Ecological Impacts of Invasive Alien Species on Bees*

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Impacts of Invasive Alien Species on Bees* Apidologie 40 (2009) 388–409 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2009 www.apidologie.org DOI: 10.1051/apido/2009023 Review article Ecological impacts of invasive alien species on bees* Jane C. Stout1,CarolinaL.Morales2 1 School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland 2 Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Pasaje Gutiérrez 1125, 8400, Bariloche, Río Negro, Argentina Received 29 September 2008 – Revised 13 January 2009 – Accepted 15 January 2009 Abstract – We review direct and indirect impacts of invasive alien species (focussing on plants and insects) on native bees worldwide. Although there is a rapidly growing body of research into the effects of invasive alien plants on native plant pollination via disruption of native mutualisms, there has been little research on the impacts of invasive alien plants directly on bees. Such impacts are likely to vary according to the taxon of plant, the functional specificity of the native bees, and ecosystem context. Conversely, there have been more attempts to document impacts of invasive alien social bees on native bees. Most of these studies only indirectly evaluate competition for resources, have focused on a few native species and findings are sometimes contradictory. However, some studies showed strong negative impacts, suggesting that effects might be species-specific. Additionally, pathogen spillover and reproductive disruption due to interspecific mating has been demonstrated among some closely related taxa. Where we lack unequivocal evidence for impacts however, this should not be interpreted as lack of effect. We recommend that future studies are robustly designed and consider impacts on genetic, species (particularly solitary bees) and ecosystem biodiversity. Apis mellifera / Bombus / non-native species / pollinator / plant invasion 1. INTRODUCTION the trade and transport of species, has led to a corresponding increase in research into the Alien species (exotic/non-native species in- impacts of invasive alien species (Lockwood troduced accidentally or intentionally by hu- et al., 2007). In addition to damage to human mans) that become invasive (i.e. recruit repro- health and economies (Pimentel et al., 2005), ductive offspring, often in large numbers and invasive alien species can in some cases dis- at considerable distances from parents, and rupt evolutionary process, and the composition thus can spread at a considerable rate, Traveset and functioning of local ecosystems (Parker and Richardson, 2006) are recognised as im- et al., 1999; Mooney and Cleland, 2001). In- portant drivers of global environmental change vasive alien species can have direct and in- (Sala et al., 2000; Levine and D’Antonio, direct impacts on native biodiversity (Parker 2003). Although only a small proportion of et al., 1999). The former occur when invasive ff alien species become invasive (Williamson, aliens consume or otherwise physically a ect 1996), the massive increase in the rate of bi- native species, and the latter when the inva- ff ological invasions due to rapid globalization sion a ects interactions among native species of economies in the last decade, accelerat- in the ecosystem, for example via competition ing both the rate and geographic pattern of for biotic resources, or via alteration of abiotic resource availability, either by competition or Corresponding author: J.C. Stout, when invasive aliens perform a novel ecosys- ff [email protected] tem function (Simberlo , 1991; White et al., * Manuscript editor: Tomas Murray 2006). In many cases, a combination of both Article published by EDP Sciences Impacts of invasive alien species on bees 389 direct and indirect processes affect native bio- et al., 2009) and the impacts of these processes diversity and the services it provides. on native bees have been studied on a range of A key ecosystem service that has the poten- scales. For example, recent research has sug- tial to be interrupted by the arrival of novel gested that landscape structure and land use species is pollination. This area has received management have important impacts on native a lot of recent research attention for sev- bees (Brosi et al., 2008; Osborne et al., 2008) eral reasons. Firstly, there is widespread con- and that organic farming can improve bee cern about loss of pollination services, both species abundance (Tscharntke et al., 2005; for wild plants and crops (Biesmeijer et al., Holzschuh et al., 2007). However, the impacts 2006; Klein et al., 2007); but see (Ghazoul, of invasive alien species on native bees are far 2005), and investigations into the drivers of from clear (Traveset and Richardson, 2006). pollinator loss are regarded as high priority We lack knowledge as to the extent at which (Steffan-Dewenter and Westphal, 2008). Sec- alien invasions affect population density of bee ondly, some high-profile invasions have re- species, and about how alien invasions affect ceived considerable media and research atten- composition of pollinator communities at dif- tion, for example the spread of Africanized ferent spatial and temporal scales (Bjerknes honeybees in the Americas (Schneider et al., et al., 2007). 