Observed Linear Trend in Few Surface Weather Elements Over the Northwest Himalayas (NWH) During Winter Season

Total Page:16

File Type:pdf, Size:1020Kb

Observed Linear Trend in Few Surface Weather Elements Over the Northwest Himalayas (NWH) During Winter Season Observed linear trend in few surface weather elements over the Northwest Himalayas (NWH) during winter season Dan Singh∗, Vikas Sharma and Vikas Juyal Research and Development Centre, Snow and Avalanche Study Establishment, Sector 37 A, Chandigarh 160 036, India. ∗Corresponding author. e-mail: dan @rediffmail.com Linear trends in few surface weather variables such as air temperatures (maximum temperature, mini- mum temperature), snow and rainy days, snowfall and rainfall amounts, rainfall contribution to seasonal total precipitation amount, seasonal snow cover depth and snow cover days (duration) are examined from winter-time observations at 11 stations located over the Northwest Himalayas (NWH). This study indi- cates that snowfall tends to show a decline in this region, while the rainfall tends to increase during the winter months. Seasonal snow cover depth and seasonal snow cover days also tend to show a decline over the NWH. Decrease in seasonal snow cover depth and duration have reduced the winter period in terms of availability of seasonal snow cover over the NWH during the last 2–3 decades. Other surface weather variables also exhibited significant temporal changes in recent decades. Observed trends in temperature and precipitation over the NWH in recent decades are also supported by long data series of temperature over the western Himalayas (WH), north mountain India (NMI) rainfall data and reanalysis products. 1. Introduction A comprehensive understanding of the observed trends in various surface weather variables, viz., Large climate variability is generally observed over temperatures (maximum temperature, minimum the mountainous regions of larger extent such temperature), precipitation, seasonal snow cover as the Himalayas, the Alps, the Andes and the depth, etc., is quite necessary and of prime con- Rockies, etc. (Beniston et al. 1997). High mountain- cern from the perspective of changing climate. ous regions are the integral part of the worlds’ Only a few recent studies have addressed the major river systems and such areas are essen- observed trends in temperatures, seasonal total tial elements of the global hydrological cycle. In snowfall amount and seasonal total snow water the context of Indian subcontinent, the Himalayas equivalent on a regional scale over the Northwest play a critical role in the hydro-meteorological Himalayas (NWH) (Bhutiyani et al. 2007, 2009; aspects of the major river basins in South Asia Shekhar et al. 2010; Dimri and Das 2011)aswell (Fowler and Archer 2005; Singh and Arora 2007), as the retreat of Himalayan glaciers (Kulkarni i.e., the Himalayas strongly influence the Asian and Bahuguna 2002; Kulkarni and Alex 2003; Summer Monsoon circulation and associated vari- Kulkarni et al. 2005, 2007). Consistent with in- ability. Seasonal snow cover and glaciers in the creasing surface air temperatures in the NWH Himalayas are also important sources of fresh (Pant and Borgaonkar 1984;LiandTang1986; water. Seko and Takahashi 1991; Shrestha et al. 1999; Keywords. Temperature; precipitation; snow cover depth; snow cover duration. J. Earth Syst. Sci. 124, No. 3, April 2015, pp. 553–565 c Indian Academy of Sciences 553 554 Dan Singh et al. Thompson et al. 2000;Kanget al. 2010), the afore- etc., and many other derived variables like snow mentioned studies indicated that maximum and days, rain days, seasonal total rainfall amount and minimum temperatures, and the diurnal tem- snow cover depth, etc., are examined to provide perature ranges also indicate increasing trend a broad overview of trends in surface weather vari- during recent decades (Bhutiyani et al. 2007, 2009) ables over the NWH in recent decades. Surface which is also equally valid for other large mountain- weather variables taken for this study are listed in ous ranges (Beniston et al. 1997; Diaz and Bradley table 1. Trends in temperatures (MX, MN and MNT) 1997; Beniston 2003). However, seasonal totals of and precipitation over the western Himalayas (WH) snowfall amount and snow water equivalent appar- are also examined using regional (sub-divisional) ently indicate a severe inconsistency with other scale temperature data over the WH and north variables in the NWH region (Bhutiyani et al. 2009; mountainous India (NMI) rainfall data downloa- Dimri and Das 2011). ded from the website of the Indian Institute of One can anticipate that the decreasing trend in Tropical Meteorology, Pune (IITM, Pune) (http:// seasonal total snowfall amount may have resulted www.tropmet.res.in)(Pant and Rupa Kumar 1997; from the decreasing snowfall amount of short- Kothawale and Rupa Kumar 2005;Sontakkeet al. time intervals, snow days, and increasing rainfall 2008) and reanalysis products provided by Natio- amount and rain days due to increasing air temper- nal Centres for Environmental Prediction (NCAR/ atures over the NWH. Increasing air temperatures