RELATIONSHIP BETWEEN FLATFOOT and Q ANGLE in MALE SECONDARY SCHOOL STUDENT Mohamed N

Total Page:16

File Type:pdf, Size:1020Kb

RELATIONSHIP BETWEEN FLATFOOT and Q ANGLE in MALE SECONDARY SCHOOL STUDENT Mohamed N International Journal of Physiotherapy and Research, Int J Physiother Res 2017, Vol 5(6):2477-81. ISSN 2321-1822 Original Research Article DOI: https://dx.doi.org/10.16965/ijpr.2017.232 RELATIONSHIP BETWEEN FLATFOOT AND Q ANGLE IN MALE SECONDARY SCHOOL STUDENT Mohamed N. AlKhouli *1, Anees S. Ghait 2, Amr A.Abogazya 3. *1 Department of Growth& Development disorders and its Surgery in Pediatric, Delta University for Science and Technology, Egypt. 2Department of Biomechanics, Kafrelsheikh University, Egypt. 3 Department of Basic Science, Faculty of Physical Therapy, Kafrelsheikh University, Egypt. ABSTRACT Background: A high percentage of young children present with flatfeet. Flat foot in children and adolescents, as a consequence of various factors such as hypo kinesis, obesity or hereditary factors, represents a current problem. The purpose of this study was to determine relationship between flatfoot and Q Angle in male secondary school students from standing position. Subjects and Methods: Forty participants were included in this study divided into two groups, group A (20 normal healthy male secondary school students) while group B (20 male secondary school students are suffer- ing from flat foot ); (age range 16-18 years, weight 71.5 ± 14.4 kg, height 171.5 ± 6.1 cm, were selected randomly. Results: Results indicated that there was statistically significant increase in participant’s quadriceps-angle of the right or left knees (P< 0.05) in group B (male secondary school students are suffering from flat foot) during standing position. Conclusion: There were no statistically significant changes in the participant’s quadriceps-angle between the right and left knees (P>0.05) either in group B (male secondary school students suffering from flat foot) or in group A (normal healthy male secondary school students). With regard to this study results, we concluded that, flat foot deformity may resulted in increasing the value of Q angle. KEY WORDS: Q Angle, Flat foot deformity, Secondary school students, Standing position, Radiography. Address for correspondence: Dr. Mohamed N. AlKhouli, Department of Growth& Development disorders and its Surgery in Pediatric, Delta University for Science and Technology, Egypt. E-Mail: [email protected] Access this Article online Quick Response code International Journal of Physiotherapy and Research ISSN 2321- 1822 www.ijmhr.org/ijpr.html Received: 08-09-2017 Accepted: 09-10-2017 Peer Review: 09-09-2017 Published (O): 11-11-2017 DOI: 10.16965/ijpr.2017.232 Revised: None Published (P): 11-12-2017 INTRODUCTION energy-storing mechanisms [2,3]. Feet, as the body’s base of support, continually Muscles of the foot provide secondary support exposed to high ground reaction forces which by maintaining the arch during dynamic tasks generated during activities of daily living. The [1]. longitudinal arch of the foot is responsible for Flatfeet are often a complex disorder, with absorbing and dissipating these forces [1]. diverse symptoms and varying degrees of The ligaments that support and stabilize the deformity and disability. There are several types longitudinal arch of the foot act as powerful of flatfoot, all of which have one characteristic Int J Physiother Res 2017;5(6):2477-81. ISSN 2321-1822 2477 Mohamed N. AlKhouli, Anees S. Ghait, Amr A.Abogazya. RELATIONSHIP BETWEEN FLATFOOT AND Q ANGLE IN MALE SECONDARY SCHOOL STUDENTS. in common—partial or total loss of the arch [2, divided into two groups, group A (20 normal 4]. Flat feet in children are normal when they healthy male secondary school students) while first begin to stand because as they try to keep group B (20 male secondary school students are balance and grip with the feet for support, they suffering from flat foot ); (age range 16-18 years, tend to spread apart in a wide stance and the weight 71.5 ± 14.4 kg, height 171.5 ± 6.1 cm, soles turn outward [5,6]. were selected randomly. Many different factors can contribute to the The participants in the present study were se- development of flat feet. These include over- lected from a population of secondary school weight, the types of shoes a child wears, a child’s students in Tanta and Mansoura cities. sitting or sleeping positions, compensation for All subjects participated voluntarily after being other abnormalities further up the leg, or more informed about the purpose of the study and severe factors such as rupture of ligaments or having signed a written informed consent. Prior tendons in the foot [4]. to selection, each individual underwent a thor- Repeated excessive loading may stretch liga- ough clinical assessment and was questioned ments beyond their elastic limit, damaging soft about past medical history. tissues and increasing the risk of foot discom- Subjects with postural deviations, such as leg fort and subsequent