Downloaded from Ol.1700116

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from Ol.1700116 Enhanced Effector Functions Due to Antibody Defucosylation Depend on the Effector Cell Fcγ Receptor Profile This information is current as Christine W. Bruggeman, Gillian Dekkers, Arthur E. H. of September 24, 2021. Bentlage, Louise W. Treffers, Sietse Q. Nagelkerke, Suzanne Lissenberg-Thunnissen, Carolien A. M. Koeleman, Manfred Wuhrer, Timo K. van den Berg, Theo Rispens, Gestur Vidarsson and Taco W. Kuijpers J Immunol published online 31 May 2017 Downloaded from http://www.jimmunol.org/content/early/2017/05/31/jimmun ol.1700116 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 31, 2017, doi:10.4049/jimmunol.1700116 The Journal of Immunology Enhanced Effector Functions Due to Antibody Defucosylation Depend on the Effector Cell Fcg Receptor Profile Christine W. Bruggeman,* Gillian Dekkers,† Arthur E. H. Bentlage,† Louise W. Treffers,* Sietse Q. Nagelkerke,* Suzanne Lissenberg-Thunnissen,† Carolien A. M. Koeleman,‡ Manfred Wuhrer,‡ Timo K. van den Berg,* Theo Rispens,x Gestur Vidarsson,† and Taco W. Kuijpers*,{ Abs of the IgG isotype are glycosylated in their Fc domain at a conserved asparagine at position 297. Removal of the core fucose of this glycan greatly increases the affinity for FcgRIII, resulting in enhanced FcgRIII-mediated effector functions. Normal plasma IgG contains ∼94% fucosylated Abs, but alloantibodies against, for example, Rhesus D (RhD) and platelet Ags frequently have reduced fucosylation that enhances their pathogenicity. The increased FcgRIII-mediated effector functions have been put to use in Downloaded from various afucosylated therapeutic Abs in anticancer treatment. To test the functional consequences of Ab fucosylation, we produced V-gene–matched recombinant anti-RhD IgG Abs of the four different subclasses (IgG1–4) with and without core fucose (i.e., 20% fucose remaining). Binding to all human FcgR types and their functional isoforms was assessed with surface plasmon resonance. All hypofucosylated anti-RhD IgGs of all IgG subclasses indeed showed enhanced binding affinity for isolated FcgRIII isoforms, without affecting binding affinity to other FcgRs. In contrast, when testing hypofucosylated anti-RhD Abs with FcgRIIIa- expressing NK cells, a 12- and 7-fold increased erythrocyte lysis was observed with the IgG1 and IgG3, respectively, but no http://www.jimmunol.org/ increase with IgG2 and IgG4 anti-RhD Abs. Notably, none of the hypofucosylated IgGs enhanced effector function of macro- phages, which, in contrast to NK cells, express a complex set of FcgRs, including FcgRIIIa. Our data suggest that the beneficial effects of afucosylated biologicals for clinical use can be particularly anticipated when there is a substantial involvement of FcgRIIIa-expressing cells, such as NK cells. The Journal of Immunology, 2017, 199: 000–000. mmunoglobulin G is the most abundant class of Abs in human through an ITAM. This motif is found either within the cyto- plasma, consisting of four subclasses: IgG1, IgG2, IgG3, and plasmic tail of FcgRIIa/c or in the cytoplasmic tail of the common IgG4. Because the four subclasses differ in the structure of g-chain associated with the other activating FcgRs. Alternatively, I by guest on September 24, 2021 their constant regions (Fc domain), recognized by FcgRs and FcgRIIb contains an ITIM and FcgRIIIb lacks an intracellular sig- complement component C1q, they have different effector func- naling motif (3, 4). FcgRs bind IgGs of the four subclasses with tions. This includes Ab-dependent cellular cytotoxicity (ADCC) different affinities. Moreover, polymorphisms in FcgRs influence the and complement-dependent cytotoxicity (1, 2). binding affinities, most notably for FcgRIIa (FCGR2A-His131Arg, The family of FcgRs consists of the high-affinity receptor FcgRI with higher affinity for the 131His variant) and for FcgRIIIa and the low-to-medium affinity receptors FcgRII and