NCEP) (Kalnay et al. 1996). and decreasing seasonal total snowfall amount may Observed linear trends in temperatures and pre- have also influenced seasonal snow cover depth and cipitation at three station locations, viz., D (2192 seasonal snow cover days (duration) during winter m), E (3050 m) and I (3800 m), over the NWH season (November–April). are also compared with the regional scale trends In this view point, a detailed analysis of observed in temperatures and precipitable water content trends of the variables listed in table 1 is under- (PWT) over the WH and the NMI rainfall. Agree- taken in this study. The contrast between precip- ment between regional scale trends in temperature, itation and rainfall is defined as follows. Seasonal PWT and NMI rainfall with the observed trends total rainfall amount (TR) is defined as cumula- in temperature and precipitation over the NWH tive rainfall amount during the entire winter sea- in recent decades indicate that regional scale data son (November–April). Seasonal total precipitation may provide an insight on long term trends in tem- amount(TP)isdefinedasasumofseasonaltotal perature and precipitation over the NWH. Similar- snow water equivalent (water equivalent of seasonal ity of observed trends in each variable at 11 stations total snowfall amount) and seasonal total rainfall located widespread over the NWH is examined as amount (TR). The extension 9–15 represents time the percentage (number) of stations showing same intervals of 9 or 15 hrs. type of trend. This can be taken as an indicator Earlier studies have examined linear trends in air of overall observed trend in each variable over the temperatures, seasonal total snowfall amount and NWH in recent decades. seasonal total snow water equivalent using in situ observations over the NWH (Bhutiyani et al. 2007, 2009; Shekhar et al. 2010;DimriandDas2011). In 2. Study area and data this study, linear trends in basic surface weather variables such as maximum temperature, minimum The study area falls in the Shamshabari Range, the temperature and seasonal total snowfall amount, Pir Panjal Range and the Great Himalayan Range Table 1. List of surface weather variables and their abbreviations. Sl. no. Variable Abbreviation 1 Maximum (minimum) temperature MX(MN) 2 Mean temperature MNT 2 Seasonal total snow (rain) days SFD(RFD) 3 Seasonal total precipitation days TPD 4 Snowfall (rainfall) amount for 9 or 15-hr interval SF9-15(RF9-15) 5 Snowfall amount for 24-hr interval SF-24 6 Seasonal total snowfall (rainfall) amount TS(TR) 7 Seasonal total precipitation amount TP 8 Rainfall contribution to seasonal total precipitation amount RC 9 Seasonal snow cover depth (snow cover days) MSSCD(SCD) 10 Seasonal total precipitable water content PWT Linear trend in surface weather elements over NWH during winter 555 Figure 1. Study stations in different mountain ranges over the Northwest Himalayas (NWH). in the NWH in India (see figure 1), which covers precipitation amount. Snowfall and rainfall amounts the high altitude mountainous regions of the are reported as zero on days when snowfall and north Indian states of Himachal Pradesh (HP) and rainfall do not occur. Jammu and Kashmir (J&K). Winter-time data A winter with missing data length for less than (November–April) from 11 stations in different 5 days only is considered for the study. Only those mountain ranges spread across the NWH are used stations are considered where the data reliability for analysis of linear trends in variables listed in is high (Bhutiyani et al. 2007, 2009; Shekhar et al. table 1. Data for this study is obtained from the 2010;DimriandDas2011) and spurious values in data archive of Snow and Avalanche Study Estab- any parameter are excluded from the analysis. It is lishment (SASE), Manali, India (Bhutiyani et al. generally seen that more than 95% of the records 2007, 2009; Shekhar et al. 2010). Due to prevailing of various variables fall within the range of mean sub-zero temperatures and solid precipitation in ±3 standard deviation. Winter data for stations the form of snow at most of the stations during D and E are available continuously for successive November–April, this period is considered as a winters and the data length at stations D, E and I is winter season over the NWH. comparatively more than the other stations (table 2). Daily surface weather data over the NWH are The climatology of MX, MN, TS, TP, SFD and collected at 0300 and 1200 UTC, and the details RFD (see also the explanations for the variables des- can be seen in Bhutiyani et al. (2009) and Dimri cribed in table 1) at 11 stations is given in table 2. and Das (2011). Data collected on snowfall (rain- Large difference in TS (TP) at 11 stations indicates fall) amount at 0300 UTC represents 15-hr interval that precipitation displays a large interannual varia- [i.e., 1200 UTC (previous day)–0300 UTC (current bility and strong regional character over the NWH. day)] cumulative snowfall (rainfall) amount. Data collected on snowfall (rainfall) amount at 1200 3. Methodology UTC represents 9-hr interval (0300–1200 UTC of same day) cumulative snowfall (rainfall) amount.