2004; Moritz et al., 2005). Thirdly, because In this review, we aim to provide critical as- pollinators perform a vital ecosystem func- sessment of hypotheses and evidence for im- tion, impacts of alien species invasion can have pacts of invasive alien species that directly or knock-on effects on entire communities. indirectly affect native bees in order to identify Bees are arguably the most important polli- threats and to determine research and conser- nator group and threats to wild bees have been vation priorities in this area. Specifically, we more widely studied than impacts on other will consider impacts of invasive alien plants, pollinator taxa (Kenis et al., 2009; Murray bees and parasites on native bee behaviour, re- et al., 2009). Native (often referred to as production, populations and communities and “wild” bees, although this term strictly in- the ecological services they provide. cludes non-native domesticated species that have “escaped” into the wild) are very impor- tant for wild plant and crop pollination (Losey 2. IMPACTS OF INVASIVE ALIEN and Vaughan, 2006). Klein et al. (2007) esti- PLANTS mated that 35% of global crop production re- lies on animal pollinators and 87/115 of the Alien plant invasions are common in virtu- leading food crops worldwide require animal ally every terrestrial ecosystem on earth. The pollination. Many producers rely on domesti- number of plant introductions has climbed cated bees, but with worldwide declines in the steadily since the late eighteenth century most important domesticated bee (Apis mellif- (Pyšek et al., 2003), and in Europe, established era), the importance of native wild bees is be- alien plants are most common in nutrient-rich coming increasingly recognised. In the north- and/or man-made habitats (including urban eastern United States of America (New Jersey and agricultural ones) (Lambdon et al., 2008). and Pennsylvania), it has been predicted that A large proportion of alien plants have been in- native bees provide sufficient pollination for troduced as ornamental species, for example in watermelon crops in the absence of domesti- Australia (Groves, 1998; Reichard and White, cated honeybees (Winfree et al., 2007), con- 2001) and Europe (Lambdon et al., 2008), and firming the important role that native bees per- thus many produce showy, eye-catching flow- form in modern agro-ecosystems. ers, which also often makes them attractive to Habitat change, loss and fragmentation as- animal visitors. sociated with agricultural intensification are Many invasive alien plants are visited thought to pose the main risks to native bees (Valentine, 1978; Butz Huryn and Moller, (Kremen et al., 2002;Goulsonetal.,2008; 1995; Chittka and Schurkens, 2001; Moragues Steffan-Dewenter and Westphal, 2008; Murray and Traveset, 2005; Jesse et al., 2006;Stokes 390 J.C. Stout, C.L. Morales et al., 2006; Stout et al., 2006; Totland reduce visitation and hence their pollination et al., 2006; Lopezaraiza-Mikel et al., 2007; success) or non-existent (alien plants have no Bartomeus et al., 2008a; Tepedino et al., 2008) impacts on native ones). Indeed, studies so and pollinated (Parker, 1997;Richardsonetal., far have found a range of results (Tab. I), 2000; Stout, 2007) by native bees. These even for the same invasive alien plant species plants are attractive to native bees for many interacting with native taxa in different geo- reasons: some produce a massive floral dis- graphic localities. For example, Carpobrotus play, have prolific nectar production, and often spp. in California (Aigner, 2004), the Balearic appear at high density or dominate the flower Islands (Moragues and Traveset, 2005), and community in invaded sites (Ghazoul, 2002; north-eastern Spain (Bartomeus et al., 2008b) Bjerknes et al., 2007). In addition, many in- have varying impacts on different taxa of na- vasive alien plants fill a phenological gap of tive plants (Tab. I). In addition, interactions be- flower resources for bees, extending their for- tween the same alien and native plant species aging season. As a result, invasive alien plants at different locations have found contradictory have the potential to impact not only on indi- results. For example, the presence of Impa- vidual foraging behaviour, but also on colony tiens glandulifera decreased visitation to and success of social species, population size and seed set of Stachys palustris in Central Eu- distribution of native bees, bee community rope (Chittka and Schurkens, 2001) whilst structure and entire plant-pollinator networks Lopezaraiza Mikel (2006) found a facilitative (Aizen et al., 2008). In addition, by affecting effect on insect visitation in the UK, which var- the native plant communities, invasive alien ied with native plant density. Nienhuis et al. plants are likely to have indirect effects on na- (unpubl. data), on the other hand, found no im- tive pollinator communities. pact of varying I. glandulifera density on visi- tation, pollen deposition or seed set in S.
