Active Tectonics of the Kashmir Himalaya (NW India) and Earthquake Potential on Folds, Out-Of-Sequence Thrusts, and Duplexes

Total Page:16

File Type:pdf, Size:1020Kb

Active Tectonics of the Kashmir Himalaya (NW India) and Earthquake Potential on Folds, Out-Of-Sequence Thrusts, and Duplexes AN ABSTRACT OF THE DISSERTATION OF Yann G. Gavillot for the degree of Doctor of Philosophy in Geology presented on September 29, 2014. Title: Active Tectonics of the Kashmir Himalaya (NW India) and Earthquake Potential on Folds, Out-of-Sequence Thrusts, and Duplexes Abstract approved: ___________________________________________________________________________ Andrew J. Meigs ABSTRACT Active tectonics of a deformation front constrains the kinematic evolution and structural interaction between the fold-thrust belt and the most-recently accreted foreland basin. At the Himalayan deformation front, the thrust front is blind, characterized by a broad fold (the Suruin-Mastgarh anticline (SMA)), and displays no emergent faults cutting the southern limb. Dated deformed terraces on the Ujh River constrain the structural style of deformation and shortening rates. Six terraces are recognized, and three yield OSL ages of 53 ka, 33 ka, and 0.4 ka. Terrace restorations through long profiles reveal a deformation pattern characterized by uniform uplift across the anticlinal axis and northern limb, and variable uplift due to rotation of the southern limb. Offset terraces occur between the fold trace and the northern limb. Bedrock dips, stratigraphic thicknesses, and cross sections suggest that a SW-directed duplex at depth drives uniform uplift in the north, and a NE directed wedge thrust drives variable tilt in the south. Localized faulting at the fold axis introduces asymmetrical fold geometry. Folding of the oldest dated terrace suggests rock uplift rates across the SMA range between 1.8 and 2.0 mm/yr. Assuming a 25-dip for the duplex ramp on the basis of dip data constraints, the shortening rate across the SMA ranges between 3.8-5.4 mm/yr or ~4.6 mm/yr since ~53 ka. Of that rate, 2.7-1.1 mm/yr is likely absorbed by faulting at the fold axis. In comparison, long-term bedrock shortening rates are consistent with our data of Pleistocene shortening rates. Cross sections at the Ujh River and Chenab reentrant transects indicate 6.5 mm/yr and ~4 mm/yr, respectively, using an onset age of thrusting of ~ 3 Ma. Within the Sub-Himalaya deformation belt, new geomorphic mapping demonstrates that active emergent thrust faulting occurs north of the deformation thrust front in the Kashmir Himalaya. The Riasi thrust (RT) comprises the southeastern strand of a ~250 km-long seismically active fault system in Pakistan and Indian Kashmir. Multiple fault strands with Quaternary activity characterize the fault zone near the Chenab River. Vertical separation of ~272 m of Pleistocene fluvial deposits marks the main strand of the RT, or the Main Riasi thrust (MRT). A shortening rate of 10.8-2.8 mm/yr characterizes a ~91-39 ka time interval for the MRT at this location. A fault scarp and offset Holocene terrace mark the southernmost and frontal splay of the RT fault zone, called here the Frontal Riasi thrust (FRT). Differential uplift (21.6±1m) of a Holocene terrace yields a preferred shortening rate of 8.8-4.4 mm/yr. Contact relationships in a trench across the FRT date the last surface rupture of the RT fault zone at ~4,500 yrs ago. Average shortening rates since ~100 ka across the MRT and the FRT range from 10.8 mm/yr to 4.4 mm/yr (7.6±3.3 mm/yr), consistent with long-term bedrock shortening of ~10-14 mm/yr since 5 Ma. Given that Himalayan-Indian convergence is ~11-18 mm/yr, the sum of the intermediate-term shortening rates for the RT (10.8-4.4 mm/yr) and the deformation front (5.4- 3.8 mm/yr), accounts for most of the total geological shortening in Kashmir. Using average rates, internal faults (RT) absorb 50% of the Himalayan shortening, comparatively more than the deformation front (~30%) in Kashmir. Similarities in the structural setting between the Riasi thrust and the Balakot-Bagh fault, including millennia recurrence, suggest the potential of Mw 7 to 8 earthquakes on the RT fault zone, similar to the source of the Mw 7.6 2005 Kashmir earthquake on the Balakot-Bagh fault segment. Lower rate at the deformation front may suggest an even longer recurrence interval, but nonetheless potentially devastating with predicted Mw of 7.5-7.6 along the 180-250 km-long structure. Apatite and zircon (U-Th)/He cooling ages are used to quantify the pattern of distributed deformation and overall thrust-belt kinematics at longer timescales across the Kashmir Himalayas. Apatite (U-Th)/He (AHe) cooling ages for the foreland molasse sediments are consistently younger than the sediment age, indicating that ages of Sub- Himalayan belt