Process Modeling in Impression-Die Forging Using Finite-Element Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Process Modeling in Impression-Die Forging Using Finite-Element Analysis © 2005 ASM International. All Rights Reserved. www.asminternational.org Cold and Hot Forging: Fundamentals and Applications (#05104G) CHAPTER 16 Process Modeling in Impression-Die Forging Using Finite-Element Analysis Manas Shirgaokar Gracious Ngaile Gangshu Shen 16.1 Introduction c. Reducing rejects and improving material yield Development of finite-element (FE) process ● Predict forging load and energy as well as simulation in forging started in the late 1970s. tool stresses and temperatures so that: At that time, automatic remeshing was not avail- a. Premature tool failure can be avoided. able, and therefore, a considerable amount of b. The appropriate forging machines can be time was needed to complete a simple FE simu- selected for a given application. lation [Ngaile et al., 2002]. However, the devel- Process modeling of closed-die forging using opment of remeshing methods and the advances finite-element modeling (FEM) has been applied in computational technology have made the in- in aerospace forging for a couple of decades dustrial application of FE simulation practical. [Howson et al., 1989, and Oh, 1982]. The goal Commercial FE simulation software is gaining of using computer modeling in closed-die forg- wide acceptance in the forging industry and is ing is rapid development of right-the-first-time fast becoming an integral part of the forging de- processes and to enhance the performance of sign and development process. components through better process understand- The main objectives of the numerical process ing and control. In its earlier application, process design in forging are to [Vasquez et al., 1999]: modeling helped die design engineers to pre- view the metal flow and possible defect forma- ● Develop adequate die design and establish tion in a forging. After the forging simulation is process parameters by: done, the contours of state variables, such as ef- a. Process simulation to assure die fill fective strain, effective strain rate, and tempera- b. Preventing flow-induced defects such as ture at any instant of time during a forging, can laps and cold shuts be generated. The thermomechanical histories of c. Predicting processing limits that should selected individual locations within a forging not be exceeded so that internal and sur- can also be tracked [Shen et al., 1993]. These face defects are avoided functions of process modeling provided an in- d. Predicting temperatures so that part prop- sight into the forging process that was not avail- erties, friction conditions, and die wear able in the old days. Integrated with the process can be controlled modeling, microstructure modeling is a new area ● Improve part quality and complexity while that has a bright future [Sellars, 1990, and Shen reducing manufacturing costs by: et al., 2000]. Microstructure modeling allows the a. Predicting and improving grain flow and right-the-first-time optimum metallurgical fea- microstructure tures of the forging to be previewed on the com- b. Reducing die tryouts and lead times puter. Metallurgical aspects of forging, such as © 2005 ASM International. All Rights Reserved. www.asminternational.org Cold and Hot Forging: Fundamentals and Applications (#05104G) 194 / Cold and Hot Forging: Fundamentals and Applications grain size and precipitation, can be predicted Hopefully, at this stage little or no modification with reasonable accuracy using computational will be necessary, since process modeling is ex- tools prior to committing the forging to shop tri- pected to be accurate and sufficient to make all als. Some of the proven practical applications of the necessary changes before manufacturing the process simulation in closed-die forging include: dies. Information flow in process modeling is ● Design of forging sequences in cold, warm, shown schematically in Fig. 16.1 [Shen et al., and hot forging, including the prediction of 2001]. The input of the geometric parameters, forming forces, die stresses, and preform process parameters, and material parameters sets shapes up a unique case of a closed-die forging. The ● Prediction and optimization of flash dimen- modeling is then performed to provide infor- sions in hot forging from billet or powder mation on the metal flow and thermomechanical metallurgy preforms history of the forging, the distribution of the ● Prediction of die stresses, fracture, and die state variables at any stage of the forging, and wear; improvement in process variables and the equipment response during forging. The his- die design to reduce die failure tories of the state variables, such as strain, strain ● Prediction and elimination of failures, sur- rate, temperature, etc., are then input to the mi- face folds, or fractures as well as internal crostructure model for microstructural feature fractures prediction. All of the information generated is ● Investigation of the effect of friction on used for judging the closed-die forging case. The metal flow nonsatisfaction in any of these areas will require ● Prediction of microstructure and properties, a new model with a set of modified process pa- elastic recovery, and residual stresses rameters until the satisfied results are obtained. Then, the optimum process is selected for shop practice. 