Zhexi Luo: in Search of the Whales' Sisters. Nature Vol

Total Page:16

File Type:pdf, Size:1020Kb

Zhexi Luo: in Search of the Whales' Sisters. Nature Vol news and views Hamburg defining ten parts per million of Such fuels react with oxidizing species at problems, such as leakage through the poly- nitrogen oxides as the upper level of effluent lower temperatures without carbon forma- mer membrane or cracking of the ceramic from fossil-fuel burners. This is quite a diffi- tion and may be ideal power supplies for electrolyte, remain to be sorted out. It is cult limit to achieve because ordinary flame computers or mobile phones7. But such worth recalling that Nernst, the inventor of burners give off roughly ten times this intermediates, as with hydrogen or pure the zirconia electrolyte in the 1890s, praised amount of nitrogen oxides. methane, might not be readily available in the simultaneous invention of the telephone The logical answer is to imitate nature the quantities and economics we expect for because it enabled him to call home to switch and to oxidize the hydrocarbon fuel catalyti- regular fuels. the device on, the warm-up time being so cally, while extracting the electrons and use- Of course, the fuel reactions in the device long. Solutions to these problems are now ful energy directly through a membrane. are not the only areas of ignorance. Fuel- being found8. Only when this happens will But our knowledge and expertise of such cell systems are already semi-commercial the expected applications in domestic processes is shockingly weak, despite the but a number of issues remain to be resolved heaters, hybrid vehicles and distributed early discoveries of catalysis and fuel cells if the expected billion-dollar consumer power plants become reality. ■ by Davy4 and Grove5. A fuel cell works by market is to emerge in 2004 — the date set Kevin Kendall is in the School of Chemical 1 reducing oxygen to O2 at the cathode, while for car manufacturers in California to pro- Engineering, University of Birmingham, oxidizing fuel, ideally hydrogen, at the anode duce 5% zero-emission vehicles. One prob- Edgbaston, Birmingham B15 2TT, UK. & (Fig. 1). Ions created by this process (H lem is the cost of electrolyte membranes, e-mail: [email protected] 21 or O ) diffuse through the electrolyte for both solid polymer and ceramic fuel 1. Grove Symposium J. Power Sources March (2000). membrane to balance the reactions. At the cells, so the cost of materials will need to 2. Park, S., Vohs, J. M. & Gorte, R. J. Nature 404, 265–267 same time, electrons flow from the anode to fall by an order of magnitude. The perfor- (2000). 3. Houghton, J. Global Warming Ch. 3 (Lion, Oxford, 1994). the cathode through an external circuit. If mance of a fuel cell may also be limited by 4. Davy, H. Phil. Trans. R. Soc. Lond. 107, 45–85 (1817). the fuel is hydrogen, the only waste product peripheral equipment, which may represent 5. Grove, W. R. Phil. Mag. 14, 127–130 (1839). is water. Other fuels, such as methane, can be 75% of the total device. Existing systems, 6. Murray, E. P., Tsai, T. & Barnett, S. A. Nature 400, 649–651 used, but they have to be converted to hydro- such as the d.c./a.c. converter and heat (1999). 7. Büchi, F. N. (ed.) Portable Fuel Cells Conference (Bossel, gen before entering the cell. exchanger, may not be well matched to the Switzerland, 1999). Lately, evidence has emerged that new fuel-cell technology. And particular 8. Kendall, K. US Patent No. 5,827,620 (1998). methane can be converted directly by a solid- oxide fuel cell, without any flame, using cerium oxide as the electrode catalyst6. A typ- Evolution ical solid-oxide fuel cell uses a hard ceramic material such as zirconia (which conducts O21 ions) as the electrolyte, and has nickel- In search of the whales’ sisters based anodes. Park et al.2 now suggest that Zhexi Luo copper with cerium or samarium oxide may be a better anode catalyst for direct oxidation of more complex hydrocarbons that exist in hich mammals are the closest rela- molecular evidence1,2. They show that both realistic fuels such as kerosene or diesel. The tives to cetaceans (dolphins, por- issues hinge on the long-extinct fossil groups challenge is to find pathways through which Wpoises and whales)? That is, which that were split early from extant cetaceans. ethane and butane, or even aromatics such as mammalian group is their ‘sister taxon’? The topology, or branching sequence, of the toluene, can be reacted without fouling up There is a wide gulf between the morpholog- family tree of living artiodactyls and the process through damaging side reactions ical and molecular evolutionary studies on cetaceans depends on inclusion of these that tend to produce tar or carbon. the question, for they give conflicting divergent lineages of cetaceans and their This is the challenge that has been picked answers. In a paper in Systematic Biology, putative