samples are reset. We interpret regional pattern of young AHe cooling ages (<3 Ma) in the foreland with peak cooling at 1.9-3.2 Ma to represent rapid coeval fault-related exhumation on multiple structures across the Sub-Himalaya. In the hinterland front ranges of the Pir Panjal, the MBT and MCT thrusts are characterized by older cooling (>4.7 Ma). For zircon (U-Th)/He (ZHe), probability density plots of samples from both detrital cooling ages in the foreland and reset cooling ages in the hinterland show a pronounced spike in cooling between ~16 and 20 Ma, a period where MCT motion is well documented throughout the Himalaya. Estimates of exhumation rates for the sum of Sub-Himalayan structures are higher (2.8-2.2 mm/yr) than across the MCT/MBT (<1 mm/yr) in the Pir Panjal Range. Cooling patterns across the Kashmir Himalayas do not correlate with monsoon precipitation gradients, suggesting climate forcing is decoupled from erosion and exhumation. Distributed rather than localized forward-propagating deformation characterizes fault-related exhumation for the orogenic wedge development in the Sub-Himalayan belt since at least ~2-3 Ma. In the hinterland, coeval young cooling ages (< 3 Ma) and high exhumation rates (2.8-1.3 mm/yr) across the Kishtwar Window, >100 km north of the deformation front, suggest tectonic-driven rapid exhumation across the orogenic wedge coincides with localities of predicted changes in ramp geometry and/or active orogenic growth. We attribute a pattern of distributed deformation and coeval faulting across the Sub-Himalaya to the effects of pre-existing basin architecture in Kashmir. ©Copyright by Yann G. Gavillot September 29, 2014 All Rights Reserved Active Tectonics of the Kashmir Himalaya (NW India) and Earthquake Potential on Folds, Out-of-Sequence Thrusts, and Duplexes by Yann G. Gavillot A DISSERTATION Submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented September 29, 2014 Commencement June 2015 Doctor of Philosophy dissertation of Yann G. Gavillot presented on September 29, 2014. APPROVED: Major Professor, representing Geology Dean of the College of Earth, Ocean, and Atmospheric Sciences Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Yann G. Gavillot, Author ACKNOWLEDGEMENTS I owe a great deal of thanks to my advisor, Andrew Meigs, who has taken me in for PhD studies at Oregon State University. I feel very fortunate to be able to work with him together for the many years I have been here, and I learned a tremendous amount from him. Andrew Meigs has been a great mentor and collaborator, but also a great friend, as he would often say “I always have time for you Yann”. He has invested hugely in refining model interpretations, and reviewing my writing, which I am most grateful for. I would like to also give sincere gratitude to all other members of my committee: Robert Yeats, Jay Noller, John Nabelek, and my GCR, Ben Mason. Robert Yeats has been a huge source of wisdom in the research project. His collaboration and extensive research network in India were instrumental to the success in getting the project off the ground. I have also greatly enjoyed interacting with both John Nabelek and Jay Noller during graduate courses as outside conversations. They have provided me with many constructive feedbacks and improvements to my thesis work. I would like to thank NSF for funding and making this research possible. Although we have struggled to obtain renewed funding from NSF, I am thankful for many supplementary grants and fellowships that were instrumental in paying for analytical lab costs. To name a few, funding and support came from GSA, AAPG, Daniel Stockli and the IGL laboratory at Kansas University, Marc Caffee and PRIME LAB, Department of Forestry at OSU, CEOAS, and Andrew Meigs. I would like to thank the many collaborators and field assistants that have contributed to the research in the field. Professor Manzoor Malik at Jammu University for making the project run smoothly and making it possible to access field sites, which were at times logistically complicated with security issues across Kashmir. During the first field season, Chris Madden, Michael Karicher, and Aaron Hebeler assisted in data collection, and provided much needed camaraderie in the field. I have great memories of the many days spend in our hotel, gossiping about hotel staff, and exploring the streets of Riasi. During my second field season, I had received help from two field assistants Vikram Sharma and Idrees Bhat. Both provided much needed help in data collection and logistics, and I am thankful they were there to rescue me when I was repeatedly “interrogated” or “even arrested” by the police and army. Who would blame them, a strange looking person, walking around with a giant GSP antenna, within a few kilometers from the Pakistan border? I also, thank Prof.