development of foot length discrepancy, knee joint osteoarthritis, pathologies [1]. recurvatum knees, ankle joint deformities, Excessive foot pronation which occurs in flat foot muscle shortening, kyphosis and/or scoliosis, deformity is characterized by flattening of past surgery, injury of the lower limbs or medial arch and hypermobile midfoot but may patellofemoral pain syndrome , thyroid dysfunc- also place greater demands on neuromuscular tion or rheumatic conditions, obesity , dominant system to stabilize the foot and maintain left leg, patellar luxation or subluxation, clini- upright stance. cal evidence of meniscal injury, ligamentous in- Poor foot position sense is thought to hinder stability, patellar tendinitis, lower back pain, accommodation between the plantar surface of sciatica, other condition that may interfere with the foot and the support surface, thus requiring the data collection were excluded from the ex- postural adjustments more proximally to main- perimental procedure. tain upright posture and balance [10, 11]. The participants were positioned standing with Although investigators found static and dynamic barefoot, their knees in total extension and each balance to be adversely affected by changes in patient were asked to keep her lower limbs in a peripheral input secondary to joint injury and relaxing status and no trunk - forward or poste- changes in the stability of the surface on which rior swing was permitted. one is standing, far less attention has been The participants were urged to maintain a fixed focused on whether more subtle alterations in posture during every test procedure to maintain the surface, stability, or peripheral input of the consistent measurements. support foot may also affect balance in those Afterwards, the same technician took radio- with different foot types [7, 9]. graphs (A 500 mm A G3 Model, Macrotec®) in The deleterious effect of flat foot on the anteroposterior positioning using radiological 35 mechanics of human body results from the mani- x 91 cm film, comprising a portion of the hip 15 festation of abnormal foot mechanics which cm below the previously market TAT using a lead include abnormal foot pronation and diminished film (4 cm2) fixed on the skin with adhesive tape, foot arches (7). in order to facilitate the visualization of the TAT Therefore, this study aims to compare Q-angle after revealing the film (a Kodak® film). between normal and flat foot deformity in The Q angle is formed by the crossing of two secondary school students. imaginary lines: the first line is formed by the SUBJECTS AND METHODS anterosuperior iliac spine (ASIS) to the midpoint of the patella, and the second line is formed by Forty participants were included in this study the tibial tuberosity to the midpoint of patella Int J Physiother Res 2017;5(6):2477-81. ISSN 2321-1822 2478 Mohamed N. AlKhouli, Anees S. Ghait, Amr A.Abogazya. RELATIONSHIP BETWEEN FLATFOOT AND Q ANGLE IN MALE SECONDARY SCHOOL STUDENTS. [12]. The Q angle was traced and measured for from flat foot). the right and left knee by the same researcher Left Knee: There was statistically significant using a conventional rule, a pen, and protractor increase in participant’s Q-angle (P=0.05), as the to prevent study error (Figure 1). mean value of Q-angle was 17.03º± 0.4 group A (normal healthy male secondary school stu- dents), while it was 22.4º ± 1.5 at group B (male secondary school students are suffering from flat foot) (Table I). There were no statistically significant differ- ences in the participant’s quadriceps-angle between the right and left knee (P>0.05) at group A (normal healthy male secondary school Fig. 1: The Q– angle. students). There were no statistically significant differ- ences in the participant’s quadriceps-angle between the right and left knee (P>0.05) at group B (male secondary school students are suffer- ing from flat foot). Table 1: Mean ± SD values of Q angle for participants (normal healthy male secondary school students versus students are suffering from flat foot). The design of this study was a case control study. Right Knee Left Knee Statistical analysis involved the calculation of Mean ± SD P.value Significance Mean ±SD P.Value Significance Normal healthy male the means and standard deviations for each of 16.14º ±1.2 0.05 S17.03º ±0.4 0.05 S students the variables measured. Differences between the Students suffering 20.6º ±1.2 - - 22.4º ±1.5 - - values of the Q angle between the participants from flat foot were assessed using the student-t test. A P-value The feet are considered as an important part of of < 0.05 was taken to represent statistical sig- our body. It supports not only the whole body nificance. Data analysis was performed using weight but also bears several times of body SPSS software version 16. weight when we are running or splitting [19]. RESULTS AND DISCUSSION Flat foot is one of the most common foot defor- mities in children that may lead to foot or ankle All data had been collected and statistically pain during walking.