FcgRIII. All (FCGR3A-Val158Phe, with higher affinity for the 158Val variant). FcgRs, except for FcgRIIb and FcgRIIIb, are activating receptors Polymorphisms in FcgRIIIb (e.g., FCGR3B-NA1NA2) do not affect affinity for IgG (3). All four IgG subclasses contain a conserved asparagine at po- *Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, sition 297 to which a glycan is attached. This biantennary glycan Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; †Department of Experimental Immunohematology, Sanquin Research consists of a core structure of N-acetylglucosamine and mannose and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, residues and can be variably extended with galactose, sialic acid, 1066 CX Amsterdam, the Netherlands; ‡Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; xDepartment of core fucose, and a bisecting N-acetylglucosamine (5). The com- 297 Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medi- position of the Asn glycan can influence the quaternary struc- cal Center, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; and ture of the IgG and thereby the interactions with FcgRs (2, 6–8). {Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands Furthermore, there is a direct carbohydrate–carbohydrate inter- 297 ORCIDs: 0002-9127-356X (G.D.); 0000-0002-0814-4995 (M.W.); 0000-0001-5621- action between the Fc glycan at Asn and the FcgR glycan on 162 003X (G.V.). FcgRIII at Asn, which affects the binding affinity (6, 9, 10). Received for publication January 23, 2017. Accepted for publication May 4, 2017. The glycoform of FcgRIII may change the interaction with IgGs, This work was supported by Program on Prevention Outcomes Practices Grant but this is beyond the scope of this study. PPOP-12-001 titled “Sweet IVIg: a blend of different tastes.” Hypofucosylation of IgG1 has been reported to result in a Address correspondence and reprint requests to Christine W. Bruggeman, Depart- significantly increased binding to FcgRIIIa and FcgRIIIb (4, 6, 9, ment of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Aca- 11–13). This results in enhanced effector functions, most notably demic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands. E-mail address: [email protected] increased ADCC by freshly isolated PBMCs, purified peripheral Abbreviations used in this article: ADCC, Ab-dependent cellular cytotoxicity; AIHA, blood monocytes, or NK cells through FcgRIIIa (11, 14–16). The autoimmune hemolytic anemia; 2FF, 2-deoxy-2-fluoro-L-fucose; ITP, immune throm- increased affinity to the GPI-linked FcgRIIIb seems to adversely bocytopenia; Ig; RhD, rhesus D; SPR, surface plasmon resonance; TNBS, affect the phagocytosis function of neutrophils (14, 17). In hu- trinitrobenzene sulfonic acid; TNP, 2,4,6-trinitrophenol. mans, hypofucosylated Abs can arise, as they have been described Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 in alloimmune responses against Rhesus D (RhD) and platelet www.jimmunol.org/cgi/doi/10.4049/jimmunol.1700116 2 EFFECTOR FUNCTIONS UPON Ab DEFUCOSYLATION Ags, as well as in elite controllers of HIV infection (18). The IgG2 (EEQFNSTFR). Tryptic digestion of IgG3 resulted in a glycopeptide degree of fucosylation correlates with FcgRIIIa-mediated ADCC bearing a peptide sequence identical to that of IgG4, as well as a mis- such that Ab afucosylation enhances pathogenicity (14, 19). cleaved glycopeptide (LREEQFNSTYR). Using the three-dimensional Max Xtractor software, intensity values With this in mind, it is not surprising that several nonfucosylated were extracted for each peak within a manually specified m/z window and therapeutic mAbs have been put to therapeutic use, especially fo- retention time window. The background-subtracted peak intensity of the cusing on cancer treatment (4, 20–24). Furthermore, there are in- first three isotopic peaks in both 2+ and 3+ charge state was summed. For dications that glycan composition plays a role in the working the two types of IgG3 glycopeptides, the intensity of both was summed. mechanisms of other Ig therapies, such as IVIg, a product of IgG The values were subsequently normalized by dividing by the total intensity of all glycopeptides, yielding percentage data for each IgG subclass. These pooled from the plasma of thousands of donors. IVIg is used as data were used to calculate (a)fucosylation levels, that is, the percentage of replacement therapy in primary immunodeficiencies and as an N-glycans carrying a core fucose. immune-modulating agent in various autoimmune and immune