Recommended publications
  • The Terrane Concept and the Scandinavian Caledonides: a Synthesis
    The terrane concept and the Scandinavian Caledonides: a synthesis DAVID ROBERTS Roberts , D. 1988: The terrane concept and the Scandinavian Caledonides: a synthesis. Nor. geol . unders . Bull. 413. 93-99. A revised terrane map is presented for the Scandinavian Caledcnldes. and an outline is given of the principal suspect and exot ic terranes and terrane-complexe s identified outboa rd from the Baltoscand ian miogeocline. The outermost part of the Baltoscandian continental margin is itself suspect , in the terrane sense. since the true palaeogeographical location s of rocks now represented in the Seve and serey-seuano Nappes, while inferred, are not known. The orogen -internal exotic terranes embrace the oceanic/eugeoclinal elements of the Caledonides, represented by the mag­ matosed imentary assemblages of the Koli Nappes, including ophiolite fragments and island arc products. Even more exot ic terranes occur in the highest parts of the tectonostratigraphy, inclu­ ding units which are thought possibly to derive from the Laurentian side of lapetus . D. Roberts. Norges geologiske uruierseketse, Postboks 3006. Lade, N-7002 Trondbeim , Norway . Introduction Project 233 has been to prepare a preliminary Earlier in this decade much of the research terrane map' at 1:5 M scale (Roberts et al. effort in the Caledonides of Scandinavia was 1986) for a larger, circum-Atlantic compilation. channelled through the highly successfu l IGCP This map, much simplified, is really one of Project 27 The Caledonide Orogen ' (Gee & palaeo-environments (marginal basins, vol­ Sturt 1985). An important aspect of the collabo­ canic arc comp lexes, overstep sequences , rative work in this project was that of map etc.), and not of terranes in the true sense.
    [Show full text]
  • Kangra, Himachal Pradesh
    ` SURVEY DOCUMENT STUDY ON THE DRAINAGE SYSTEM, MINERAL POTENTIAL AND FEASIBILITY OF MINING IN RIVER/ STREAM BEDS OF DISTRICT KANGRA, HIMACHAL PRADESH. Prepared By: Atul Kumar Sharma. Asstt. Geologist. Geological Wing” Directorate of Industries Udyog Bhawan, Bemloe, Shimla. “ STUDY ON THE DRAINAGE SYSTEM, MINERAL POTENTIAL AND FEASIBILITY OF MINING IN RIVER/ STREAM BEDS OF DISTRICT KANGRA, HIMACHAL PRADESH. 1) INTRODUCTION: In pursuance of point 9.2 (Strategy 2) of “River/Stream Bed Mining Policy Guidelines for the State of Himachal Pradesh, 2004” was framed and notiofied vide notification No.- Ind-II (E)2-1/2001 dated 28.2.2004 and subsequently new mineral policy 2013 has been framed. Now the Minstry of Environemnt, Forest and Climate Change, Govt. of India vide notifications dated 15.1.2016, caluse 7(iii) pertains to preparation of Distt Survey report for sand mining or riverbed mining and mining of other minor minerals for regulation and control of mining operation, a survey document of existing River/Stream bed mining in each district is to be undertaken. In the said policy guidelines, it was provided that District level river/stream bed mining action plan shall be based on a survey document of the existing river/stream bed mining in each district and also to assess its direct and indirect benefits and identification of the potential threats to the individual rivers/streams in the State. This survey shall contain:- a) District wise detail of Rivers/Streams/Khallas; and b) District wise details of existing mining leases/ contracts in river/stream/khalla beds Based on this survey, the action plan shall divide the rivers/stream of the State into the following two categories;- a) Rivers/ Streams or the River/Stream sections selected for extraction of minor minerals b) Rivers/ Streams or the River/Stream sections prohibited for extraction of minor minerals.