16.2 Information Flow in Process Modeling 16.3 Process Modeling Input It is a well-known fact that product design Preparing correct input for process modeling activity represents only a small portion, 5 to is very important. There is a saying in computer 15%, of the total production costs of a part. modeling: garbage in and garbage out. Some- However, decisions made at the design stage de- times, a time-consuming process modeling is termine the overall manufacturing, maintenance, useless because of a small error in input prepa- and support costs associated with the specific ration. Process modeling input is discussed in product. Once the part is designed for a specific terms of geometric parameters, process param- process, the following steps lead to a rational eters, and material parameters [SFTC, 2002]. process design: 1. Establish a preliminary die design and select 16.3.1 Geometric Parameters process parameters by using experience- The starting workpiece geometry and the die based knowledge. geometry need to be defined in a closed-die forg- 2. Verify the initial design and process condi- ing modeling. Depending on its geometrical tions using process modeling. For this pur- complexity, a forging process can be simulated pose it is appropriate to use well-established either as a two-dimensional, axisymmetric or commercially available computer codes. plane-strain, or a three-dimensional problem. If 3. Modify die design and initial selection of the process involves multiple stations, the die process variables, as needed, based on the re- geometry of each station needs to be provided. sults of process simulation. A typical starting workpiece geometry for a 4. Complete the die design phase and manufac- closed-die forging is a cylinder with or without ture the dies. chamfers. The diameter and the height of the 5. Conduct die tryouts on production equip- cylinder are defined in the preprocessing stage. ment. A lot of closed-die forgings are axisymmetric, 6. Modify die design and process conditions, if which need a two-dimensional geometry han- necessary, to produce quality parts. dling. Boundary conditions on specific segments © 2005 ASM International. All Rights Reserved. www.asminternational.org Cold and Hot Forging: Fundamentals and Applications (#05104G) Process Modeling in Impression-Die Forging Using Finite-Element Analysis / 195 of the workpiece and dies that relate to defor- ● The workpiece and die interface heat-trans- mation and heat transfer need to be defined. For fer coefficient during deformation example, for an axisymmetric cylinder to be ● The workpiece and die interface friction, etc. forged in a pair of axisymmetric dies, the nodal The die velocity is a very important parameter velocity in the direction perpendicular to the to be defined in the modeling of a closed-die centerline should be defined as zero, and the heat forging. If a hydraulic press is used, depending flux in that direction should also be defined as on the actual die speed profiles, the die velocity zero. can be defined as a constant or series of veloc- ities that decrease during deformation. The ac- 16.3.2 Process Parameters tual die speed recorded from the forging can also The typical process parameters to be consid- be used to define the die velocity profile. If a ered in a closed-die forging include [SFTC, mechanical press is used, the rpm of the fly- 2002]: wheel, the press stroke, and the distance from the bottom dead center when the upper die ● The environment temperature touches the part need to be defined. If a screw ● The workpiece temperature press is used, the total energy, the efficiency, and ● The die temperatures the ram displacement need to be defined. If a ● The coefficients of heat transfer between the hammer is used, the blow energy, the blow ef- dies and the billet and the billet and the at- ficiency, the mass of the moving ram and die, mosphere the number of blows, and the time interval be- ● The time used to transfer the workpiece from tween blows must be defined. Forgings per- the furnace to the dies formed in different machines, with unique ve- ● The time needed to have the workpiece rest- locity versus stroke characteristics, have been ing on the bottom die simulated successfully using the commercial FE ● The workpiece and die interface heat-trans- software DEFORM (Scientific Forming Tech- fer coefficient during free resting nologies Corp.) [SFTC, 2002]. Fig. 16.1 Flow chart of modeling of closed-die forging [Shen et al., 2001] © 2005 ASM International. All Rights Reserved. www.asminternational.org Cold and Hot Forging: Fundamentals and Applications (#05104G) 196 / Cold and Hot Forging: Fundamentals and Applications 16.3.3 Tool and Workpiece Material parameters that relate to both heat Material Properties transfer and deformation need to be defined.