Recommended publications
  • Pierre Robin and the Syndrome That Bears His Name PETER RANDALL
    Pierre Robin and the Syndrome That Bears His Name PETER RANDALL, M.D. WILTON M. KROGMAN, Ph.D. SOONA JAHINA, B.D.S., M.Sc. Philadelphia, Pennsylvania The Pierre Robin Syndrome refers to a combination of micrognathia (a small jaw) and glossoptosis (literally, a falling downward or back- ward of the tongue) in the newborn infant (Figure 1). These conditions are likely to cause obstruction of the upper airway, and they are fre- quently associated with an incomplete cleft of the palate. Patients with the Pierre Robin Syndrome may present a real emer- gency in the delivery room because of the obstructed upper airway, or the airway problem may not become manifest for several days or weeks (10, 11, 38). There is frequently a feeding problem, as well as problems associated with the cleft of the palate (if one is present) and also an unusual malocclusion (2, 5, 12, 16). In addition, it presents a fascinating anthropological puzzle (22, 23). This paper will review the work of Dr. Robin, consider some possible etiologies of this syndrome, and report on some work on mandibular bone growth in a group of such patients. History Pierre Robin was far from the first person to recognize this syndrome. One account is recorded in 1822 by St. Hilaire. In 1891 Taruffi men- tioned two subclassifications-hypomicrognatus (small jaw) and hypo- agnathus (absent jaw). In 1891, four cases, two of them having cleft palates, were reported by Lanneloague and Monard (12, 14). Shukow- sky in 1902 described a tongue to lip surgical adhesion to overcome the respiratory obstruction (34).
    [Show full text]
  • Podo Pediatrics Podo Pediatrics
    Podo Pediatrics Identifying Biomechanical Pathologies David Lee, D.P.M., D. A.B.P.S. Purpose • Identification of mechanical foot and ankle conditions • Base treatments • Knowing when to refer to a podiatrist Topics • Flatfoot (Pes Plano Valgus) • Equinus • Intoed feet (Cavo-adductor Varus) • Heel pain (Calcaneodynia) • Shin Splints • Various Pedal deformities 1 WHAT IS NORMAL? At birth to ~9 months • Ankle flexible to over 20 deg DF • No “C” shaped foot • No clicking or popping sounds • Babinski sign • Pull up 7-8mo. 9-16 months… • Begin walking • Feet are fat, flat and floppy • Knees are always center or externally rotated, never internal. • Stance is wide and less stable • Stomping gait pattern 2 16-18 months • Able to walk upstairs • Knee never internal • Still wide base and flat and floppy feet • Stomping still 3-7 years • Able toe walk downstairs • Heel-to-toe walk • Watch for – Intoeing – Tripping – Tight ankle joint (equinus) 7 years and up • Arch should be developed • Heel-to-toe walk • Heel is perpendicular to ground • Knees straight ahead 3 Neutral Internal Rotation Early detection is important • Prevent long term adaptation • Joint damage • Adult pathology – Heel pain, bunions, hammertoes, ankle instability, knee pain, shin splints, etc. • Ability to thrive physically and socially 4 THE FLAT FOOT Visual Complaints by the Parent • Tripping or falling • Poor balance- Clumsy • Feet look funny, walks funny • Shoes wearing out quickly Social Complaints by the Parent • Lazy, inactive, “doesn’t like going outside to play or play sports
    [Show full text]
  • Flexible Flatfoot
    REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot.