Recommended publications
  • Fcγr Binding and ADCC Activity of Human Igg Allotypes
    fimmu-11-00740 May 4, 2020 Time: 17:25 # 1 ORIGINAL RESEARCH published: 06 May 2020 doi: 10.3389/fimmu.2020.00740 FcgR Binding and ADCC Activity of Human IgG Allotypes Steven W. de Taeye1,2*†, Arthur E. H. Bentlage2, Mirjam M. Mebius3, Joyce I. Meesters3, Suzanne Lissenberg-Thunnissen2, David Falck4, Thomas Sénard4, Nima Salehi1, Manfred Wuhrer4, Janine Schuurman3, Aran F. Labrijn3, Theo Rispens1‡ and Gestur Vidarsson2‡ 1 Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 2 Sanquin Research and Landsteiner Laboratory, Department of Experimental Edited by: Immunohematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands, 3 Genmab, Utrecht, Eric O. Long, Netherlands, 4 Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands National Institute of Allergy and Infectious Diseases (NIAID), United States Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function Reviewed by: of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated Amy W. Chung, ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fc- The University of Melbourne, Australia receptor (FcgR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene Geoffrey Thomas Hart, University of Minnesota Twin Cities, likely form a layer of variation in the strength of the ADCC-response, but this has United States never been studied in detail. We produced all 27 known IgG allotypes and assessed *Correspondence: FcgRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved Steven W. de Taeye [email protected]; similarly within subclass, large allotype-specific variation was found for IgG3.
    [Show full text]
  • Blood Bank I D
    The Osler Institute Blood Bank I D. Joe Chaffin, MD Bonfils Blood Center, Denver, CO The Fun Just Never Ends… A. Blood Bank I • Blood Groups B. Blood Bank II • Blood Donation and Autologous Blood • Pretransfusion Testing C. Blood Bank III • Component Therapy D. Blood Bank IV • Transfusion Complications * Noninfectious (Transfusion Reactions) * Infectious (Transfusion-transmitted Diseases) E. Blood Bank V (not discussed today but available at www.bbguy.org) • Hematopoietic Progenitor Cell Transplantation F. Blood Bank Practical • Management of specific clinical situations • Calculations, Antibody ID and no-pressure sample questions Blood Bank I Blood Groups I. Basic Antigen-Antibody Testing A. Basic Red Cell-Antibody Interactions 1. Agglutination a. Clumping of red cells due to antibody coating b. Main reaction we look for in Blood Banking c. Two stages: 1) Coating of cells (“sensitization”) a) Affected by antibody specificity, electrostatic RBC charge, temperature, amounts of antigen and antibody b) Low Ionic Strength Saline (LISS) decreases repulsive charges between RBCs; tends to enhance cold antibodies and autoantibodies c) Polyethylene glycol (PEG) excludes H2O, tends to enhance warm antibodies and autoantibodies. 2) Formation of bridges a) Lattice structure formed by antibodies and RBCs b) IgG isn’t good at this; one antibody arm must attach to one cell and other arm to the other cell. c) IgM is better because of its pentameric structure. P}Chaffin (12/28/11) Blood Bank I page 1 Pathology Review Course 2. Hemolysis a. Direct lysis of a red cell due to antibody coating b. Uncommon, but equal to agglutination. 1) Requires complement fixation 2) IgM antibodies do this better than IgG.