Recommended publications
  • Fire Protection of Steel Structures: Examples of Applications
    Fire protection of steel structures: examples of applications Autor(en): Brozzetti, Jacques / Pettersson, Ove / Law, Margaret Objekttyp: Article Zeitschrift: IABSE proceedings = Mémoires AIPC = IVBH Abhandlungen Band (Jahr): 7 (1983) Heft P-61: Fire protection of steel structures: examples of applications PDF erstellt am: 06.10.2021 Persistenter Link: http://doi.org/10.5169/seals-37489 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch J% IABSE periodica 2/1983 IABSE PROCEEDINGS P-61/83 69 Fire Protection of Steel Structures — Examples of Applications Protection contre le feu des structures acier — Quelques exemples d'applications Brandschutz der Stahlkonstruktionen — Einige Anwendungsbeispiele Jacques BROZZETTI Margaret LAW Dir., Dep.
    [Show full text]
  • A Comparison of Thixocasting and Rheocasting
    A Comparison of Thixocasting and Rheocasting Stephen P. Midson The Midson Group, Inc. Denver, Colorado USA Andrew Jackson Arthur Jackson & Co., Ltd. Brighouse UK Abstract The first semi-solid casting process to be commercialized was thixocasting, where a pre-cast billet is re-heated to the semi-solid solid casting temperature. Advantages of thixocasting include the production of high quality components, while the main disadvantage is the higher cost associated with the production of the pre-cast billets. Commercial pressures have driven casters to examine a different approach to semi-solid casting, where the semi-solid slurry is generated directly from the liquid adjacent to a die casting machine. These processes are collectively referred to as rheocasting, and there are currently at least 15 rheocasting processes either in commercial production or under development around the world. This paper will describe technical aspects of both thixocasting and rheocasting, comparing the procedures used to generate the globular, semi-solid slurry. Two rheocasting processes will be examined in detail, one involved in the production of high integrity properties, while the other is focusing on reducing the porosity content of conventional die castings. Key Words Semi-solid casting, thixocasting, rheocasting, aluminum alloys 22 / 1 Introduction Semi-solid casting is a modified die casting process that reduces or eliminates the porosity present in most die castings [1] . Rather than using liquid metal as the feed material, semi-solid processing uses a higher viscosity feed material that is partially solid and partially liquid. The high viscosity of the semi-solid metal, along with the use of controlled die filling conditions, ensures that the semi-solid metal fills the die in a non-turbulent manner so that harmful gas porosity can be essentially eliminated.
    [Show full text]
  • S2P Conference
    The 9th International Conference on Semi-Solid Processing of Alloys and Composites —S2P Busan, Korea, Conference September 11-13, 2006 Qingyue Pan, Research Associate Professor Metal Processing Institute, WPI Worcester, Massachusetts Busan, a bustling city of approximately 3.7 million resi- Pusan National University, in conjunction with the Korea dents, is located on the Southeastern tip of the Korean Institute of Industrial Technology, and the Korea Society peninsula. It is the second largest city in Korea. Th e natu- for Technology of Plasticity hosted the 9th S2P confer- ral environment of Busan is a perfect example of harmony ence. About 180 scientists and engineers coming from 23 between mountains, rivers and sea. Its geography includes countries attended the conference to present and discuss all a coastline with superb beaches and scenic cliff s, moun- aspects on semi-solid processing of alloys and composites. tains which provide excellent hiking and extraordinary Eight distinct sessions contained 113 oral presentations views, and hot springs scattered throughout the city. and 61 posters. Th e eight sessions included: 1) alloy design, Th e 9th International Conference on Semi-Solid Pro- 2) industrial applications, 3) microstructure & properties, cessing of Alloys and Composites was held Sept. 11-13, 4) novel processes, 5) rheocasting, 6) rheological behavior, 2006 at Paradise Hotel, Busan. Th e fi ve-star hotel off ered a modeling and simulation, 7) semi-solid processing of high spectacular view of Haeundae Beach – Korea’s most popular melting point materials, and 8) semi-solid processing of resort, which was the setting for the 9th S2P conference.