Recommended publications
  • RESTORATION ACTION PLAN MARINA DUNES PRESERVE Marina, California
    RESTORATION ACTION PLAN MARINA DUNES PRESERVE Marina, California Prepared for: Monterey Peninsula Regional Park District 4860 Carmel Valley Road Carmel, CA 93923 Prepared by: Burleson Consulting Inc. 1900 Garden Road, Suite 210 Monterey, CA 93940 March 2021 This page intentionally left blank Restoration Action Plan, Marina Dunes Preserve CONTENTS CONTENTS ..........................................................................................................................................i APPENDICES ...................................................................................................................................... ii ACRONYMS AND ABBREVIATIONS ..................................................................................................... iii 1. INTRODUCTION ...................................................................................................................... 1 1.1 Setting ........................................................................................................................................... 1 1.2 Purpose ......................................................................................................................................... 1 1.3 Approach ....................................................................................................................................... 2 2. UPDATED BEST MANAGEMENT PRACTICES .............................................................................. 3 2.1 Weed Eradication and Control .....................................................................................................
    [Show full text]
  • Plant Field Guide
    2 PICKLEWEED GLASSWORT CORDGRASS JAUMEA BATIS Field Guide 9 PICKLEWEED Amaranth Family 3 kinds, 2 examples CORDGRASS Grass Family 1 Pickleweed Sarcocornia pacifica Spartina foliosa Glasswort Arthrocnemum subterminalis 2 HABITAT: Growns in the low marsh where the HABITAT: Found throughout the salt marsh. roots are continually bathed in ocean water. APPEARANCE: Stems look like a chain of small APPEARANCE: Look for a tall grass which is pickles. higher than the other plants in the salt marsh. REPRODUCTION: The flowers of all pickleweeds REPRODUCTION: All grasses are wind pollinated. are pollinated by the wind. The small flowers are Look for straw colored spikes of densely packed hard to see because they have no colorful petals flowers. Male flowers will have pollen and the female flowers will show graceful waving stigmas to ADAPTATION TO SALT: Pickleweeds are some of catch the pollen. the many marsh plants that use salt storage (they are accumulators). Also called succulents, these ADAPTATION TO SALT: All the salt marsh plants are swollen with the stored salty water. grasses are salt excreters using special pores to When the salt concentration becomes too high the push out droplets of salty water. Look on the grass cells will die. blades for salt crystals. See sea lavender. ECOLOGICAL RELATIONSHIPS: Frequently the ECOLOGICAL RELATIONSHIPS: Home for the most common plants in the marsh, they provide endangered bird, the Light-footed Clapper Rail. shelter and food for invertebrates. Belding’s A spider lives its whole life inside the blades. Savannah Sparrows build their nests in the Important food for grazing animals. glasswort. BATIS or SALTWORT Saltwort Family Batis maritima HABITAT: Most frequently found in the low marsh.