    [Show full text]
  • Introduction to the Rh Blood Group.Pdf
    Introduction to the Rhesus Blood Group Justin R. Rhees, M.S., MLS(ASCP)CM, SBBCM University of Utah Department of Pathology Medical Laboratory Science Program Objectives 1. Describe the major Rhesus (Rh) blood group antigens in terms of biochemical structure and inheritance. 2. Describe the characteristics of Rh antibodies. 3. Translate the five major Rh antigens, genotypes, and haplotypes from Fisher-Race to Wiener nomenclature. 4. State the purpose of Fisher-Race, Wiener, Rosenfield, and ISBT nomenclatures. Background . How did this blood group get its name? . 1937 Mrs. Seno; Bellevue hospital . Unknown antibody, unrelated to ABO . Philip Levine tested her serum against 54 ABO-compatible blood samples: only 13 were compatible. Rhesus (Rh) blood group 1930s several cases of Hemolytic of the Fetus and Newborn (HDFN) published. Hemolytic transfusion reactions (HTR) were observed in ABO- compatible transfusions. In search of more blood groups, Landsteiner and Wiener immunized rabbits with the Rhesus macaque blood of the Rhesus monkeys. Rhesus (Rh) blood group 1940 Landsteiner and Wiener reported an antibody that reacted with about 85% of human red cell samples. It was supposed that anti-Rh was the specificity causing the “intragroup” incompatibilities observed. 1941 Levine found in over 90% of erythroblastosis fetalis cases, the mother was Rh-negative and the father was Rh-positive. Rhesus macaque Rhesus (Rh) blood group Human anti-Rh and animal anti- Rh are not the same. However, “Rh” was embedded into blood group antigen terminology. The
    [Show full text]
  • Targeted Exome Sequencing Defines Novel and Rare Variants in Complex Blood Group Serology Cases for a Red Blood Cell Reference Laboratory Setting
    IMMUNOHEMATOLOGY Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting Elizna M. Schoeman ,1 Eileen V. Roulis ,1 Yew-Wah Liew,2 Jacqueline R. Martin,2 Tanya Powley,2 Brett Wilson,2 Glenda M. Millard ,1 Eunike C. McGowan ,1 Genghis H. Lopez ,1 Helen O’Brien ,1 Jennifer A. Condon,3 Robert L. Flower ,1 and Catherine A. Hyland 1 he key role of a modern red blood cell (RBC) ref- BACKGROUND: We previously demonstrated that erence laboratory in transfusion medicine is to targeted exome sequencing accurately defined blood employ serology to solve complex problems. group genotypes for reference panel samples Often, the lack of appropriate RBCs, sera, or characterized by serology and single-nucleotide T polymorphism (SNP) genotyping. Here we investigate reagents makes confident resolution of a complex case the application of this approach to resolve problematic difficult. Resources can be costly and scarce, if available at serology and SNP-typing cases. all, and often require collaboration and generosity of col- 1 STUDY DESIGN AND METHODS: The TruSight One leagues from other international laboratories. In addition, sequencing panel and MiSeq platform was used for reference laboratories commonly employ single- sequencing. CLC Genomics Workbench software was nucleotide polymorphism (SNP) typing microarrays for used for data analysis of the blood group genes RBC genotyping investigations; however, these arrays are implicated in the serology and SNP-typing problem. not comprehensive in their coverage of blood groups or 2-5 Sequence variants were compared to public databases variants. When the combination of traditional serologic listing blood group alleles.
    [Show full text]
  • Red Blood Cell Antigen Genotyping
    Red Blood Cell Antigen Genotyping Testing is useful in determining allelic variants predicting red blood cell (RBC) antigen phenotypes for patients with recent history of transfusion or with conflicting serological antibody results due to partial, variant, or weak expression antigens. Also Tests to Consider useful as an aid in management of hemolytic disease of the fetus and newborn (HDFN). Typical Testing Strategy Disease Overview Phenotype Testing Evaluates specific RBC antigen presence by serology Prevalence and/or Incidence Results can aid in selecting antigen negative RBC units Erythrocyte alloimmunization occurs in up to 58% of sickle cell patients, up to 35% in other transfusion-dependent patients, and in approximately 0.8% of all pregnant Antigen Testing, RBC Phenotype women. Extended 