extinct relatives. up by Park and colleagues. They used a O’Leary and Geisler1 highlight the impor- Among those possible fossil relatives are copper catalyst intimately in contact with tance of the early divergent lineages, or the mesonychids that lived from 60 to 30 cerium oxide to produce a porous anode extinct fossil taxonomic groups, in resolving million years ago. Their feet were even-toed material. When this operated on pure this intriguing problem. and adapted for running, like those of butane for 48 hours there was no sign of car- The descent of whales from land-dwelling modern artiodactyls, and their fish-eating bon deposition, but good evidence of com- mammals is a compelling example of evolu- or carrion teeth closely resemble those of plete chemical conversion and electron tion. It is documented by a rich fossil record the earliest whales. Since the 1960s3, several transfer through a zirconia electrolyte of intermediate forms spanning the morphological studies1,2,4,5 (with one excep- membrane. An ordinary cell would die in land–water transition; and by morphological tion6) have considered that extinct mesony- minutes under the same operating condi- and molecular lines of evidence, both of chids and cetaceans are sister taxa (Fig. 1a). tions because of carbon fouling. When the which testify that cetaceans have a close affin- The combined mesonychid–cetacean group copper–ceria–samaria catalyst was used, ity to the artiodactyl mammals, or ungulates is, in turn, related to living artiodactyls. In even toluene showed reasonable reactivity with even-toed feet and double-pulley ankle, this scheme, living artiodactyls are recog- and electron conversion. This is very such as today’s cow, camel and hippopota- nized as a clade1,2,5,7, a genealogical group encouraging because aromatics are usually mus. But two central issues have yet to be set- that includes all descendants of a common prone to rapid graphite deposition, which tled. One is the identity of the cetacean sister ancestor. destroys the catalyst. taxon. The other is whether the cetaceans are In contrast, molecular studies8–12 have The hope is that even gasoline or diesel ‘nested’ within the group of artiodactyls as generally concluded that hippopotamuses fuel may soon be catalytically converted to a branch on the family tree of the living artio- and cetaceans are more closely related to energy and heat in a clean and powerful dactyls — in other words, whether cetaceans each other than either group is to other liv- manner by such devices. But it may be easier represent some ancient artiodactyls that ing artiodactyls (Fig. 1b). Consequently, the to use partly oxidized fuels such as methanol became adapted to aquatic life. artiodactyls would be a grade that has similar or formic acid because these will work in What O’Leary and Geisler have done is to evolutionary adaptations, but not a genea- aqueous solutions with catalytic electrodes. evaluate all the available morphological and logical clade. Moreover, some molecular NATURE | VOL 404 | 16 MARCH 2000 | www.nature.com © 2000 Macmillan Magazines Ltd 235 news and views studies12 suggest that mesonychids are not suggest), then cetacean adaptations such as closely related to cetaceans; this is because the underwater nursing of offspring and nearly mesonychid–cetacean relationship implies a hairless skin could have originated in the larger gap in the fossil record9, and is there- most recent common ancestor of both fore less plausible than the hippo–whale groups (Fig. 1b); this implies that certain connection12. So, for all their congruence on aquatic features had evolved before the ori- the broad picture of ungulate–cetacean gin of cetaceans9. The similar ear regions4,5 100 YEARS AGO evolution, there is a big disagreement and the fish-eating and carrion teeth must On reading the letter of Prof. Dexter on between morphological and molecular stud- have evolved independently in mesonychids “Assaults and Drunkenness” (p. 365), I ies over these two phylogenetic issues. and in the earliest cetaceans because these notice that there is one great fallacy in the What does that mean in terms of the ori- derived features are absent in living hippos argument. When a man is intoxicated and gin of cetacean adaptations to aquatic life? If and their artiodactyl allies. commits an assault, the result is entered in hippos and whales are sister taxa to the exclu- Alternatively, if mesonychids and ceta- police reports as “assault”, the more serious sion of mesonychids (as molecular studies ceans are sister taxa (as the best morphologi- offence overshadowing the less. So that, in all probability, many of the cases of assault referred to in the statement were also Other mammals drunkenness, but were not tabulated as such. The temperature is an important Horse element; for its variations are probably the cause of the change of character of the Rhino offences recorded.