    [Show full text]
  • Monumental Iron Works®
    Monumental Iron Works® 1 The Finest Ornamental Iron Crafted Elegance, Ornamental iron fences and gates have been Customized Construction the architectural choice for attractive security Monumental Iron Works is a modular system, worldwide for hundreds of years. Combining consisting of component parts designed to today’s technology with traditional elegance support each other. When completely assembled, and craftsmanship, Master Halco is able to offer these parts create one of the strongest ornamental a unique, ornamental solution with the look of fence systems on the market. Using industrial fencing forged by the hands of master blacksmiths. rivets, the constructed panels have the solid look and feel of authentic ornamental iron. Monumental Iron Works® fences and gates bring a combination of aesthetic elegance and With a riveted panel system, you can be sure security to residential, commercial, industrial, and the factory applied coating will offer years of institutional properties. Monumental Iron Works is maintenance and rust free elegance. Monumental sure to satisfy your architectural goals with a wide Iron Works utilizes a multiple layer coating process variety of options, designs, and styles crafted for that ensures corrosion protection, durability outstanding value. Quality materials manufactured and a great appearance for years to come. to our exacting specifications allows us to provide Monumental Iron Works system will complement a durable, cost-effective fence system that will last any architectural design while providing elegance, for many years. security, and long lasting value. Top 3 Reasons to Buy Monumental Iron Works® 1. Made In America • Monumental Iron Works is made in America and can be ordered through your local Master Halco distributor location.
    [Show full text]
  • From Raw Plate to Finished Product, We Provide Full Manufacturing Capabilities and Quality Die Components
    STANDARD DIE SUPPLY A DIVISION OF READY TECHNOLOGY Global Supplier of Quality Die Components for 45+ Years From Raw Plate to Finished Product, We Provide Full Manufacturing Capabilities and Quality Die Components STANDARD DIE SUPPLY is your single source from manufacturing complete machined dies to supplying all your die component needs. STANDARD DIE SUPPLY A DIVISION OF READY TECHNOLOGY We’re READY when From manufacturing to assembly to stocking you need us with the products, processes die componets, Standard Die Supply has it all! and people to meet your needs. Services We back up our line of products and machining capabilities with dedicated designers, engineers, skilled craftsman and administrative support on the inside with a sales team of tooling Camdrives Manifold Plates professionals on the outside at each of our locations whose job it is to get you what you need and service your requirements. Inventory • Half a million dollar inventory stocked in Dayton • In stock orders ship the next day Manifold Cylinders Multi Plate Dies Manufacturing Certifications • ISO 9001:2015 Certified • Inspection and Quality Control Systems Well stocked inventory Gas Springs READY Bender® Dies Hydraulic Cams R&D Lab STANDARD DIE SUPPLY A DIVISION OF READY TECHNOLOGY Our Machining Capabilities Vertical Milling CNC Machining Cincinnati CNC Vertical Mill Tree CNC Vertical Mill (1) 45 Taper (1) 50 Taper 40 Taper Max travel: 38” Max travel: 66” (allows L-R clamping) (allows L-R clamping) X Axis: 40” X Axis: 72” Y Axis: 24” Y Axis: 30” Z Axis: 25” Z Axis: 30” Max Rpm: 3000 Okuma CNC Vertical Mill Horizontal Milling (50 Taper) Table Size: 25 x 60 DeVlieg 4K60 Horizontal X Axis: 49.2913” CNC Jig Mill (50 Taper) Y Axis: 24.8819” Table Size: 40 x 60 Z Axis: 24.13” X Axis: 60” Max RPM: 3000 Y Axis: 60” W: 20” Onsrud CNC Vertical Column Mill Z: 20” (50 Taper) Table Size: 120” x 48” X Axis: 125” Radial Drilling Y Axis: 61” Max power tap: 1-1/4” dia.