0013020 Method: Hemagglutination Serological testing includes K, Fya, Fyb, Jka, Symptoms Jkb, S, s (k, cellano, testing performed if indicated) to assess maternal or paternal RBC Transfusion reactions or HDFN can occur due to alloimmunization: phenotype status. Antigen Testing, Rh Phenotype 0013019 Intravascular hemolysis: hemoglobinuria, jaundice, shock Extravascular hemolysis: fever and chills Method: Hemagglutination HDFN: fetal hemolytic anemia, hepatosplenomegaly, jaundice, erythroblastosis, Antigen testing for D, C, E, c, and e to assess neurological damage, hydrops fetalis maternal, paternal, or newborn Rh phenotype status Clinical presentation is variable and dependent upon the specific antibody and recipient factors Genotype Testing May help
    [Show full text]
  • Anti-Rhd Immunoglobulin in the Treatment of Immune Thrombocytopenia
    REVIEW Anti-RhD immunoglobulin in the treatment of immune thrombocytopenia Eric Cheung Abstract: Immune thrombocytopenia (ITP) is an acquired bleeding autoimmune disorder Howard A Liebman characterized by a markedly decreased blood platelet count. The disorder is variable, frequently having an acute onset of limited duration in children and a more chronic course in adults. Jane Anne Nohl Division of Hematology A number of therapeutic agents have demonstrated effi cacy in increasing the platelet counts in and Center for the Study of Blood both children and adults. Anti-RhD immunoglobulin (anti-D) is one such agent, and has been Diseases, University of Southern California-Keck School of Medicine, successfully used in the setting of both acute and chronic immune thrombocytopenia. In this Los Angeles, CA, USA report we review the use of anti-D in the management of ITP. While the FDA-approved dose of 50 mg/kg has documented effi cacy in increasing platelet counts in approximately 80% of children and 70% of adults, a higher dose of 75 μg/kg has been shown to result in a more rapid increase in platelet count without a greater reduction in hemoglobin. Anti-D is generally inef- fective in patients who have failed splenectomy. Anti-RhD therapy has been shown capable of delaying splenectomy in adult patients, but does not signifi cantly increase the total number of patients in whom the procedure can be avoided. Anti-D therapy appears to inhibit macrophage phagocytosis by a combination of both FcR blockade and infl ammatory cytokine inhibition of For personal use only. platelet phagocytosis within the spleen.
    [Show full text]
  • Prevalence of ABO, Rhd and Other Clinically Significant Blood Group Antigens Among Blood Donors at Tertiary Care Center, Gwalior
    ORIGINAL ARTICLE Bali Medical Journal (Bali Med J) 2020, Volume 9, Number 2: 437-443 P-ISSN.2089-1180, E-ISSN.2302-2914 Prevalence of ABO, RhD and other clinically ORIGINAL ARTICLE significant Blood Group Antigens among blood donors at tertiary care center, Gwalior Published by DiscoverSys CrossMark Doi: http://dx.doi.org/10.15562/bmj.v9i2.1779 Shelendra Sharma, Dharmesh Chandra Sharma,* Sunita Rai, Anita Arya, Reena Jain, Dilpreet Kaur, Bharat Jain Volume No.: 9 ABSTRACT Issue: 2 Background: Among all blood group systems and antigens, ABO and of them 1000 randomly selected donor samples were processed for D antigens of the Rh blood group system are of primary importance, complete Rh, Kell, Duffy and Kidd blood grouping. hence included in routine blood grouping and transfusion. Other blood Result: ABO group pattern was; A - 22.56%, B - 36.52%, AB - 9.8% group systems and antigens that are important in multiparous women, and O -31.12 %, while RhD status was RhD+ 90.99% and RhD- 9.01%. First page No.: 437 multi-transfused patients and hemolytic disease of newborn are Kell, Prevalence of Rh phenotypes was DCCee 43%, DCcee 33%, DCcEe 10%, Rh, Duffy, and Kidd. dccee 6.5%, DccEe 4.5%, Dccee 1%, DCCEe 0.3% and dccEe 0.2%. Aims and Objectives: To know the pattern of ABO, RhD and other Kell phenotype was K-k+ 95.5%, K+k+ 4.5%, while K+ k- and K- clinically significant major antigens of Rh, Kell, Duffy and Kidd blood k- phenotypes were not encountered in this study. Duffy phenotypes P-ISSN.2089-1180 group systems as well as evaluation of phenotypes, genotypes and were Fya+ Fyb+ 47.5%, Fya+ Fyb- 35%, Fya- Fyb+17% and Fya- Fyb- gene frequency of related antigens among blood donors in Gwalior 0.5%.
