery And Interior Laboratory) de NASA, descartan que el Oceanus Procellarum se haya originado como cuenca de impacto. El informe de su Investigadora Principal, Maria Zuber, hace añicos la idea de que esta estructura sea una cuenca de impacto rellena de lava por el mecanismo que ha rellenado las restantes, sino que el origen de este magma se atribuye a un penacho de lava procedente del manto interno, ¡exactamente igual que en las erupciones magmáticas que ocurren en las dorsales oceánicas de la Tierra! Ni siquiera existe una cuenca única, pues la forma global de la estructura es poligonal, con ángulos agudos entre las diferentes cavidades, que no han podido ser formados por un impacto colosal, sino por fracturas producidas por las enormes tensiones en la corteza lunar, a que dio lugar el enfriamiento del terreno alrededor del gigantesco penacho de lava ardiente que procedía del interior. En cualquier caso, si el penacho de lava fue originado por un impacto descomunal, hoy no queda rastro del mismo, por lo que la historia del relleno de lava de las cuencas de impacto debe ser re-escrita. Este aldabonazo postrero nos devuelve al punto de partida, ¿qué clase de estructura es Rimae Sirsalis? Afortunadamente, dos investigadores lunares (Lionel Wilson y James Head, británico el primero y norteamericano el segundo) apuntaron otra teoría explicativa de la formación de esta estructura: un dique geológico.
Recommended publications
  • Grosvenor Prints CATALOGUE for the ABA FAIR 2008
    Grosvenor Prints 19 Shelton Street Covent Garden London WC2H 9JN Tel: 020 7836 1979 Fax: 020 7379 6695 E-mail: [email protected] www.grosvenorprints.com Dealers in Antique Prints & Books CATALOGUE FOR THE ABA FAIR 2008 Arts 1 – 5 Books & Ephemera 6 – 119 Decorative 120 – 155 Dogs 156 – 161 Historical, Social & Political 162 – 166 London 167 – 209 Modern Etchings 210 – 226 Natural History 227 – 233 Naval & Military 234 – 269 Portraits 270 – 448 Satire 449 – 602 Science, Trades & Industry 603 – 640 Sports & Pastimes 641 – 660 Foreign Topography 661 – 814 UK Topography 805 - 846 Registered in England No. 1305630 Registered Office: 2, Castle Business Village, Station Road, Hampton, Middlesex. TW12 2BX. Rainbrook Ltd. Directors: N.C. Talbot. T.D.M. Rayment. C.E. Ellis. E&OE VAT No. 217 6907 49 GROSVENOR PRINTS Catalogue of new stock released in conjunction with the ABA Fair 2008. In shop from noon 3rd June, 2008 and at Olympia opening 5th June. Established by Nigel Talbot in 1976, we have built up the United Kingdom’s largest stock of prints from the 17th to early 20th centuries. Well known for our topographical views, portraits, sporting and decorative subjects, we pride ourselves on being able to cater for almost every taste, no matter how obscure. We hope you enjoy this catalogue put together for this years’ Antiquarian Book Fair. Our largest ever catalogue contains over 800 items, many rare, interesting and unique images. We have also been lucky to purchase a very large stock of theatrical prints from the Estate of Alec Clunes, a well known actor, dealer and collector from the 1950’s and 60’s.
    [Show full text]
  • Charles Darwin: a Companion
    CHARLES DARWIN: A COMPANION Charles Darwin aged 59. Reproduction of a photograph by Julia Margaret Cameron, original 13 x 10 inches, taken at Dumbola Lodge, Freshwater, Isle of Wight in July 1869. The original print is signed and authenticated by Mrs Cameron and also signed by Darwin. It bears Colnaghi's blind embossed registration. [page 3] CHARLES DARWIN A Companion by R. B. FREEMAN Department of Zoology University College London DAWSON [page 4] First published in 1978 © R. B. Freeman 1978 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the permission of the publisher: Wm Dawson & Sons Ltd, Cannon House Folkestone, Kent, England Archon Books, The Shoe String Press, Inc 995 Sherman Avenue, Hamden, Connecticut 06514 USA British Library Cataloguing in Publication Data Freeman, Richard Broke. Charles Darwin. 1. Darwin, Charles – Dictionaries, indexes, etc. 575′. 0092′4 QH31. D2 ISBN 0–7129–0901–X Archon ISBN 0–208–01739–9 LC 78–40928 Filmset in 11/12 pt Bembo Printed and bound in Great Britain by W & J Mackay Limited, Chatham [page 5] CONTENTS List of Illustrations 6 Introduction 7 Acknowledgements 10 Abbreviations 11 Text 17–309 [page 6] LIST OF ILLUSTRATIONS Charles Darwin aged 59 Frontispiece From a photograph by Julia Margaret Cameron Skeleton Pedigree of Charles Robert Darwin 66 Pedigree to show Charles Robert Darwin's Relationship to his Wife Emma 67 Wedgwood Pedigree of Robert Darwin's Children and Grandchildren 68 Arms and Crest of Robert Waring Darwin 69 Research Notes on Insectivorous Plants 1860 90 Charles Darwin's Full Signature 91 [page 7] INTRODUCTION THIS Companion is about Charles Darwin the man: it is not about evolution by natural selection, nor is it about any other of his theoretical or experimental work.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Feature of the Month – January 2016 Galilaei
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge.