    [Show full text]
  • Introduction and Classification of Forging Processes
    NPTEL - Mechanical Engineering - Forming Introduction and classification of forging processes 1.1 Introduction: Bulk deformation processes involve shaping of materials to finished products which have small surface area to thickness or surface area to volume ratio. Sheet metal forming produces parts having large surface area to thickness ratio. In sheet metal forming thickness variations are not desirable. Examples for sheet metal forming are: beverage cans, automobile body etc. Bulk forming processes may be primary processes such as rolling of ingot to blooms or billets, in which the cast metal is formed into semi-finished raw material. In secondary forming, the raw materials, such as blooms, billets are converted into finished parts such as gears, wheels, spanners etc. Rolling, forging, extrusion and drawing are bulk forming processes. The present module describes the salient aspects of forging process. 1.2 Forging: In ancient times, people employed forging for making coins, jewelry, weapons, Forging is a deformation processing of materials through compressive stress. It is carried out either hot or cold. Hot forging is done at temperatures above recrystallization temperatures, typically 0.6 Tm, or above, where Tm is melting temperature. Warm forging is done in the temperature range: 0.3 Tm to 0.5 Tm. Cold forging has advantages such as good surface finish, high strength and greater accuracy. Hot forging requires lower loads, because flow stress gets reduced at higher temperatures. Strain rates in hot working may be high – 0.5 to 500 s-1. Strains in hot forging are also high – true strains of 2 to 4. Are common. Typical applications of forging include bolts, disks, gears, turbine disk, crank shaft, connecting rod, valve bodies, small components for hydraulic circuits etc.
    [Show full text]
  • Ironworks and Iron Monuments Forges Et
    IRONWORKS AND IRON MONUMENTS FORGES ET MONUMENTS EN FER I( ICCROM i ~ IRONWORKS AND IRON MONUMENTS study, conservation and adaptive use etude, conservation et reutilisation de FORGES ET MONUMENTS EN FER Symposium lronbridge, 23-25 • X •1984 ICCROM rome 1985 Editing: Cynthia Rockwell 'Monica Garcia Layout: Azar Soheil Jokilehto Organization and coordination: Giorgio Torraca Daniela Ferragni Jef Malliet © ICCROM 1985 Via di San Michele 13 00153 Rome RM, Italy Printed in Italy Sintesi Informazione S.r.l. CONTENTS page Introduction CROSSLEY David W. The conservation of monuments connected with the iron and steel industry in the Sheffield region. 1 PETRIE Angus J. The No.1 Smithery, Chatham Dockyard, 1805-1984 : 'Let your eye be your guide and your money the last thing you part with'. 15 BJORKENSTAM Nils The Swedish iron industry and its industrial heritage. 37 MAGNUSSON Gert The medieval blast furnace at Lapphyttan. 51 NISSER Marie Documentation and preservation of Swedish historic ironworks. 67 HAMON Francoise Les monuments historiques et la politique de protection des anciennes forges. 89 BELHOSTE Jean Francois L'inventaire des forges francaises et ses applications. 95 LECHERBONNIER Yannick Les forges de Basse Normandie : Conservation et reutilisation. A propos de deux exemples. 111 RIGNAULT Bernard Forges et hauts fourneaux en Bourgogne du Nord : un patrimoine au service de l'identite regionale. 123 LAMY Yvon Approche ethnologique et technologique d'un site siderurgique : La forge de Savignac-Ledrier (Dordogne). 149 BALL Norman R. A Canadian perspective on archives and industrial archaeology. 169 DE VRIES Dirk J. Iron making in the Netherlands. 177 iii page FERRAGNI Daniela, MALLIET Jef, TORRACA Giorgio The blast furnaces of Capalbio and Canino in the Italian Maremma.