Recommended publications
  • Analysis of Trends in Extreme Precipitation Events Over Western Himalaya Region: Intensity and Duration Wise Study M
    J. Ind. Geophys. Union ( May Analysis2017 ) of trends in extreme precipitation events over Western Himalaya Region: v.21, no.3, pp: 223-229 intensity and duration wise study Analysis of trends in extreme precipitation events over Western Himalaya Region: intensity and duration wise study M. S. Shekhar*1, Usha Devi1, Surendar Paul2, G. P. Singh3 and Amreek Singh1 1Snow and Avalanche Study Establishment, Research and Development Centre, Sector 37, Chandigarh - 160036, India 2 India Meteorological Department, Chandigarh - 160036, India 3Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi-221005, India *Corresponding Author: [email protected] ABSTRACT The impact of climate change on precipitation has received a great deal of attention by scholars worldwide. Efforts have been made in this study to find out trends in terms of intensity and duration of precipitation for different altitudes and ranges in Western Himalaya region representing Jammu & Kashmir and Himachal Pradesh. In terms of intensity, precipitation has been classified as Low, Medium and Heavy. Durations of precipitation are classified as prolonged dry days (PDD), short dry days (SDD), prolonged wet days (PWD) and short wet days (SWD). Analysis indicates significant positive trends for low and heavy precipitation events and negative for medium precipitation events in Pir-Panjal range. For Shamshawari and Great Himalaya ranges, there is no significant trend for low, medium and heavy precipitation events. In terms of altitude, significant positive trends in low precipitation events have been observed for lower and middle altitudes and no significant trend has been found for medium and heavy precipitation events for other altitudes. In terms of duration, PDD/SDD shows significant increasing/decreasing trends for all ranges and altitudes.
    [Show full text]
  • Diversity, Indigenous Uses and Conservation Status of Medicinal Plants in Manali Wildlife Sanctuary, North Western Himalaya
    Indian Journal of Traditional Knowledge Vol. 10 (3), July 2011, pp. 439-459 Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya Rana Man S & Samant*SS GB Pant Institute of Himalayan Environment & Development, Himachal Unit, Mohal-Kullu, 175 126, Himachal Pradesh, India E-mails: [email protected], [email protected] Received 26.02 09; revised 23.09.09 In the moutaineous regions human populations are dependent on plants for their sustenance particularly for medicine. In India, more than 95% of the total medicinal plants used in preparing medicines by various industries are harvested from wild. There is a great need to recognise the potential of bioresources at their fullest. Therefore, the present study focused to assess the medicinal plants diversity in Manali wildlife sanctuary of North western Himalaya, identify species preference, native, endemic and threatened medicinal plants and suggests conservation measures. A total of 270 medicinal plants belonging to 84 families and 197 genera were recorded. Maximum medicinal plants were reported in the altitudinal zone, 2000-2800 m and decreased with increasing altitude. Out of the total, 162 medicinal plants were native and 98 were endemic to the Himalayan region. Maximum species were used for stomach problems, followed by skin, eyes, blood and liver problems. Thirty seven species were identified as threatened. Dactylorhiza hatagirea, Aconitum heterophyllum, Arnebia benthamii, Lilium polyphyllum, Swertia chirayita, Podophyllum hexandrum, Jurinella macrocephala, Taxus baccata subsp. wallichiana, etc. were highly preferred species and continuous extraction from the wild for trade has increased pressure which may cause extinction of these species in near future.