    [Show full text]
  • Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E
    СLINICAL STUDIES УДК 617.586-053.2:616.721.7-001.7 DOI: 10.21823/2311-2905-2019-25-2-71-80 Foot Function Disorders in Children with Severe Spondylolisthesis of L5 Vertebra I.E. Nikityuk, S.V. Vissarionov Turner Scientific Research Institute for Children’s Orthopedics, St. Petersburg, Russian Federation Abstract Background. In children with spondylolisthesis, there are still unexplained aspects in the relationship of the degree of L5 displacement with the severity of the clinical picture and neurological disorders. At the same time, aspects of the mutual aggravating influence of the indicated spinal disorder on the condition of the feet have not been studied. Therefore, the problem of identifying disorder of foot function in children with spinal L5 spondylolisthesis is relevant. Aim of the study — to evaluate the deviations in parameters of the transverse and longitudinal arches of feet in children with severe L5 spondylolisthesis. Materials and Methods. In the period from 2016 to 2018, 12 children aged 14.1 y.o. [12,7; 15,5] were examined with L5 spondylolisthesis body of grade III–IV, accompanied by stenosis of the spinal canal at the same level and by compression of the roots of the spinal cord. Imaging diagnostics included multispiral computed tomography (MSCT) and magnetic resonance imaging (MRI). To estimate the function of the feet, double-bearing and single-bearing plantography was used. The data for the control group included only plantographic examinations of 12 healthy children of the same age. Results. In patients with spondylolisthesis, the mean value of the anterior t and intermediate s plantographic bearing indices were significantly lower than those of healthy children.
    [Show full text]
  • Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management
    Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management a,b,c Monique C. Gourdine-Shaw, DPM, LCDR, MSC, USN , c, c Bradley M. Lamm, DPM *, John E. Herzenberg, MD, FRCSC , d,e Anil Bhave, PT KEYWORDS Equinus Pediatric External fixation Achilles tendon lengthening Gastrocnemius recession Tendo-Achillis lengthening Different body and limb segments grow at different rates, inducing varying muscle tensions during growth.1 In addition, boys and girls grow at different rates.1 The rate of growth for girls spikes at ages 5, 7, 10, and 13 years.1 The estrogen-induced pubertal growth spurt in girls is one of the earliest manifestations of puberty. Growth of the legs and feet accelerates first, so that many girls have longer legs in proportion to their torso during the first year of puberty. The overall rate of growth tends to reach a peak velocity (as much as 7.5 to 10 cm) midway between thelarche and menarche and declines by the time menarche occurs.1 In the 2 years after menarche, most girls grow approximately 5 cm before growth ceases at maximal adult height.1 The rate of growth for boys spikes at ages 6, 11, and 14 years.1 Compared with girls’ early growth spurt, growth accelerates more slowly in boys and lasts longer, resulting in taller adult stature among men than women (on average, approximately 10 cm).1 The difference is attributed to the much greater potency of estradiol compared with testosterone in Two authors (BML and JEH) host an international teaching conference supported by Smith & Nephew.
    [Show full text]
  • High Incidence of the R276X SALL1 Mutation in Sporadic but Not Familial
    1of4 J Med Genet: first published as 10.1136/jmg.40.11.e127 on 19 November 2003. Downloaded from J Med Genet: first published as 10.1136/jmg.40.11.e127 on 19 November 2003. Downloaded from ONLINE MUTATION REPORT High incidence of the R276X SALL1 mutation in sporadic but not familial Townes–Brocks syndrome and report of the first familial case J Kohlhase, M Liebers, J Backe, A Baumann-Mu¨ller, M Bembea, A Destre´e, M Gattas, S Gru¨ßner, TMu¨ller, G Mortier, C Skrypnyk, S Yano, J Wirbelauer, R C Michaelis ............................................................................................................................... J Med Genet 2003;40:127 (http://www.jmedgenet.com/cgi/content/full/40/11/127) ownes–Brocks syndrome (TBS, OMIM #104780) is a rare autosomal dominant malformation syndrome charac- KEY POINTS Tterised by anal, renal, limb, and ear anomalies.1 TBS is caused by mutations in SALL1, a human putative zinc finger N The mutation (c.826CRT; Arg276X) is the most transcription factor gene related to the developmental common SALL1 mutation in Townes–Brocks syndrome regulator sal of Drosophila melanogaster.2 The SALL1 gene (TBS), being previously detected in seven unrelated product is a zinc finger protein thought to act as a patients. We report eight additional cases and provide transcription factor. It contains four highly conserved C2H2 a genotype–phenotype correlation for this mutation. double zinc finger domains that are evenly distributed. A N Arg276X has been demonstrated as the cause of TBS single C2H2 motif is attached to the second domain, and at in 15 of 29 cases of sporadic TBS with detectable the amino terminus SALL1 contains a C2HC motif.3 The SALL1 mutations but has not been observed up to now protein is exclusively found in the nucleus and localises to pericentromeric heterochromatin, acting as a transcriptional in familial cases.