    [Show full text]
  • Vancron 40 Stamping Eng 121003
    STAMPING WITH UDDEHOLM VANCRON 40 TOOLING APPLICATION COLD WORK STAMPING WITH UDDEHOLM VANCRON 40 1 This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 1, 10.2012 The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com 2 STAMPING WITH UDDEHOLM VANCRON 40 Selecting a tool steel supplier is a key decision for all parties, including the tool maker, the tool user and the end user. Thanks to superior material properties, Uddeholm’s customers get reliable tools and components. Our products are always state-of-the-art. Consequently, we have built a reputation as the most innovative tool steel producer in the world. Uddeholm produce and deliver high quality Swedish tool steel to more than 100,000 customers in over 100 countries. Some markets are served by ASSAB, our exclusive sales channel in the Asia Pacific area. Together we secure our position as a world-leading supplier of tool steel. Wherever you are in the manufacturing chain, trust Uddeholm to be your number one partner and tool steel provider for optimal tooling and production economy. Quite simply, it pays to go for a better steel. CONTENTS Summary 4 Properties of Uddeholm
    [Show full text]
  • Classification 1
    ME477 Fall 2004 NonTraditional Processes (NTP) NONTRADITIONAL • Conventional Machining Processes (cutting, milling, MACHINING AND THERMAL drilling & grinding) use a sharp cutting tool • NTP - A group of processes that remove excess CUTTING PROCESSES material without a sharp cutting tool by various techniques involving mechanical, thermal, electrical, or chemical energy (or combinations) developed since 1. Mechanical Energy Processes World War II (1940’s). 2. Electrochemical Machining Processes • Motivations in Aerospace and Electronics Industries – to machine new (harder, stronger & tougher) materials difficult 3. Thermal Energy Processes or impossible to machine conventionally – for unusual & complex geometries that cannot easily 4. Chemical Machining machined conventionally – to achieve stringent surface (finish & texture) requirements not possible with conventional machining 1 2 Classification 1. Mechanical Energy Processes • Ultrasonic Machining (USM) • Mechanical - Erosion of work material by a high – Abrasives (20-60 volume %) in a slurry are driven High-frequency oscillation velocity stream of abrasives and/or fluid at high velocity by the tool vibrating at low Flow – Ultrasonic machining, Water jet cutting (WJC), Abrasive water amplitude (0.05-0.125mm) and high frequency Flow jet cutting (AWJC) and Abrasive jet machining (AJM) (20kHz). • Electrical - Electrochemical energy to remove material – Tool oscillation is perpendicular to work surface – Electrochemical machining (ECM), Electrochemical deburring – Tool: soft and stainless steels fed slowly into work. (ECD) and Electrochemical grinding (ECG) – Abrasives (Grit size 100 (rough) to 2000(fine)) – BN, BC, Al O , SiC & Diamond • Thermal - Thermal energy applied to small portion of 2 3 – The vibration amplitude equals to grit size, which work surface, removing by fusion and/or vaporization also determines the resulting surface finish.
    [Show full text]
  • Hot Brass Magazine, Vol 25, 2016
    In This Issue 3 Offhand Shots from the Editor 24 7 A Note from the President . A Piece of History Thriving in the Present LIEUTENANT 9 COLONEL 38 34 CHARLES KETTLES: 12 AMERICAN HERO Rhonda Ezell Still on Target! 44 16 Articles: Email your articles to GCA [email protected] FELLOWSHIP Submissions and Contributions: We welcome you to submit articles, stories, and Send in your articles, photos for publication in Hot Brass. GCA pays for submissions and contributions jokes, tips, hints, stories, with "AGI Bucks." These coupons are redeemable dollar-for-dollar towards the shooting activities, purchase of any AGI product or AGI video course. We pay for stories and articles we pictures, recipes, - print by the word: 100-300 words = 20 AGI Bucks, 300-500 words = 50 AGI Bucks, all those things you 500+ words = 100 AGI Bucks. Articles and stories must be submitted in MS Word or tell your friends . MS publisher format. Photos: Electronic photos must be submitted in a jpeg format with a resolution of at LEAST 640x480. Print photos are accepted but GCA cannot return Let’s share it with any printed photos and all submitted photos will become the property of GCA. the world. ©Copyright GCA 2016. All rights reserved. Hot Brass Magazine is published and produced by GCA and distributed to GCA Members. No part of this magazine may be copied, reproduced, rented, or transmitted for any reason without the written permission of the copyright holder. Contacting GCA: GCA, 351 Second Street, Napa, CA 94559, 1-800-435-GCOA (4262), Fax 707-253-2150, www.GunClubOfAmerica.com Subscriber Information: Missing or Damaged Issues: If an issue of Hot Brass is lost in the mail or arrives damaged, simply contact GCA at 1-800-435-GCOA (4262) for a replacement.