    [Show full text]
  • Metamorphic Field Gradients Across the Himachal Himalaya
    TECTONICS, VOL. 32, 540–557, doi:10.1002/tect.20020, 2013 Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core Remington M. Leger,1,2 A. Alexander G. Webb,1 Darrell J. Henry,1 John A. Craig,1 and Prashant Dubey3 Received 28 August 2012; revised 23 January 2013; accepted 3 February 2013; published 31 May 2013. [1] New constraints on pressures and temperatures experienced by rocks of the Himachal Himalaya are presented in order to test models for the emplacement of the Himalayan crystalline core here. A variety of methods were employed: petrographic analysis referenced to a petrogenetic grid, exchange and net-transfer thermobarometry, Ti-in-biotite thermometry, and analysis of quartz recrystallization textures. Rocks along three transects (the northern Beas, Pabbar, and southern Beas transects) were investigated. Results reveal spatially coherent metamorphic field gradients across amphibolite-grade and migmatitic metamorphic rocks. Along the northern Beas transect, rocks record peak temperatures of ~650–780C at low elevations to the north of ~3210’ N; rocks in other structural positions along this transect record peak temperatures of <640C that decrease with increasing structural elevation. Rocks of the Pabbar transect dominantly record ~650–700C peak temperatures to the east of ~7755’ E and ~450–620C peak temperatures farther west. Peak temperatures of ~450–600C along the southern Beas transect record a right-way-up metamorphic field gradient. Results are integrated with literature data to determine a metamorphic isograd map of the Himachal Himalaya. This map is compared to metamorphic isograd map pattern predictions of different models for Himalayan crystalline core emplacement.
    [Show full text]
  • Forests of the Western Himalayas, 1876-1897
    HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 21 Number 2 Himalayan Research Bulletin Article 6 2001 Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Chhatre, Ashwini. 2001. Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897. HIMALAYA 21(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol21/iss2/6 This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Territorialization, Resistance and the Mirage of Permanent Boundaries Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University ABSTRACT Internal territorialization is described as the attempt to circumscribe the use of various resources, such as land and forests, within the boundaries of a nation-state. This translates into the creation of property rights for different social actors and the demarcation of a physical sphere wherein such rights could be exercised. The notion of permanent boundaries around forests, where local people lack property rights, is popular with all arms of the state, everywhere. This paper traces the first attempts by the colonial state in the Indian Western Himalayas to draw boundaries around forests and define the rights of local populations. The process, which intensified with the publication of a Forest Department report in 1876, was fraught with obstacles at several levels through­ out its course.
    [Show full text]
  • Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1975 Band/Volume: 32 Autor(en)/Author(s): Fuchs Gerhard Artikel/Article: Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Contributions to the Geology of the North-Western Himalayas GERHARD FUCHS 64 Figures and 5 Plates BAND 32 • WIEN 1975 EIGENTÜMER, HERAUSGEBER UND VERLEGER: GEOLOGISCHE BUNDESANSTALT, WIEN SCHRIFTLEITUNG: G.WOLETZ DRUCK: BRÜDER HOLLINEK, WIENER NEUDORF ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 3 Abh. Geol. B.-A. Band 32 59 Seiten 64 Fig., 5 Beilagen Wien, Feber 1975 Contribution to the Geology of the North-Western Himalayas By GERHARD FUCHS With 64 figures and 5 plates (= Beilage 1—5) Data up to 1972, except PI. 1 'I NW-Himalaya U Stratigraphie i3 Tektonik £ Fazies Contents Zusammenfassung 3 1.3.1. The Hazara Slates 40 Abstract 4 1.3.2. The Tanol Formation 40 Preface 5 1.3.3. The Sequence Tanakki Boulder Bed — Introduction 5 Sirban Formation 41 1. Descriptive Part 6 1.3.4. The Galdanian and Hazira Formations 42 1.1. Kashmir 6 1.3.5. The Meso-Cenozoic Sequence 44 1.1.1. The Riasi-Gulabgarh Pass Section 6 1.4. Swabi — Nowshera 46 1.1.2. The Apharwat Area . 11 1.4.1. Swabi 46 1.1.3. The Kolahoi-Basmai Anticline (Liddar valley) ... 17 1.4.2.