    [Show full text]
  • Presence of the RHD Pseudogene and the Hybrid RHD-CE-Ds Gene in Brazilians with the D-Negative Phenotype
    Brazilian Journal of Medical and Biological Research (2002) 35: 767-773 RHDΨ and RHD-CE-Ds in Brazilians 767 ISSN 0100-879X Presence of the RHD pseudogene and the hybrid RHD-CE-Ds gene in Brazilians with the D-negative phenotype A. Rodrigues1, M. Rios2, 1Hemocentro, Universidade Estadual de Campinas, J. Pellegrino Jr.1, Campinas, SP, Brasil F.F. Costa1 2New York Blood Center, New York, NY, USA and L. Castilho1 Abstract Correspondence The molecular basis for RHD pseudogene or RHDΨ is a 37-bp Key words A. Rodrigues insertion in exon 4 of RHD. This insertion, found in two-thirds of D- • RHD pseudogene Hemocentro, Unicamp negative Africans, appears to introduce a stop codon at position 210. • RHD-CE-Ds Rua Carlos Chagas, 480 The hybrid RHD-CE-Ds, where the 3' end of exon 3 and exons 4 to 8 • D-negative phenotype Caixa Postal 6198 are derived from RHCE, is associated with the VS+V- phenotype, and • VS antigen 13081-970 Campinas, SP • Brazilians Brasil leads to a D-negative phenotype in people of African origin. We Fax: +55-19-3289-1089 determined whether Brazilian blood donors of heterogeneous ethnic s E-mail: [email protected] origin had RHDΨ and RHD-CE-D . DNA from 206 blood donors were tested for RHDΨ by a multiplex PCR that detects RHD, RHDΨ Research supported by FAPESP and the C and c alleles of RHCE. The RHD genotype was determined (Nos. 99/03620-0 and 00/03510-0). by comparison of size of amplified products associated with the RHD gene in both intron 4 and exon 10/3'-UTR.
    [Show full text]
  • ADAM17 Mediates MMP9 Expression in Lung Epithelial Cells
    ADAM17 Mediates MMP9 Expression in Lung Epithelial Cells Ya-qing Li1, Jian-ping Yan1, Wu-lin Xu1*, Hong Wang1, Ying-jie Xia2, Hui-jun Wang2, Yue-yan Zhu1, Xiao- jun Huang1 1 Department of Respiratory Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China, 2 Zhejiang Provincial Gastroenterology Key Laboratory, Zhejiang Provincial People’s Hospital, Hangzhou, China Abstract The purposes were to study the role of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-a/nuclear factor-kB (NF-kB) signaling in matrix metalloproteinase 9 (MMP9) expression in A549 cells and to investigate the effects of lentivirus- mediated RNAi targeting of the disintegrin and metalloproteinase 17 (ADAM17) gene on LPS-induced MMP9 expression. MMP9 expression induced by LPS in A549 cells was significantly increased in a dose- and time-dependent manner (p,0.05). Pyrrolidine dithiocarbamate (PDTC) and a TNFR1 blocking peptide (TNFR1BP) significantly inhibited LPS-induced MMP9 expression in A549 cells (p,0.05). TNFR1BP significantly inhibited LPS-induced TNF-a production (p,0.05). Both PDTC and TNFR1BP significantly inhibited the phosphorylation of IkBa and expression of phosphorylation p65 protein in response to LPS (p,0.05), and the level of IkBa in the cytoplasm was significantly increased (p,0.05). Lentivirus mediated RNA interference (RNAi) significantly inhibited ADAM17 expression in A549 cells. Lentivirus-mediated RNAi targeting of ADAM17 significantly inhibited TNF-a production in the supernatants (p,0.05), whereas the level of TNF-a in the cells was increased (p,0.05). Lentiviral ADAM17 RNAi inhibited MMP9 expression, IkBa phosphorylation and the expression of phosphorylation p65 protein in response to LPS (p,0.05).