    [Show full text]
  • Analysis of Trends in Extreme Precipitation Events Over Western Himalaya Region: Intensity and Duration Wise Study M
    J. Ind. Geophys. Union ( May Analysis2017 ) of trends in extreme precipitation events over Western Himalaya Region: v.21, no.3, pp: 223-229 intensity and duration wise study Analysis of trends in extreme precipitation events over Western Himalaya Region: intensity and duration wise study M. S. Shekhar*1, Usha Devi1, Surendar Paul2, G. P. Singh3 and Amreek Singh1 1Snow and Avalanche Study Establishment, Research and Development Centre, Sector 37, Chandigarh - 160036, India 2 India Meteorological Department, Chandigarh - 160036, India 3Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi-221005, India *Corresponding Author: [email protected] ABSTRACT The impact of climate change on precipitation has received a great deal of attention by scholars worldwide. Efforts have been made in this study to find out trends in terms of intensity and duration of precipitation for different altitudes and ranges in Western Himalaya region representing Jammu & Kashmir and Himachal Pradesh. In terms of intensity, precipitation has been classified as Low, Medium and Heavy. Durations of precipitation are classified as prolonged dry days (PDD), short dry days (SDD), prolonged wet days (PWD) and short wet days (SWD). Analysis indicates significant positive trends for low and heavy precipitation events and negative for medium precipitation events in Pir-Panjal range. For Shamshawari and Great Himalaya ranges, there is no significant trend for low, medium and heavy precipitation events. In terms of altitude, significant positive trends in low precipitation events have been observed for lower and middle altitudes and no significant trend has been found for medium and heavy precipitation events for other altitudes. In terms of duration, PDD/SDD shows significant increasing/decreasing trends for all ranges and altitudes.
    [Show full text]
  • Diversity, Indigenous Uses and Conservation Status of Medicinal Plants in Manali Wildlife Sanctuary, North Western Himalaya
    Indian Journal of Traditional Knowledge Vol. 10 (3), July 2011, pp. 439-459 Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya Rana Man S & Samant*SS GB Pant Institute of Himalayan Environment & Development, Himachal Unit, Mohal-Kullu, 175 126, Himachal Pradesh, India E-mails: [email protected], [email protected] Received 26.02 09; revised 23.09.09 In the moutaineous regions human populations are dependent on plants for their sustenance particularly for medicine. In India, more than 95% of the total medicinal plants used in preparing medicines by various industries are harvested from wild. There is a great need to recognise the potential of bioresources at their fullest. Therefore, the present study focused to assess the medicinal plants diversity in Manali wildlife sanctuary of North western Himalaya, identify species preference, native, endemic and threatened medicinal plants and suggests conservation measures. A total of 270 medicinal plants belonging to 84 families and 197 genera were recorded. Maximum medicinal plants were reported in the altitudinal zone, 2000-2800 m and decreased with increasing altitude. Out of the total, 162 medicinal plants were native and 98 were endemic to the Himalayan region. Maximum species were used for stomach problems, followed by skin, eyes, blood and liver problems. Thirty seven species were identified as threatened. Dactylorhiza hatagirea, Aconitum heterophyllum, Arnebia benthamii, Lilium polyphyllum, Swertia chirayita, Podophyllum hexandrum, Jurinella macrocephala, Taxus baccata subsp. wallichiana, etc. were highly preferred species and continuous extraction from the wild for trade has increased pressure which may cause extinction of these species in near future.