Recommended publications
  • Stopover Ecology of a Migratory Ungulate
    Journal of Animal Ecology 2011, 80, 1078–1087 doi: 10.1111/j.1365-2656.2011.01845.x Stopover ecology of a migratory ungulate Hall Sawyer1,2* and Matthew J. Kauffman3 1Department of Zoology and Physiology, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY 82071, USA; 2Western Ecosystems Technology, Inc., 200 South 2nd St., Laramie, WY 82070, USA; and 3Department of Zoology and Physiology, United States Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA Summary 1. Birds that migrate long distances use stopover sites to optimize fuel loads and complete migra- tion as quickly as possible. Stopover use has been predicted to facilitate a time-minimization strat- egy in land migrants as well, but empirical tests have been lacking, and alternative migration strategies have not been considered. 2. We used fine-scale movement data to evaluate the ecological role of stopovers in migratory mule deer Odocoileus hemionus – a land migrant whose fitness is strongly influenced by energy intake rather than migration speed. 3. Although deer could easily complete migrations (range 18–144 km) in several days, they took an average of 3 weeks and spent 95% of that time in a series of stopover sites that had higher for- age quality than movement corridors. Forage quality of stopovers increased with elevation and distance from winter range. Mule deer use of stopovers corresponded with a narrow phenological range, such that deer occupied stopovers 44 days prior to peak green-up, when forage quality was presumed to be highest. Mule deer used one stopover for every 5Æ3 and 6Æ7 km travelled during spring and autumn migrations, respectively, and used the same stopovers in consecutive years.
    [Show full text]
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Whale Evolution Lab – Page 1
    Whale Evolution Lab – Page 1 Whale Evolution Lab Adapted from http://www.indiana.edu/~ensiweb PRELAB (recommended)… FROM LAND TO WATER: A Whale Evolution Internet Activity http://www.indiana.edu/~ensiweb/lessons/whalekiosk.html Click on “SCREEN” to “Find Out More” A. Anatomy B. Fossil record C. Molecular evidence A. WHALE ANATOMY 1. What does the Latin word “cetus” mean? 2. What three groups of organisms are considered cetaceans? 3. What are the two subgroups of cetaceans? 4. What characterizes the subgroup Odontoceti? 5. What characterizes the subgroup Mysticeti? 6. Follow the instructions given to compare anatomical parts. Click on the labels to compare the whale’s anatomy with that of a fish and a cat. Fill out the chart below with your answers to each structure, by placing an “X” under the organism whose structure is more similar to the whale’s. Structure FISH CAT Structure FISH CAT Ears Forelimb Eyes Jaw Lungs Mammary gland 7. According to the anatomical evidence, which organism is more closely related to a whale…fish or cat? 8. Draw and label the cladogram that you created for the whale, fish, and cat below. 9. What is the relationship between whales and cats? B. FOSSIL RECORD 1. What is a fossil? 2. What are the most likely parts to become fossilized? 3. What are trace fossils? List some examples. 4. What is a coprolite? 5. What fossilized anatomical structure can be useful to anatomists? 6. Compare the fossil teeth of whales to the other organisms on the website. What sort of organism has fossil teeth most similar to whale teeth? 7.