    [Show full text]
  • Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan
    remote sensing Technical Note Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan Faisal Mueen Qamer 1,2,*, Khuram Shehzad 1, Sawaid Abbas 3, MSR Murthy 1, Chen Xi 2, Hammad Gilani 1 and Birendra Bajracharya 1 1 International Centre for Integrated Mountain Development (ICIMOD), Kathmandu 44700, Nepal; [email protected] (K.S.); [email protected] (M.M.); [email protected] (H.G.); [email protected] (B.B.) 2 The Xinjiang Institute of Ecology and Geography (XIEG), Chinese Academy of Sciences (CAS), Urumqi 830011, China; [email protected] 3 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China; [email protected] * Correspondence: [email protected]; Tel.: +977-01-500-3222 Academic Editors: Rasmus Fensholt, Stephanie Horion, Torbern Tagesson, Martin Brandt, Parth Sarathi Roy and Prasad S. Thenkabail Received: 31 December 2015; Accepted: 12 April 2016; Published: 6 May 2016 Abstract: The Himalayan mountain forest ecosystem has been degrading since the British ruled the area in the 1850s. Local understanding of the patterns and processes of degradation is desperately required to devise management strategies to halt this degradation and provide long-term sustainability. This work comprises a satellite image based study in combination with national expert validation to generate sub-district level statistics for forest cover over the Western Himalaya, Pakistan, which accounts for approximately 67% of the total forest cover of the country. The time series of forest cover maps (1990, 2000, 2010) reveal extensive deforestation in the area. Indeed, approximately 170,684 ha of forest has been lost, which amounts to 0.38% per year clear cut or severely degraded during the last 20 years.
    [Show full text]
  • Observed Climate Change in the Himalayas
    Observed climate change in the Himalayas Hemant Borgaonkar, IITM Science and Training Workshop on Climate Change over the High Mountains of Asia during 9 -12 October, 2018, IITM, Pune • Temperature analysis ……trends • Rainfall analysis…………….trends • Dendroclimatic reconstructions over the Himalayan region Sr. Station State Lat. Long. Alti. Temperatur Rainfall No. (M) e 1 Srinagar J&K 340 05’ 740 50’ 1587 1901-2016 1892-2016 2 Quazigund J&K 330 30’ 750 10’ 1630 1962-2016 1962-2016 72O 75O 78O 81O N | | | | 3 Banihal J&K 330 35’ 750 05’ 1690 1962-2016 1962-2016 36O- * 4 Leh J&K 340 09’ 770 34’ 3506 1901-1990 1876-1990 33O- * * * 5 Shimla H.P. 310 06’ 770 10’ 2202 1901-2007 1863-2007 * O * 30 - 0 0 ** * * 6 Bhunter H.P. 31 50’ 77 10’ 1067 1964-2014 1964-2014 *** * 7 Dehra Dun U.K. 300 19’ 780 02’ 682 1901-2015 1863-2007 8 Mukteswar U.K 290 28’ 790 39’ 2311 1901-2014 1964-2014 9 Mussoorie U.K. 300 27’ 780 05’ 2042 1901-1990 1863-2007 10 Joshimath U.K. 300 33’ 790 34’ 2045 ---- 1871-1987 11 Almora U.K. 290 30’ 790 35’ 1642 ---- 1856-1978 12 Nainital U.K. 290 25’ 790 27’ 2084 ---- 1849-1978 13 Pauri U.K. 300 07’ 780 44’ 1824 ---- 1871-1978 14 Pithoragarh U.K. 30001’ 800 14’ 1514 ---- 1864-1978 15 30 C) Srinagar = 1 C) 30 Banihal = 3 30 O O 10 20 20 20 5 10 10 10 Rainfall(Cm) Rainfall(Cm) 0 0 Temperature( 0 0 Temperature( J FMAMJ JASOND J FMAMJ JASOND Month Month Qazigund = 2 1.5 20 C) Leh = 4 20 30 C) O O 15 20 1 10 10 5 10 0.5 0 Rainfall(Cm) Rainfall(Cm) Temperature( 0 0 Temperature( 0 -10 J FMAMJ JASOND J FMAMJ JASOND Month Month 15 30 C)
    [Show full text]
  • Seasonal Precipitation, River Discharge, and Sediment Flux in the Western
    Insititut für Erd- und Umweltwissenschaften • Mathematisch Naturwissenschaftliche Fakultät • Universität Potsdam Seasonal precipitation, river discharge, and sediment flux in the western Himalaya Hendrik Wulf Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geoökologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam Potsdam, im August 2011 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2012/5790/ URN urn:nbn:de:kobv:517-opus-57905 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57905 für Luigi & Andi Abstract Rainfall, snow-, and glacial melt throughout the Himalaya control river discharge, which is vital for maintaining agriculture, drinking water and hydropower generation. However, the spatiotemporal contribution of these discharge components to Himalayan rivers is not well understood, mainly because of the scarcity of ground-based observations. Consequently, there is also little known about the triggers and sources of peak sediment flux events, which account for extensive hydropower reservoir filling and tur- bine abrasion. We therefore lack basic information on the distribution of water resources and controls of erosion processes. In this thesis, I employ various methods to assess and quantify general characteristics of and links between precipitation, river discharge, and sed- iment flux in the Sutlej Valley. First, I analyze daily precipitation data (1998-2007) from 80 weather stations in the western Himalaya, to deci- pher the distribution of rain- and snowfall.