    [Show full text]
  • Tectonostratigraphic Terrane Analysis on Neoproterozoic Times
    Revista Brasileira de Geociências 30(1):078-081, março de 2000 TECTONOSTRATIGRAPHIC TERRANE ANALYSIS ON NEOPROTEROZOIC TIMES: THE CASE STUDY OF ARAXÁ SYNFORM, MINAS GERAIS STATE, BRAZIL: IMPLICATIONS TO THE FINAL COLLAGE OF THE GONDWANALAND. HILDOR JOSÉ SEER1 AND MARCEL AUGUSTE DARDENNE2 ABSTRACT The Araxá Synform is a regional fold with gently WNW plunging. The outcrops of the Araxá, Ibiá and Canastra Groups occur at their limbs. The region is the type locality of these units. These Groups belong to the Brasilia Fold Belt, a Neoproterozoic tectonic unit evolved at the western margin of the São Francisco-Congo Craton. Geological mapping, structural analysis, whole rock geochemistry, mineral chemistry, petrography and geochronology are the main tools to understand the tectonic evolution of these geological units. In this paper we apply tectonostratigraphic terrane analysis to the solution of stratigraphic problems in the Brasília Belt and Gondwanaland collage. Keywords: Brasília Belt, Neoproterozoic, Brasiliano orogeny, Tectonic Evolution, Structural Geology INTRODUCTION All geological information is necessary to The upper thrust sheet (Araxá Group) comprises a dominantly understand the history of an orogenic belt, basically it comprises the metamafic sequence (fine and coarse amphibolites, with rare ultramafic integration of stratigraphic data with structural geology. The rocks) which is transitional to pelitic metasedimentary rocks, both stratigraphic data provide information about paleogeography and ages metamorphosed under amphibolite facies conditions and intruded by of the geological units of an orogenic belt. The structural data describe granitoid rocks. The amphibolites represent gabbroic and basaltic the configuration of these units. To Howell (1993) an orogenic belt is protoliths. The basalts are high FeO tholeiites with REE signatures that essentially a puzzle, composed by a collection of crustal pieces.
    [Show full text]
  • Tectonostratigraphic Terrane Analysis of New Brunswick L
    Document generated on 09/30/2021 12:46 p.m. Atlantic Geology Tectonostratigraphic terrane analysis of New Brunswick L. R. Fyffe and A. Fricker Volume 23, Number 3, December 1987 Article abstract the URI: https://id.erudit.org/iderudit/ageo23_3art01 The contents of a computerized lexicon database are displayed in the form of a range chart that demonstrate the spartial and temporal relationships of See table of contents lithtostratigraphic units to tectonostratigraphic terrans of New Brunsiwck. The chart provides a reference basis from which to derive the accretionary history of these terrance. Publisher(s) The tectonostratigraphlc zonation of Hew Brunswick ia based upon the Atlantic Geoscience Society uniqueness of the pre-Taconlan stratigraphy within each fault-bounded terrane. From northwest to southeast, the following terranes and cover sequences are recognized: Matapedia Cover. Blmtree Terrane, Mlramichi ISSN Terrane, Frederlcton Cover, St. Croix Terrane, Hascarene Terrane, and 0843-5561 (print) Avalonian Terrane. 1718-7885 (digital) Overstepping of the Matapedia Cover Sequence indicates that the Elmtree and Mlramichi terranes were docked with the North American craton by the Late Explore this journal Ordovician to Early Silurian. The presence of a similar early Paleozoic stratigraphy, tectonic style and major Silurian unconformity in the St. Croix Terrane suggests that it had become docked to the Mlramichi Terrane prior to this subduction-related Taconian event. Cite this article Detritus and a similar fauna in the cover rocks of the St. Croix Terrane provide Fyffe, L. R. & Fricker, A. (1987). Tectonostratigraphic terrane analysis of New evidence that it was docked to the Hascarene Terrane by the Late Silurian.