    [Show full text]
  • Differential Diagnosis of Complex Conditions in Paleopathology: a Mutational Spectrum Approach by Elizabeth Lukashal a Thesis
    Differential Diagnosis of Complex Conditions in Paleopathology: A Mutational Spectrum Approach by Elizabeth Lukashal A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Arts in Public Issues Anthropology Waterloo, Ontario, Canada, 2021 © Elizabeth Lukashal 2021 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The expression of mutations causing complex conditions varies considerably on a scale of mild to severe referred to as a mutational spectrum. Capturing a complete picture of this scale in the archaeological record through the study of human remains is limited due to a number of factors complicating the diagnosis of complex conditions. An array of potential etiologies for particular conditions, and crossover of various symptoms add an extra layer of complexity preventing paleopathologists from confidently attempting a differential diagnosis. This study attempts to address these challenges in a number of ways: 1) by providing an overview of congenital and developmental anomalies important in the identification of mild expressions related to mutations causing complex conditions; 2) by outlining diagnostic features of select anomalies used as screening tools for complex conditions in the medical field ; 3) by assessing how mild/carrier expressions of mutations and conditions with minimal skeletal impact are accounted for and used within paleopathology; and 4) by considering the potential of these mild expressions in illuminating additional diagnostic and environmental information regarding past populations.
    [Show full text]
  • The Ehlers-Danlos Syndromes, Rare Types
    American Journal of Medical Genetics Part C (Seminars in Medical Genetics) 175C:70–115 (2017) RESEARCH REVIEW The Ehlers–Danlos Syndromes, Rare Types ANGELA F. BRADY, SERWET DEMIRDAS, SYLVIE FOURNEL-GIGLEUX, NEETI GHALI, CECILIA GIUNTA, INES KAPFERER-SEEBACHER, TOMOKI KOSHO, ROBERTO MENDOZA-LONDONO, MICHAEL F. POPE, MARIANNE ROHRBACH, TIM VAN DAMME, ANTHONY VANDERSTEEN, CAROLINE VAN MOURIK, NICOL VOERMANS, JOHANNES ZSCHOCKE, AND FRANSISKA MALFAIT * Dr. Angela F. Brady, F.R.C.P., Ph.D., is a Consultant Clinical Geneticist at the North West Thames Regional Genetics Service, London and she has a specialist interest in Ehlers–Danlos Syndrome. She was involved in setting up the UK National EDS Diagnostic Service which was established in 2009 and she has been working in the London part of the service since 2015. Dr. Serwet Demirdas, M.D., Ph.D., is a clinical geneticist in training at the Erasmus Medical Center (Erasmus University in Rotterdam, the Netherlands), where she is involved in the clinical service and research into the TNX deficient type of EDS. Prof. Sylvie Fournel-Gigleux, Pharm.D., Ph.D., is a basic researcher in biochemistry/pharmacology, Research Director at INSERM (Institut National de la Sante et de la Recherche Medicale) and co-head of the MolCelTEG Research Team at UMR 7561 CNRS-Universite de Lorraine. Her group is dedicated to the pathobiology of connective tissue disorders, in particular the Ehlers–Danlos syndromes, and specializes on the molecular and structural basis of glycosaminoglycan synthesis enzyme defects. Dr. Neeti Ghali, M.R.C.P.C.H., M.D., is a Consultant Clinical Geneticist at the North West Thames Regional Genetics Service, London and she has a specialist interest in Ehlers–Danlos Syndrome.
    [Show full text]
  • Bones and Joints in Marfan Syndrome
    BONES AND JOINTS IN MARFAN SYNDROME Marfan syndrome often causes problems in the bones and joints—in fact, these are often the features that first lead a person to suspect Marfan syndrome and seek a diagnosis. These features (called skeletal features) happen when bones grow extra-long or ligaments (connective tissue that holds joints together) become stretchy—like loose rubber bands. Only about one-third of people with Marfan syndrome have skeletal features so severe that they require treatment. There are several skeletal features associated with Marfan syndrome. Many people with Marfan syndrome have more than one skeletal feature, but very few people have them all. While it is important for the skeletal features to be evaluated by an orthopedist (bone and joint doctor), only about one-third of people with Marfan syndrome have skeletal features so severe that they require treatment. What are the common types of bone and joint problems in people with Marfan syndrome? Here are some facts about common types of bone and joint problems in people with Marfan syndrome: General Body Type A person with Marfan syndrome will usually—but not always—be tall, slender, and somewhat loose-jointed or limber. The arms, legs, fingers, and toes may be disproportionately long when compared with the trunk. In some cases, they may not appear tall compared to the general public, but instead be tall for their family. (See Figure 1) MARFAN.ORG | 800-8-MARFAN EXT. 126 | [email protected] BONES AND JOINTS IN MARFAN SYNDROME page 2 The face may appear long and narrow, in keeping with the general body shape.