    [Show full text]
  • Brassicaceae) in Australia
    Cunninghamia Date of Publication: 26/08/2013 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Reassessment of the invasion history of two species of Cakile (Brassicaceae) in Australia Roger D. Cousens, Peter K. Ades, Mohsen B. Mesgaran and Sara Ohadi Melbourne School of Land & Environment, The University of Melbourne, Victoria, 3010, AUSTRALIA Abstract: In this paper we revisit the invasion history of two species of Cakile in Australia. Cakile edentula subsp. edentula arrived in the mid 19th Century and spread into coastal strandline habitat from the southeast towards the west and to the north; Cakile maritima arrived in the late 19th Century and has replaced Cakile edentula over much of the range. While Cakile edentula is morphologically quite uniform, the great variation within Cakile maritima has confused field ecologists. Using herbarium records we update previous accounts of the spread of the species and report on field surveys that determined their current geographic overlap in Tasmania and in northern New South Wales/southern Queensland. We examine regional morphological variation within Cakile maritima using the national herbaria collections and variation within new population samples. We support previous interpretations that Cakile maritima has been introduced on more than one occasion from morphologically distinct races, resulting in regional variation within Australia and high variability within populations in the south-east. Western Australian populations appear distinct and probably did not initiate those in the east; we consider that eastern populations are likely to be a mix of Cakile maritima subsp. maritima from the Mediterranean and Cakile maritima subsp.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Mesgaran, M. B., Lewis, M. A., Ades, P. K., Donohue, K
    Hybridization can facilitate species invasions, even without enhancing local adaptation Mohsen B. Mesgarana, Mark A. Lewisb, Peter K. Adesc, Kathleen Donohued, Sara Ohadia, Chengjun Lia, and Roger D. Cousensa,1 aSchool of BioSciences, The University of Melbourne, Victoria 3010, Australia; bMathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2G1; cSchool of Ecosystem and Forest Sciences, The University of Melbourne, Victoria 3010, Australia; and dDepartment of Biology, Duke University, Durham, NC 27708 Edited by Alan Hastings, University of California, Davis, CA, and approved July 5, 2016 (received for review April 6, 2016) The founding population in most new species introductions, or at the low pollinator visitation, or both (8, 9); the term “pollen limitation” leading edge of an ongoing invasion, is likely to be small. Severe isoftenusedasagenerictermwhen the exact mechanism is un- Allee effects—reductions in individual fitness at low population den- clear. In the extreme case of a single arriving adult, population sity—may then result in a failure of the species to colonize, even if persistence would normally be impossible unless the species is ca- the habitat could support a much larger population. Using a simula- pable of asexual reproduction or self-fertilization [“Baker’sLaw” tion model for plant populations that incorporates demography, mat- (10)]. Here, we propose a positive role for hybridization in species ing systems, quantitative genetics, and pollinators, we show that invasions and range expansion, a purely demographic mechanism Allee effects can potentially be overcome by transient hybridization without the requirement for any new adaptation to result. with a resident species or an earlier colonizer.
    [Show full text]
  • Characterization of Mycotoxigenic Alternaria Species Isolated from the Tunisian Halophyte Citation: A
    Phytopathologia Mediterranea Firenze University Press The international journal of the www.fupress.com/pm Mediterranean Phytopathological Union Research Paper Characterization of mycotoxigenic Alternaria species isolated from the Tunisian halophyte Citation: A. Chalbi, B. Sghaier-Ham- mami, G. Meca, J.M. Quiles, C. Abdel- Cakile maritima ly, C. Marangi, A.F. Logrieco, A. Moret- ti, M. Masiello (2020) Characterization of mycotoxigenic Alternaria species isolated from the Tunisian halophyte Arbia CHALBI1,2,3, Besma SGHAIER-HAMMAMI1,*, Giuseppe MECA4, Cakile maritima. Phytopathologia Medi- Juan Manuel QUILES4, Chedly ABDELLY1, Carmela MARANGI5, Anto- terranea 59(1): 107-118. doi: 10.14601/ nio F. LOGRIECO3, Antonio MORETTI3, Mario MASIELLO3 Phyto-10720 1 Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP Accepted: February 7, 2020 901, Hammam-Lif 2050, Tunisia 2 Published: April 30, 2020 Faculty of Sciences of Tunis, University Campus 2092, University of Tunis El Manar, Tunis, Tunisia Copyright: © 2020 A. Chalbi, B. 3 Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via G. Sghaier-Hammami, G. Meca, J.M. Amendola 122/O, 70126, Bari, Italy Quiles, C. Abdelly, C. Marangi, A.F. 4 Laboratory of Food Toxicology, Department of Preventive Medicine, Nutrition and Food Logrieco, A. Moretti, M. Masiello. This Science Area, Faculty of Pharmacy, University of Valencia Avenida Vicent Andres Estelles is an open access, peer-reviewed s/n, 46100 Burjassot, Valencia, Spain article published by Firenze Univer- 5 sity Press (http://www.fupress.com/pm) Institute for Applied Mathematics “M. Picone”, Via G. Amendola 122/D, 70126, Bari, and distributed under the terms of the Italy Creative Commons Attribution License, * Corresponding author: [email protected] which permits unrestricted use, distri- bution, and reproduction in any medi- um, provided the original author and Summary.