    [Show full text]
  • Thewissen Et Al. Reply Replying To: J
    NATURE | Vol 458 | 19 March 2009 BRIEF COMMUNICATIONS ARISING Hippopotamus and whale phylogeny Arising from: J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai & B. N. Tiwari Nature 450, 1190–1194 (2007) Thewissen etal.1 describe new fossils from India that apparentlysupport fossils, Raoellidae or the raoellid Indohyus is more closely related to a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as Cetacea than is Hippopotamidae (Fig. 1). Hippopotamidae is the the sister group to the extinct family Raoellidae, and Hippopotamidae exclusive sister group to Cetacea plus Raoellidae in the analysis that as more closely related to pigs and peccaries (that is, Suina) than to down-weights homoplastic characters, althoughin the equallyweighted cetaceans. However, our reanalysis of a modified version of the data set analysis, another topology was equally parsimonious. In that topology, they used2 differs in retaining molecular characters and demonstrates Hippopotamidae moved one node out, being the sister group to an that Hippopotamidae is the closest extant family to Cetacea and that Andrewsarchus, Raoellidae and Cetacea clade. In neither analysis is raoellids are the closest extinct group, consistent with previous phylo- Hippopotamidae closer to the pigs and peccaries than to Cetacea, the genetic studies2,3. This topology supports the view that the aquatic result obtained by Thewissen et al.1. In all our analyses, pachyostosis adaptations in hippopotamids and cetaceans are inherited from their (thickening) of limb bones and bottom walking, which occur in hippo- common ancestor4. potamids9,10, are interpreted to have evolved before the pachyostosis of To conduct our analyses, we started with the same published matrix the auditory bulla, as seen in raoellids and cetaceans1.
    [Show full text]
  • Whale Evolution: a Whale of a Tale
    Creation Research Society Quarterly 2012. 49:122–134. 122 Creation Research Society Quarterly Whale Evolution: A Whale of a Tale Jerry Bergman* Abstract review of the evolution of whales from terrestrial land animals finds A that the evidence used to support the current theory is either wrong or very questionable. A focus is on the hip bone and fetal teeth evidence because they are commonly used as proof for the land mammal-to-whale evolution theory. The putative fossil evidence for whale evolution from terrestrial animals is also evaluated, concluding that the examples used are likely all extinct mammals and not transitional forms. Introduction be only about 20 feet long, but baleen A major problem has been deter- The term “whale” is a common noun and blue whales can grow up to 100 feet mining which terrestrial animal whales that can refer to all marine mammals long. Toothed whales are, on average, evolved from. Charles Darwin proposed called cetaceans (members of order smaller then baleen whales, ranging one of the first theories of whale evolu- cetacea), including dolphins and por- from 3 to 32 feet long, although most tion, suggesting they evolved from bears. poises. In this paper the term “whales” are from 10 to 30 feet long. Blue whales He wrote, “I can see no difficulty in a excludes both dolphins and porpoises. can weigh up to 150 tons. race of bears being rendered, by natural Classification of whales divides them selection, more and more aquatic in into two groups; toothed whales and their structure and habits, with larger baleen whales, the latter of which use The Origin of Whales and larger mouths, till a creature was large brush-like structures to filter food The evolution of whales is one of the produced as monstrous as a whale” from the ocean.
    [Show full text]
  • Ungulate and Human Risk Perception in Shared Environments
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Ungulate and human risk perception in shared environments Benjamin Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Johnson, Benjamin, "Ungulate and human risk perception in shared environments" (2020). Graduate Theses and Dissertations. 17960. https://lib.dr.iastate.edu/etd/17960 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ungulate and human risk perception in shared environments by Benjamin J. Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Robert Klaver, Co-major Professor Cassandra Nuñez, Co-major Professor Amy Toth Dara Wald The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Benjamin J. Johnson, 2020. All rights
    [Show full text]
  • Hooves and Herds Lesson Plan
    Hooves and Herds 6-8 grade Themes: Rut (breeding) in ungulates (hoofed mammals) Location: Materials: The lesson can be taught in the classroom or a hybrid of in WDFW PowerPoints: Introduction to Ungulates in Washington, the classroom and on WDFW public lands. We encourage Rut in Washington Ungulates, Ungulate comparison sheet, teachers and parents to take students in the field so they WDFW career profile can look for signs of rut in ungulates (hoofed animals) and experience the ecosystems where ungulates call home. Vocabulary: If your group size is over 30 people, you must apply for a Biological fitness: How successful an individual is at group permit. To do this, please e-mail or call your WDFW reproducing relative to others in the population. regional customer service representative. Bovid: An ungulate with permanent keratin horns. All males have horns and, in many species, females also have horns. Check out other WDFW public lands rules and parking Examples are cows, sheep, and goats. information. Cervid: An ungulate with antlers that fall off and regrow every Remote learning modification: Lesson can be taught over year. Antlers are almost exclusively found on males (exception Zoom or Google Classrooms. is caribou). Examples include deer, elk, and moose. Harem: A group of breeding females associated with one breeding male. Standards: Herd: A large group of animals, especially hoofed mammals, NGSS that live, feed, or migrate. MS-LS1-4 Mammal: Animals that are warm blooded, females have Use argument based on empirical evidence and scientific mammary glands that produce milk for feeding their young, reasoning to support an explanation for how characteristic three bones in the middle ear, fur or hair (in at least one stage animal behaviors and specialized plant structures affect the of their life), and most give live birth.