    [Show full text]
  • 1 Curiculum Vitae Ghulam Jeelani Department of Earth Sciences University of Kashmir Srinagar, 190006, India. Contact: +91-1
    CV_ Jeelani Curiculum Vitae Department of Earth Sciences University of Kashmir Ghulam Jeelani Srinagar, 190006, India. Contact: +91-194-2422543 (O); +91-194-2424146 (Fax) +91-9419013565 (Mobile), +917006316171 [email protected]; [email protected] EDUCATION 2010-11 Post Doc University of Kansas, Lawrence USA 2000 Ph. D. (Geology) Aligarh Muslim University, Aligarh, India 1997 M. Sc. (Geology) 1st Division Aligarh Muslim University, Aligarh, India 1994 B. Sc. (Geology) 1st Division University of Kashmir, Srinagar, India PROFESSIONAL EXPERIENCE 14.11.2016 to till date Professor, Dept. of Earth Sciences, University of Kashmir 14.11.2013 to 13.11.2016 Associate Professor, Dept. of Earth Sciences, University of Kashmir 31.03.2013 to 13.11.2013 Senior Assistant Professor (Stage III), Dept. of Earth Sciences, University of Kashmir 31.03.2008 to 30.03.2013 Senior Assistant Professor (Stage II), Dept. of Earth Sciences, University of Kashmir 01.09.2010 to 30.04.2011 Post Doc, The University of Kansas, Lawrence Kansas, USA 31.03.2004 to 30.03.2008 Assistant Professor (Stage I), Dept. of Geology & Geophysics, University of Kashmir April 2001 to March 2004 Contractual Lecturer, Dept. of Geology & Geophysics, University of Kashmir 1 CV_ Jeelani Associate Editor: Hydrological Sciences Journal (HSJ) Published by Taylor and Francis PROFESSIONAL AFFILIATION Member Life Member Indian Geological Congress (IGC) American Geophysical Union (AGU) International Association of Hydrogeologists (IAH) International Association of Hydrological Sciences (IAHS) Indian National Science Academy (INSA) Working Group on Climate Change, University of Kashmir ACADEMIC HONOR/AWARDS 2016, 2018, 2019 • Visiting Scientist PRL, Ahmedabad 2010-11 • Fulbright-Nehru Senior Research Fellow 2008-09 • INSA-Visiting Fellow 2006 • Excellent Grade Teacher Award by IQAC (University of Kashmir) 2002 • NET, CSIR/UGC.
    [Show full text]
  • Jammu and Kashmir
    Jammu and Kashmir Jammu and Kashmir, commonly known as Kashmir, territory in the north-western part of the Indian subcontinent bounded on the north-west by Afghanistan, on the north-east by China, on the south by the Indian states of Himachal Pradesh and Punjab, and on the west by the North-West Frontier and Punjab provinces of Pakistan. Kashmir has an area of about 222,236 sq km (85,806 sq mi). Both India and Pakistan claim all of Kashmir, but the territory has been partitioned between them since 1947. India controls the southern half of Kashmir, which it has organized as the state of Jammu and Kashmir. Before India's defeat in the 1962 Sino-Indian War, the state of Jammu and Kashmir also included the north-eastern section of the territory, which India still claims as part of Jammu and Kashmir State, but which has since been occupied by China as Aksai Chin. Pakistan controls the northern and western portion of Kashmir which is organized into three main regions: Azad (Free) Kashmir, occupying the crescent of land on the western border of Kashmir, between the state of Jammu and Kashmir on the east and Pakistan on the west; and Gilgit and Baltistan (the Northern Areas) located in the Karakorum Range in the far north-west. Azad Kashmir has a government protected and financed by Pakistan; Gilgit and Baltistan are notionally autonomous, but in practice are administered by political agents of the Pakistani government. The capital of the state of Jammu and Kashmir is Srinagar. The administrative centre of Azad Kashmir is Muzaffarabad; Gilgit town and Skardu are respectively the capitals of Gilgit and Baltistan.