    [Show full text]
  • 9 - Directory of Officers and Employees
    Himachal Pradesh HPTDC 9 - Directory of officers and employees Himachal Pradesh Tourism Development Corporation Ritz Annexe, Shimla-1 Exchange No. 2652704 to 2652708 Fax 2652206 Email: [email protected] Designation Office Telephone No PBX Extension ( Corporate Office) Vice Chairman 2652019 205 Private Secy 2652704 203 Managing Director 2658880 201 Private Secy 2658880 200 PA 2658880 200 General Manager 2807650 202 Executive Engineer 2652704 212 DGM ( Marketing+Operation) 2652704 221 Controller 2652704 208 Accounts Officer 2652704 211 Accounts Officer 2652704 220 AGM (Purchase) 2652704 214 Asstt. Engineer (E) 2652704 222 HDM 2652704 232 Manager (Transport) Fax 2831507, 2830713 2812890-2812893 RTI Proactive Disclosure 29-August-2016 Page 1 of 6 Himachal Pradesh HPTDC Designation Office Telephone No HOLIDAY HOME COMPLEX Dy GM 2656035 Sr.Manager (Peterhof) 2812236 Fax-2813801 Asstt. Mgr. Apple C.InnKiarighat 01792-208148 Incharge, Hotel Bhagal 01796-248116, 248117 Asstt. Mgr. Golf Glade, Naldehra 2747809, 2747739 Incharge, HtlMamleshwar, Chindi 01907- 222638 Sr. Manager, Apple Blossom, Fagu 01783-239469 Incharge. Lift (HPTDC) 2807609 CHAMBA-DALHOUSIE COMPLEX Sr. Manager, Marketing Office 1899242136 Sr.Manager,HotelIravati 01899-222671 Incharge, Hotel Deodar, Khajjiar 01899-236333 Incharge, Hotel Geetanjli, Dalhousie 01899-242155 The Manimahesh, Dalhousie 01899-242793, 242736 DHARAMSHALA COMPLEX AGM, Mkt. Office 01892-224928, 224212 AGM, Dhauladhar 01892-224926, 223456 Asstt. Manager, Kashmir House 01892-222977 Sr.Manager, Hotel Bhagsu 01892-221091 Asstt. Manager, Hotel Kunal 01892-223163, 222460 Designation Office Telephone No RTI Proactive Disclosure 29-August-2016 Page 2 of 6 Himachal Pradesh HPTDC Asstt. Manager,Club House 01892-220834 Asstt. Manager, Yatri Niwas, Chamunda 01892-236065 Incharge, The Chintpurni Height 01976-255234 JAWALAJI COMPLEX Asstt.
    [Show full text]
  • Metamorphic Field Gradients Across the Himachal Himalaya
    TECTONICS, VOL. 32, 540–557, doi:10.1002/tect.20020, 2013 Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core Remington M. Leger,1,2 A. Alexander G. Webb,1 Darrell J. Henry,1 John A. Craig,1 and Prashant Dubey3 Received 28 August 2012; revised 23 January 2013; accepted 3 February 2013; published 31 May 2013. [1] New constraints on pressures and temperatures experienced by rocks of the Himachal Himalaya are presented in order to test models for the emplacement of the Himalayan crystalline core here. A variety of methods were employed: petrographic analysis referenced to a petrogenetic grid, exchange and net-transfer thermobarometry, Ti-in-biotite thermometry, and analysis of quartz recrystallization textures. Rocks along three transects (the northern Beas, Pabbar, and southern Beas transects) were investigated. Results reveal spatially coherent metamorphic field gradients across amphibolite-grade and migmatitic metamorphic rocks. Along the northern Beas transect, rocks record peak temperatures of ~650–780C at low elevations to the north of ~3210’ N; rocks in other structural positions along this transect record peak temperatures of <640C that decrease with increasing structural elevation. Rocks of the Pabbar transect dominantly record ~650–700C peak temperatures to the east of ~7755’ E and ~450–620C peak temperatures farther west. Peak temperatures of ~450–600C along the southern Beas transect record a right-way-up metamorphic field gradient. Results are integrated with literature data to determine a metamorphic isograd map of the Himachal Himalaya. This map is compared to metamorphic isograd map pattern predictions of different models for Himalayan crystalline core emplacement.
    [Show full text]
  • Forests of the Western Himalayas, 1876-1897
    HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 21 Number 2 Himalayan Research Bulletin Article 6 2001 Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Chhatre, Ashwini. 2001. Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897. HIMALAYA 21(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol21/iss2/6 This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Territorialization, Resistance and the Mirage of Permanent Boundaries Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University ABSTRACT Internal territorialization is described as the attempt to circumscribe the use of various resources, such as land and forests, within the boundaries of a nation-state. This translates into the creation of property rights for different social actors and the demarcation of a physical sphere wherein such rights could be exercised. The notion of permanent boundaries around forests, where local people lack property rights, is popular with all arms of the state, everywhere. This paper traces the first attempts by the colonial state in the Indian Western Himalayas to draw boundaries around forests and define the rights of local populations. The process, which intensified with the publication of a Forest Department report in 1876, was fraught with obstacles at several levels through­ out its course.