    [Show full text]
  • AZA Ungulate TAG Midyear Meetings March 23-25, 2021 “Many Hooves, One Herd”
    AZA Ungulate TAG Midyear Meetings March 23-25, 2021 “Many Hooves, One Herd” Tuesday March 23 - DAY 1 (All times are Eastern Standard Time) 11am-1pm Welcome, Overview, and Agenda for the Week – Moderator, Steve Metzler, Antelope, Cattle, Giraffid, and Camelid TAG Chair AZA Ungulate TAG Chair Briefings • Rhino TAG – Adam Eyres, TAG Chair, Fossil Rim Wildlife Center • Equid TAG – Tim Thier, TAG Chair, Saint Louis Zoo • Hippo, Peccary, Pig, and Tapir TAG – Martin Ramirez, TAG Chair, Woodland Park Zoo • Deer (Cervid/Tragulid) TAG – Michelle Hatwood, TAG Chair, Audubon Species Survival Center • Caprinae TAG – Gil Myers, TAG Chair, Smithsonian National Zoo • Antelope, Cattle, Giraffid, and Camelid (ACGC) TAG – Steve Metzler, TAG Chair, San Diego Zoo Wildlife Alliance 1pm-2:30pm Animal Program Leaders Meeting 3pm-5pm The Future of SSPs and How it May Impact the Ungulate TAGs and Collection Planning – Presentations and Discussion, Moderator, Steve Metzler • Panelists, Dave Powell, Animal Population Management Committee, Saint Louis Zoo and Ungulate TAG Chairs Wednesday March 24 – DAY 2 (All times are Eastern Standard Time) 11am-1pm Reports from the Field Part 1 – Moderators, Wendy Enright and RoxAnna Breitigan, The Living Desert Zoo and Gardens • Peninsular Pronghorn Conservation Project – Melodi Tayles, San Diego Zoo Wildlife Alliance • Large-antlered Muntjac CGF Grant – Michelle Hatwood, Audubon Species Survival Center • Action Indonesia Update – James Burton, IUCN Asian Wild Cattle Specialist Group • Saola Working Group activities - James Burton,
    [Show full text]
  • Cetaceans and Primates: Convergence in Intelligence and Self- Awareness
    WellBeing International WBI Studies Repository 2011 Cetaceans and Primates: Convergence in Intelligence and Self- Awareness Lori Marino Emory University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_asie Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal Sciences Commons Recommended Citation Marino, L. (2011). Cetaceans and primates: Convergence in intelligence and self-awareness. Journal of Cosmology, 14, 1063-1079. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Journal of Cosmology, 2011, Vol. 14. JournalofCosmology.com, 2011 Cetaceans and Primates: Convergence in Intelligence and Self-Awareness Lori Marino Neuroscience and Behavioral Biology Program, 488 Psychology and Interdisciplinary Sciences Bldg., 36 Eagle Row, Emory University, Atlanta, GA 30322 Abstract Cetaceans (dolphins, porpoises and whales) have been of greatest interest to the astrobiology community and to those interested in consciousness and self- awareness in animals. This interest has grown primarily from knowledge of the intelligence, language and large complex brains that many cetaceans pos- sess. The study of cetacean and primate brain evolution and cognition can in- form us about the contingencies and parameters associated with the evolution of complex intelligence in general, and, the evolution of consciousness. Strik- ing differences in cortical organization in the brains of cetaceans and primates along with shared cognitive capacities such as self-awareness, culture, and symbolic concept comprehension, tells us that cetaceans represent an alterna- tive evolutionary pathway to complex intelligence on this planet.