    [Show full text]
  • Decapsulation of Plastic Encapsulated Semiconductor Devices
    Page 1 of 19 DECAPSULATION OF PLASTIC ENCAPSULATED SEMICONDUCTOR DEVICES ESCC Basic Specification No. 25300 Issue 2 December 2014 Document Custodian: European Space Agency – see https://escies.org ESCC Basic Specification PAGE 2 No. 25300 ISSUE 2 LEGAL DISCLAIMER AND COPYRIGHT European Space Agency, Copyright © 2014. All rights reserved. The European Space Agency disclaims any liability or responsibility, to any person or entity, with respect to any loss or damage caused, or alleged to be caused, directly or indirectly by the use and application of this ESCC publication. This publication, without the prior permission of the European Space Agency and provided that it is not used for a commercial purpose, may be: − copied in whole, in any medium, without alteration or modification. − copied in part, in any medium, provided that the ESCC document identification, comprising the ESCC symbol, document number and document issue, is removed. ESCC Basic Specification PAGE 3 No. 25300 ISSUE 2 DOCUMENTATION CHANGE NOTICE (Refer to https://escies.org for ESCC DCR content) DCR No. CHANGE DESCRIPTION 897 Specification upissued to incorporate editorial changes per DCR. ESCC Basic Specification PAGE 4 No. 25300 ISSUE 2 TABLE OF CONTENTS 1 INTRODUCTION 6 1.1 SCOPE 6 1.2 PURPOSE 6 2 TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS 6 2.1 DEFINITIONS 6 2.1.1 Sample 6 2.1.2 Specimen 6 2.1.3 Decapsulation 6 2.1.4 PED 6 2.2 ABBREVIATIONS 6 2.2.1 Abbreviations for Package Outlines 6 3 DIFFERENT PROCEDURES FOR DECAPSULATION 6 3.1 GENERAL PROCEDURE FOR DECAPSULATION 7 3.2 STATUS OF DECAPSULATION 7 4 SPECIMEN PREPARATION 10 4.1 INTRODUCTION 10 4.2 X-RAY INVESTIGATION 10 4.3 PRE-BAKE 11 4.4 MILLING 11 4.5 MASKING 11 4.6 CLEANING 11 4.7 DRYING 11 5 DECAPSULATION 12 5.1 MANUAL WET ETCHING 12 5.2 COMPLETE WET ETCHING 13 5.3 AUTOMATED WET ETCHING 14 5.4 PLASMA ETCHING 15 6 PRECAUTIONS 16 6.1 PRECAUTIONS FOR SAFETY 16 6.2 PRECAUTIONS FOR HANDLING 16 6.3 RECOMMENDATIONS 17 ESCC Basic Specification PAGE 5 No.
    [Show full text]
  • Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium Based Fluxes
    MATEC Web of Conferences 269, 07002 (2019) https://doi.org/10.1051/matecconf/201926907002 IIW 2018 Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium based Fluxes Widyantoro1, Donanta Dhaneswara1, Jaka Fajar Fatriansyah1, Muhammad Reza Firmansyah1, and Yus Prasetyo2 1Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok, Indonesia 16424 2Center for Materials Processing and Failure Analysis, Universitas Indonesia, Depok, Indonesia 16424 Abstract. The investigation of Oxide Inclusions removal in aluminium scrap casting process with sodium based fluxes has been carried out. The purpose of this research is to investigate the effect of Na2SO4 and NaCl based fluxes addition onto the fluidity and microstructure of aluminium product. The alloy which is used in this investigation is Al-Si which mixed with metal scrap using gravity casting method. The variation of melting temperature in this investigation are 700oC, 740oC, and 780oC. In this research, material characterization was determined using DSC, EDAX, XRD, and fluidity test. The results show that the number of oxide inclusions decrease as the addition of 0,2% wt. flux, and completly removed after the addition of 0,4% wt. flux. The highest fluidity and tensile strength was obtained after the addition of 0,4% wt. flux. at 7400C.. 1 Introduction Chemical components that are used in a flux depends on the objective of casting process (alkali removal, Aluminium alloys is widely applied in many industrial cleanliness, dross separation) [15]. In this paper flux product, such as transportation, packaging, construction, based Na2SO4 and NaCl was used to reduce the or houseware product due to its excellent properties, percentage of oxide inclusions inside the molten such as light weight, high corrosion resistance, high aluminium by binding the inclusions into the melt castability, and good conductor [1]-[4].
    [Show full text]