    [Show full text]
  • Vascular Plants of the Coastal Dunes of Humboldt County, California
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 4-2019 Vascular Plants of the Coastal Dunes of Humboldt County, California James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Vascular Plants of the Coastal Dunes of Humboldt County, California" (2019). Botanical Studies. 41. https://digitalcommons.humboldt.edu/botany_jps/41 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. VASCULAR PLANTS OF THE COASTAL DUNES OF HUMBOLDT COUNTY, CALIFORNIA Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California Ninth Edition • August 2019 Amaryllidaceae — Onion or Amaryllis Family F E R N S Allium unifolium •One-leaved onion Dennstaedtiaceae — Bracken Fern Family Anacardiaceae — Cashew Family Pteridium aquilinum var. pubescens • Bracken fern Toxicodendron diversilobum • Poison-oak Ophioglossaceae — Adder’s-tongue Family Apocynaceae — Dogbane or Milkweed Family Botrychium multifidum • Leathery
    [Show full text]
  • Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S
    Vascular Plants of Humboldt Bay's Dunes and Wetlands Published by U.S. Fish and Wildlife Service G. Leppig and A. Pickart and California Department of Fish Game Release 4.0 June 2014* www.fws.gov/refuge/humboldt_bay/ Habitat- Habitat - Occurs on Species Status Occurs within Synonyms Common name specific broad Lanphere- Jepson Manual (2012) (see codes at end) refuge (see codes at end) (see codes at end) Ma-le'l Units UD PW EW Adoxaceae Sambucus racemosa L. red elderberry RF, CDF, FS X X N X X Aizoaceae Carpobrotus chilensis (Molina) sea fig DM X E X X N.E. Br. Carpobrotus edulis ( L.) N.E. Br. Iceplant DM X E, I X Alismataceae lanceleaf water Alisma lanceolatum With. FM X E plantain northern water Alisma triviale Pursh FM X N plantain Alliaceae three-cornered Allium triquetrum L. FS, FM, DM X X E leek Allium unifolium Kellogg one-leaf onion CDF X N X X Amaryllidaceae Amaryllis belladonna L. belladonna lily DS, AW X X E Narcissus pseudonarcissus L. daffodil AW, DS, SW X X E X Anacardiaceae Toxicodendron diversilobum Torrey poison oak CDF, RF X X N X X & A. Gray (E. Greene) Apiaceae Angelica lucida L. seacoast angelica BM X X N, C X X Anthriscus caucalis M. Bieb bur chevril DM X E Cicuta douglasii (DC.) J. Coulter & western water FM X N Rose hemlock Conium maculatum L. poison hemlock RF, AW X I X Daucus carota L. Queen Anne's lace AW, DM X X I X American wild Daucus pusillus Michaux DM, SW X X N X X carrot Foeniculum vulgare Miller sweet fennel AW, FM, SW X X I X Glehnia littoralis (A.
    [Show full text]
  • The Germination Niche of Coastal Dune Species As Related to Their Occurrence Along a Sea–Inland Gradient
    Received: 16 September 2019 | Revised: 18 March 2020 | Accepted: 6 April 2020 DOI: 10.1111/jvs.12899 SPECIAL FEATURE: DISPERSAL AND ESTABLISHMENT Journal of Vegetation Science The germination niche of coastal dune species as related to their occurrence along a sea–inland gradient Silvia Del Vecchio1 | Edy Fantinato1 | Mauro Roscini1 | Alicia T. R. Acosta2 | Gianluigi Bacchetta3 | Gabriella Buffa1 1Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari Abstract University of Venice, Venice, Italy Aims: The early phases in the life cycle of a plant are the bottleneck for success- 2 Department of Sciences, University of ful species establishment thereby affecting population dynamics and distribution. In Rome 3, Rome, Italy 3Sardinian Germplasm Bank (BG-SAR), coastal environments, the spatial pattern of plant communities (i.e. vegetation zona- Hortus Botanicus Karalitanus (HBK), tion) follows the ecological gradient of abiotic stress changing with the distance from University of Cagliari, Cagliari, Italy the sea. This pattern has been mainly explained based on the adaptation and toler- Correspondence ance to the abiotic stress of adult plants. However, the adult niche may considerably Silvia Del Vecchio, Department of Environmental Sciences, Informatics and differ from the germination niche of a plant species. The aim of this work was to Statistics, Ca’ Foscari University of Venice, investigate to what extent abiotic factors (specifically salinity, temperature, nitrogen Via Torino 155, 30172 Venice, Italy Email: [email protected] and their interactions) constrain seed germination along the sea–inland gradient. Location: Latium coast (Central Italy). Co-ordinating Editor: Judit Sonkoly Methods: Germination tests were performed on seeds of focal species of three dif- This article is a part of the Special Feature ferent plant communities which establish at increasing distances from the coast- Plant dispersal and establishment as drivers line: Cakile maritima subsp.