    [Show full text]
  • Chapter 1 Introduction and Tectonic Framework
    Chapter 1 Introduction and tectonic framework Andreas Scharf1*, Frank Mattern1, Mohammed Al-Wardi1, Gianluca Frijia2, Daniel Moraetis3, Bernhard Pracejus1, Wilfried Bauer4 and Ivan Callegari4 1Department of Earth Sciences, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khod, Muscat, Sultanate of Oman 2Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy 3Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates 4Department of Applied Geosciences, German University of Technology GUtech, PO Box 1816, PC 130, Halban, Sultanate of Oman *Correspondence: [email protected] Abstract: The extraordinary outcrop conditions provide a unique opportunity to study the geology and tectonics of the Oman Mountains, which record a geological history of more than 800 million years. We provide a summary of the geological evolution of the Oman Mountains with the emphasis on the Jabal Akhdar and Saih Hatat domes. This Memoir comprises seven chapters. This first chapter summarizes the former studies and the tectonic framework. This is followed by a comprehensive description of all geological formations/rock units (Scharf et al. 2021a, Chapter 2, this Memoir) including the famous Semail Ophiolite, the fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and the overall structure (Scharf et al. 2021c, Chapter 4, this Memoir). Chapter 5 (Scharf et al. 2021d) explains the varied tectonic evolution of the study area, ranging from the Neoproterozoic until present, while Chapter 6 (Scharf et al. 2021e) contains the conclusions and a catalogue of open questions. Finally, Chapter 7 (Scharf et al.
    [Show full text]
  • Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1975 Band/Volume: 32 Autor(en)/Author(s): Fuchs Gerhard Artikel/Article: Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Contributions to the Geology of the North-Western Himalayas GERHARD FUCHS 64 Figures and 5 Plates BAND 32 • WIEN 1975 EIGENTÜMER, HERAUSGEBER UND VERLEGER: GEOLOGISCHE BUNDESANSTALT, WIEN SCHRIFTLEITUNG: G.WOLETZ DRUCK: BRÜDER HOLLINEK, WIENER NEUDORF ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 3 Abh. Geol. B.-A. Band 32 59 Seiten 64 Fig., 5 Beilagen Wien, Feber 1975 Contribution to the Geology of the North-Western Himalayas By GERHARD FUCHS With 64 figures and 5 plates (= Beilage 1—5) Data up to 1972, except PI. 1 'I NW-Himalaya U Stratigraphie i3 Tektonik £ Fazies Contents Zusammenfassung 3 1.3.1. The Hazara Slates 40 Abstract 4 1.3.2. The Tanol Formation 40 Preface 5 1.3.3. The Sequence Tanakki Boulder Bed — Introduction 5 Sirban Formation 41 1. Descriptive Part 6 1.3.4. The Galdanian and Hazira Formations 42 1.1. Kashmir 6 1.3.5. The Meso-Cenozoic Sequence 44 1.1.1. The Riasi-Gulabgarh Pass Section 6 1.4. Swabi — Nowshera 46 1.1.2. The Apharwat Area . 11 1.4.1. Swabi 46 1.1.3. The Kolahoi-Basmai Anticline (Liddar valley) ... 17 1.4.2.
    [Show full text]
  • Master Thesis “Along Strike Variation of Active Fault Arrays and Their Effect
    Master Thesis “Along strike variation of active fault arrays and their effect on landscape morphology in the northwestern Himalaya” Author: Markus Nennewitz 1. Examiner: Dr. Rasmus C. Thiede Mat-Nr.: 754570 2. Examiner: Prof. Dr. Bodo Bookhagen Declaration of plagiarism I hereby declare that this thesis is the result of my own independent work, and that in all cases material from the work of others (in books, articles, essays, dissertations, and on the internet) is acknowledged, and quotations and paraphrases are clearly indicated. No other material than that listed has been used. 1/62 Acknowledgements First of all I would like to thank my supervisors Dr. Rasmus Thiede and Prof. Dr. Bodo Bookhagen, who broadend my mind for active tectonics and geomorphology during many meetings and even more e-mail conversations. They supported me in every minute of my work and were always open for questions from my side. Furthermore, I thank them and the DAAD for giving me the opportunity to go on a field trip in NW India. According to that, I would like to mention that I really appreciated the stay at the IIT Gandhinagar for which I also thank Prof. Dr. Vikrant Jain and his Phd-students. Furthermore, I have to thank Saptarshi Dey and Patricia Eugster for providing data files necessary for my analysis. And last but definitely not least I thank my girlfriend and my parents for their tremendous amount of support and for being patient with me during my ongoing work. 2/62 Abstract The location and magnitude of the active deformation of the Himalaya has been in the interest for many decades.
    [Show full text]