    [Show full text]
  • The Biology of Marine Mammals
    Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al.
    [Show full text]
  • Eocene) of Oregon, USA
    Palaeontologia Electronica palaeo-electronica.org First mesonychid from the Clarno Formation (Eocene) of Oregon, USA Selina V. Robson, Nicholas A. Famoso, Edward Byrd Davis, and Samantha S.B. Hopkins ABSTRACT A recently identified left dentary of Harpagolestes cf. uintensis represents the first mesonychid material known from the Pacific Northwest. The specimen is from the Han- cock Quarry (Clarno Unit, John Day Fossil Beds National Monument), which is in the uppermost subunit of the Clarno Formation (middle Eocene, ~40 Ma). The sediments of the Hancock Quarry were deposited by a meandering river system during the middle Eocene when north-central Oregon had a subtropical climate. As with many other mammals from the Hancock Quarry, Harpagolestes participated in an Asian-North American faunal interchange; species of Harpagolestes are known from the Eocene of both continents. Harpagolestes was carnivorous, and members of the genus were likely bone-crushers. Characteristic bone-crushing wear is visible on the occlusal sur- faces of the Hancock Quarry specimen’s premolars and molars. With the aid of CT scans, it has been determined that the Hancock Quarry Harpagolestes contains the alveoli for c1, p1-2, and m3, and preserves the crowns of p3-4 and m1-2. The molari- form teeth have a large, conical trigonid with a bulbous talonid. The protoconid of p3 and p4 is tilted posteriorly. This specimen of Harpagolestes cf. uintensis represents a new large carnivore in the Hancock Quarry ecosystem, adds to the known diversity of the Oregon middle Eocene, and is the only known occurrence of a mesonychid in the Pacific Northwest.
    [Show full text]
  • Ungulate Management in National Parks of the United States and Canada
    Ungulate Management in National Parks of the United States and Canada Technical Review 12-05 December 2012 1 Ungulate Management in National Parks of the United States and Canada The Wildlife Society Technical Review 12-05 - December 2012 Citation Demarais, S., L. Cornicelli, R. Kahn, E. Merrill, C. Miller, J. M. Peek, W. F. Porter, and G. A. Sargeant. 2012. Ungulate management in national parks of the United States and Canada. The Wildlife Society Technical Review 12-05. The Wildlife Society, Bethesda, Maryland, USA. Series Edited by Theodore A. Bookhout Copy Edit and Design Terra Rentz (AWB®), Managing Editor, The Wildlife Society Jessica Johnson, Associate Editor, The Wildlife Society Maja Smith, Graphic Designer, MajaDesign, Inc. Cover Images Front cover, clockwise from upper left: 1) Bull moose browsing on subalpine fir near Soda Butte Creek in Yellowstone National Park. Credit: Jim Peaco, National Park Service; 2) Bison in Stephens Creek pen in Yellowstone National Park. The Bison herds in Yellowstone are actively managed to maintain containment within park boundaries. Credit: Jim Peaco, National Park Service; 3) Bighorn sheep ram in Lamar Valley, Yellowstone National Park. Credit: Jim Peaco, National Park Service; 4) Biologists in Great Smokey Mountains National Park use non-lethal means, such as the use of a paintball gun depicted in this photo, to move elk from undesirable areas. Credit: Joseph Yarkovich; 5) National Park Service biologists Joe Yarkovich and Kim Delozier (now retired) working up an elk in Great Smokey Mountains National Park. Credit: Joseph Yarkovich; 6) Fencing protects willow (Salix spp.) and aspen (Populus spp.) from overgrazing by elk (Cervus elaphus) in Rocky Mountain National Park.
    [Show full text]