    [Show full text]
  • The Role of Igm and Complement in Antibody Responses
    Trassla inte till saken genom att komma dragande med fakta Groucho Marx List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. Ia Rutemark C, Alicot E, Bergman A, Ma M, Getahun A, Ellmerich S, Carroll M, Heyman B. Requirement for complement in antibody responses is not explained by the classic pathway activator IgM. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):E934-42. Epub 2011 Oct 10. Ib Rutemark C, Alicot E, Bergman A, Ma M, Getahun A, Ellmerich S, Carroll M, Heyman B. Requirement for complement in antibody responses is not explained by the classic pathway activator IgM. Author summary. Proc Natl Acad Sci U S A 2011 108(43): 17589-90 II Carlsson F, Getahun A, Rutemark C, Heyman B. Impaired antibody responses but normal proliferation of specific CD4+ T cells in mice lacking complement receptors 1 and 2. Scand J Immunol. 2009 Aug;70(2):77-84. III Rutemark C, Bergman A, Getahun A, Henningson-Johnson F, Hallgren J, Heyman B. B cells lacking complement receptors 1 and 2 are equally efficient producers of IgG in vivo as wildtype B cells. Manuscript. Reprints were made with permission from the respective publishers. Contents Introduction ................................................................................................... 11 Background ................................................................................................... 12 B cells ....................................................................................................... 12 Antibodies
    [Show full text]
  • Increased Prevalence of AB Group and FY*A Red Blood Cell Antigen in Caucasian SARS-Cov-2 Convalescent Plasma Donors
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.17.21253821; this version posted March 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Increased prevalence of AB group and FY*A red blood cell antigen in Caucasian SARS-CoV-2 convalescent plasma donors Patrick Trépanier1,#, Josée Perreault1, Gabriel André Leiva2, Nadia Baillargeon2, Jessica Constanzo Yanez2, Marie-Claire Chevrier2 and Antoine Lewin1 1) Héma-Québec, Medical Affairs and Innovation (Québec City, Québec), 2) Héma-Québec, Transfusion Medecine, (St-Laurent, Québec), Corresponding author and author responsible for reprint requests: Patrick Trépanier, Ph.D., M.B.A. Héma-Québec Affaires Médicales et Innovation 1070 avenue des Sciences-de-la-Vie Québec, Qc, Canada G1V 5C3 Tel.: 418-780-4362 Fax.: 418-780-2091 E-mail: [email protected] The authors have disclosed no conflicts of interest. This paper has 1671 words excluding references, 2 tables and 18 references. Short running head: Covid-19 Convalescent Red Blood Cell typing NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2021.03.17.21253821; this version posted March 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Inflammation: Can We Silence the Secret Killer?
    Inflammation: Can we silence the secret killer? Prakash Nagarkatti, Ph.D. Vice President for Research University of South Carolina Columbia, SC 29208 Inflammation Inflammation is a natural response from the immune system against infections or tissue injury Infection Poison Ivy Nickel Lupus Allergy Bee bite Photographs: Wikipedia Cells of Innate Immunity No antigen-specificity No Memory Photographs: Wikipedia Cells of Adaptive Immunity: Lymphocytes-B and T Antigen-specificity Memory Photographs: Wikipedia Nature of inflammation in Type-I Hypersensitivity (allergies) Macrophage/Dendritic cells B cell IL-4,IL-5, IL-13 Plasma cell TH2 IgE Histamine, tryptase, Mast cells kininegenase, ECFA Leukotriene-B4, C4, D4, Newly prostaglandin D, PAF synthesized mediators Anaphylaxis Anaphylaxis: Repeat Inj. 2 Weeks later Egg Albumin Dies from asphyxia Photographs: Wikipedia Guinea Pig dies from anaphylaxis. Egg albumin IgE Abs Mast cells Lungs Histamine •Bronchoconstriction •Vasodilation Photographs: Wikipedia List of Allergens Grasses/Pollens Weeds Foods-->nuts, soy, fish, shell fish, eggs, wheat, dairy, etc. Epidermal-->dog, cat, mouse Insect bites House dust Molds Drugs Chemicals Skin test for allergy Inflammation mediated by IgE Abs and mast cells Photographs: Wikipedia Type II hypersensitivity Role of complement and phagocytes in inflammation Macrophage/Neutrophil/NK Complement Ab-dependent Cell-mediated cytoxicity Type II hypersensitivity induced by exogenous agents Drug-induced reaction to red blood cells Absorbed drug or drug metabolite RBC antigen Ab to drug Complement Lysis Photographs: Wikipedia Examples of drug-induced type II hypersensitivity Red cells: Penicillin, chloropromazine, phenacetin Granulocytes: Quinidine, amidopyridine Platelets: sulphonamides, thiazides Blood Group Ags Blood Group Ag Ab A A anti-B B B anti-A AB A&B None O ---- anti-A& anti-B Abs against blood group Ags are naturally present and are IgM type.
    [Show full text]