    [Show full text]
  • TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
    The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • Canadian Official Historians and the Writing of the World Wars Tim Cook
    Canadian Official Historians and the Writing of the World Wars Tim Cook BA Hons (Trent), War Studies (RMC) This thesis is submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Humanities and Social Sciences UNSW@ADFA 2005 Acknowledgements Sir Winston Churchill described the act of writing a book as to surviving a long and debilitating illness. As with all illnesses, the afflicted are forced to rely heavily on many to see them through their suffering. Thanks must go to my joint supervisors, Dr. Jeffrey Grey and Dr. Steve Harris. Dr. Grey agreed to supervise the thesis having only met me briefly at a conference. With the unenviable task of working with a student more than 10,000 kilometres away, he was harassed by far too many lengthy emails emanating from Canada. He allowed me to carve out the thesis topic and research with little constraints, but eventually reined me in and helped tighten and cut down the thesis to an acceptable length. Closer to home, Dr. Harris has offered significant support over several years, leading back to my first book, to which he provided careful editorial and historical advice. He has supported a host of other historians over the last two decades, and is the finest public historian working in Canada. His expertise at balancing the trials of writing official history and managing ongoing crises at the Directorate of History and Heritage are a model for other historians in public institutions, and he took this dissertation on as one more burden. I am a far better historian for having known him.
    [Show full text]
  • Historical Painting Techniques, Materials, and Studio Practice
    Historical Painting Techniques, Materials, and Studio Practice PUBLICATIONS COORDINATION: Dinah Berland EDITING & PRODUCTION COORDINATION: Corinne Lightweaver EDITORIAL CONSULTATION: Jo Hill COVER DESIGN: Jackie Gallagher-Lange PRODUCTION & PRINTING: Allen Press, Inc., Lawrence, Kansas SYMPOSIUM ORGANIZERS: Erma Hermens, Art History Institute of the University of Leiden Marja Peek, Central Research Laboratory for Objects of Art and Science, Amsterdam © 1995 by The J. Paul Getty Trust All rights reserved Printed in the United States of America ISBN 0-89236-322-3 The Getty Conservation Institute is committed to the preservation of cultural heritage worldwide. The Institute seeks to advance scientiRc knowledge and professional practice and to raise public awareness of conservation. Through research, training, documentation, exchange of information, and ReId projects, the Institute addresses issues related to the conservation of museum objects and archival collections, archaeological monuments and sites, and historic bUildings and cities. The Institute is an operating program of the J. Paul Getty Trust. COVER ILLUSTRATION Gherardo Cibo, "Colchico," folio 17r of Herbarium, ca. 1570. Courtesy of the British Library. FRONTISPIECE Detail from Jan Baptiste Collaert, Color Olivi, 1566-1628. After Johannes Stradanus. Courtesy of the Rijksmuseum-Stichting, Amsterdam. Library of Congress Cataloguing-in-Publication Data Historical painting techniques, materials, and studio practice : preprints of a symposium [held at] University of Leiden, the Netherlands, 26-29 June 1995/ edited by Arie Wallert, Erma Hermens, and Marja Peek. p. cm. Includes bibliographical references. ISBN 0-89236-322-3 (pbk.) 1. Painting-Techniques-Congresses. 2. Artists' materials- -Congresses. 3. Polychromy-Congresses. I. Wallert, Arie, 1950- II. Hermens, Erma, 1958- . III. Peek, Marja, 1961- ND1500.H57 1995 751' .09-dc20 95-9805 CIP Second printing 1996 iv Contents vii Foreword viii Preface 1 Leslie A.
    [Show full text]
  • July 2020 in This Issue Online Readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 Click on Images an Invitation to Join ALPO 3 for Hyperlinks
    A publication of the Lunar Section of ALPO Edited by David Teske: [email protected] 2162 Enon Road, Louisville, Mississippi, USA Recent back issues: http://moon.scopesandscapes.com/tlo_back.html July 2020 In This Issue Online readers, ALPO Conference November 6-7, 2020 2 Lunar Calendar July 2020 3 click on images An Invitation to Join ALPO 3 for hyperlinks. Observations Received 4 By the Numbers 7 Submission Through the ALPO Image Achieve 4 When Submitting Observations to the ALPO Lunar Section 9 Call For Observations Focus-On 9 Focus-On Announcement 10 2020 ALPO The Walter H. Haas Observer’s Award 11 Sirsalis T, R. Hays, Jr. 12 Long Crack, R. Hill 13 Musings on Theophilus, H. Eskildsen 14 Almost Full, R. Hill 16 Northern Moon, H. Eskildsen 17 Northwest Moon and Horrebow, H. Eskildsen 18 A Bit of Thebit, R. Hill 19 Euclides D in the Landscape of the Mare Cognitum (and Two Kipukas?), A. Anunziato 20 On the South Shore, R. Hill 22 Focus On: The Lunar 100, Features 11-20, J. Hubbell 23 Recent Topographic Studies 43 Lunar Geologic Change Detection Program T. Cook 120 Key to Images in this Issue 134 These are the modern Golden Days of lunar studies in a way, with so many new resources available to lu- nar observers. Recently, we have mentioned Robert Garfinkle’s opus Luna Cognita and the new lunar map by the USGS. This month brings us the updated, 7th edition of the Virtual Moon Atlas. These are all wonderful resources for your lunar studies.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]