    [Show full text]
  • The Dhauladhar Range in the Northwestern Himalaya
    RESEARCH Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: The Dhauladhar Range in the northwestern Himalaya Rasmus Thiede1, Xavier Robert2, Konstanze Stübner3, Saptarshi Dey1, and Johannes Faruhn1 1INSTITUT FÜR ERD- UND UMWELTWISSENSCHAFTEN, UNIVERSITÄT POTSDAM, KARL-LIEBKNECHT-STRASSE 25, HAUS- 27, POTSDAM-14476, GERMANY 2UNIVERSITÉ GRENOBLE ALPES, CNRS (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE), IRD (INSTITUT DE RECHERCHE POUR LE DÉVELOPPEMENT), ISTERRE (INSTITUT DES SCIENCES DE LA TERRE), F38000 GRENOBLE, FRANCE 3INSTITUT FÜR GEOWISSENSCHAFTEN, EBERHARD KARLS UNIVERSITÄT TÜBINGEN, TÜBINGEN, GERMANY ABSTRACT Competing hypotheses suggest that Himalayan topography is sustained and the plate convergence is accommodated either solely along the basal décollement, the Main Himalayan thrust (MHT), or more broadly, across multiple thrust faults. In the past, structural, geomorphic, and geodetic data of the Nepalese Himalaya have been used to constrain the geometry of the MHT and its shallow frontal thrust fault, known as Main Frontal thrust (MFT). The MHT flattens at depth and connects to a hinterland mid-crustal, steeper thrust ramp, located ~100 km north of the deformation front. There, the present-day convergence across the Himalaya is mostly accommodated by slip along the MFT. Despite a general agreement that in Nepal most of the shortening is accommodated along the MHT, some researchers have suggested the occurrence of persistent out-of-sequence shortening on interior faults near the Main Central thrust (MCT). Along the northwest Himalaya, in contrast, some of these characteristics of central Nepal are missing, suggesting along-strike variation of wedge deformation and MHT fault geometry. Here we present new field observations and seven zircon (U-Th)/He (ZHe) cooling ages combined with existing low-temperature data sets.
    [Show full text]
  • Wild Medicinal Plants Used by Local Communities of Manali, Himachal Pradesh, India
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Ethnobotanical Leaflets 14: 259-67, 2010. provided by OpenSIUC Wild Medicinal Plants Used by Local Communities of Manali, Himachal Pradesh, India Neena Rani Boktapa* and Avinash Kumar Sharma Non Wood Forest Products Division Forest Research Institute, Dehradun 248006 *Silviculture Division Forest Research Institute, Dehradun 248006 [email protected] Issued: March 01, 2010 Abstract An ethnobotanical study was carried out in adjoining areas of Manali in Kullu district of Himachal Pradesh during the month of April to May 2007. The information related to medicinal species which are used to cure common ailments and diseases were gathered by personal interviews with village headmen, local healers, and shepherds. A total of 33 plants belonging to 24 families are listed in this paper. Details of medicinal plants are described alphabetically with their botanical name, family, local name, part used, disease/ailment and ethno medicinal uses. Key Words: Medicinal plants, common ailments, Manali, Himachal Pradesh. Introduction The Himalayas have a great wealth of medicinal plants and traditional medicinal knowledge. Himachal Pradesh, one of the pioneer Himalayan States is a rich repository of medicinal flora. Because of its geographical position, hazardous means of transport communication; the traditions, myths, legends and folklores of the ancients are carefully persevered in the lores and mores; temples and historical places in existence at various regions of this state. Kullu District of Himachal Pradesh is well known medicinal plants hot spot in the western Himalaya that has rich diversity of flora and fauna. Singh and Rawat (1998) have listed more than 250 species as ethnomedicinal and about 50 of them are commercially exploited which have been listed in the Red Data Book of IUCN (Singh and Rawat, 1998 & 2000).
    [Show full text]