    [Show full text]
  • 5-Year Review of Menzies' Wallflower
    Menzies’ Wallflower (Erysimum menziesii) 5-Year Review: Summary and Evaluation U.S. Fish and Wildlife Service Arcata Field Office Arcata, California June 2008 5-YEAR REVIEW Species reviewed: Menzies’ wallflower (Erysimum menziesii) TABLE OF CONTENTS I. General Information A. Methodology B. Reviewers C. Background II. Review Analysis A. Application of the 1996 Distinct Population Segment (DPS) Policy B. Recovery Criteria C. Updated Information and Current Species Status 1. Biology and Habitat 2. Five-Factor Analysis D. Synthesis III. Results IV. Recommendations for Future Actions V. References 1 5-YEAR REVIEW Menzies’ wallflower (Erysimum menziesii) I. GENERAL INFORMATION A. Methodology used to complete the review: This review was conducted by David Imper, Ecologist, with the Arcata Fish and Wildlife Office of the U.S. Fish and Wildlife Service (Service or USFWS), based on all information contained in files at that office and provided by other agencies. No comments were received from the public or other agencies in response to the Federal Notice. B. Reviewers Lead Region – Region 8, California and Nevada; Diane Elam, Deputy Division Chief for Listing, Recovery, and Habitat Conservation Planning, and Jenness McBride, Fish and Wildlife Biologist; (916)414-6464 Lead Field Office – Arcata Fish and Wildlife Office; Mike Long (707)822-7201 Cooperating Field Office(s) – Ventura, California C. Background 1. FR Notice citation announcing initiation of this review: Federal Register 71(55):14538-14542, March 22, 2006 2. Listing history Original Listing FR notice: 50 Federal Register 27848-27859 Date listed: June 22, 1992 Entity listed: Erysimum menziesii (species) Classification: Endangered Revised Listing, if applicable: NA 3.
    [Show full text]
  • New Jersey Strategic Management Plan for Invasive Species
    New Jersey Strategic Management Plan for Invasive Species The Recommendations of the New Jersey Invasive Species Council to Governor Jon S. Corzine Pursuant to New Jersey Executive Order #97 Vision Statement: “To reduce the impacts of invasive species on New Jersey’s biodiversity, natural resources, agricultural resources and human health through prevention, control and restoration, and to prevent new invasive species from becoming established.” Prepared by Michael Van Clef, Ph.D. Ecological Solutions LLC 9 Warren Lane Great Meadows, New Jersey 07838 908-637-8003 908-528-6674 [email protected] The first draft of this plan was produced by the author, under contract with the New Jersey Invasive Species Council, in February 2007. Two subsequent drafts were prepared by the author based on direction provided by the Council. The final plan was approved by the Council in August 2009 following revisions by staff of the Department of Environmental Protection. Cover Photos: Top row left: Gypsy Moth (Lymantria dispar); Photo by NJ Department of Agriculture Top row center: Multiflora Rose (Rosa multiflora); Photo by Leslie J. Mehrhoff, University of Connecticut, Bugwood.org Top row right: Japanese Honeysuckle (Lonicera japonica); Photo by Troy Evans, Eastern Kentucky University, Bugwood.org Middle row left: Mile-a-Minute (Polygonum perfoliatum); Photo by Jil M. Swearingen, USDI, National Park Service, Bugwood.org Middle row center: Canadian Thistle (Cirsium arvense); Photo by Steve Dewey, Utah State University, Bugwood.org Middle row right: Asian
    [Show full text]