    [Show full text]
  • Adolescent Spondylolysis and Spondylolisthesis
    Adolescent Spondylolysis and Spondylolisthesis Steven J. Gould, D.C., D.A.C.B.R. Central Plains Radiologic Services Cheney, KS. 1 2 3 4 K. Bee. Competative Tennis/Running 5 6 1 Purpose Purpose Review a common but commonly Up date of information on this condition; unidentified/ overlooked cause of back ◼ Classification (including a new classification scheme) M.Herman and P. Pizzutillo; Clinical Ortho. And Related Research. No. 434; pp. pain in adolescent athletes 46-54. Treating chiropractors must be able to ◼ Incidence/ Etiology recognize the presence of this disorder, as ◼ Diagnosis (clinical and imaging) spinal manipulative therapy may be contra- ◼ Treatment options indicated. 7 8 Classification (Wiltse) Clinical Orthopedics and Related Research No. 117, June 1976 9 10 Classification Spondylolisthesis (Wiltse) Type III: Degenerative; long standing Spondylolisthesis Classification (Wiltse 1976) intersegmental instability Type I: Dysplastic; Genetic variety of dysplasia of the neural arch Type IV: Traumatic; acute traumatic fracture of the neural arch, other than the pars Type II: Isthmic; Type V: Pathologic; generalized or local bone ◼ IIA; lytic (spondylolysis) fatigue (stress) fx of pars, disease ◼ IIB; elongation of pars without separation ◼ IIC; acute pars fx; significant trauma 11 12 2 Classification Classification Marchetti-Bartolozzi System Marchetti-Bartolozzi System cont’d… ◼ Developmental ◼ Acquired High grade dysplastic Traumatic ◼ With lysis ◼ Acute Fx ◼ With elongation ◼ Stress Fx Low grade dysplastic Post-surgery
    [Show full text]
  • Intoe, Bowlegs, Flat Feet and Other Things Not to Worry About
    ORTHOPEDICS Intoe, Bowlegs, Flat Feet and Other Things Not to Worry About INTOEING This is typically due to the curled up position of the baby prior to birth. Over time, the intoeing will typically correct but this process is very slow and gradual. If feet are significantly turned in after 10 years of age, they are unlikely to correct. The turned in appearance of the feet does not typically cause a limitation in the activities or athletic abilities of a child but, if severe, poses more of a cosmetic concern. Typical causes of intoeing: Metatarsus adductus – Newborns or young infants with feet shaped like a kidney bean. This is a result of in-utero position and spontaneously corrects. Stretching the foot on a daily basis (typically with diaper changes) may speed up the process of correction. Internal tibial torsion – This is an inward twist of the tibia (shin bone). It is typically the result of the position of the baby prior to birth and will correct with normal growth. Femoral anteversion – This is an inward twist of the femur (thigh bone). Children with this type of twist are able to W-sit. Again, this will typically correct with growth. OUTTOEING The typical causes of outtoeing: Femoral retroversion – A developmental variant that results in the twisting out of the femur. External tibial torsion – A developmental variant causing an outward twist of the tibia. NORMAL DEVELOPMENT Flat feet – Describes the appearance of a foot that does not have an arch. This is a normal variant that typically does not cause foot pain.
    [Show full text]
  • Hammertoes Shaped Like a “Hammer”
    Hammertoe is the name given to a toe, which “curls” and Hammertoes shaped like a “hammer”. It can develop in the second, third or fourth toes, however is most common in the second toe. Hammertoes are classified as flexible or rigid. The flexible hammertoe joint allows movement and the rigid hammertoe has limited movement and can become very painful. The longer you have a hammer toe the more rigid and “curly” the deformity can become. Symptoms Corns and calluses often form on the hammertoe because the deformed toe constantly is rubbing against the shoe. Other signs include calluses under the balls of the feet, cramping and weakness. Sometimes a painful area can develop between toes or on the other side of the toe. Hammertoe treatment is dependent on the severity of the deformity. Sometimes hammertoes can be prevented from developing further by a shoe insert called an orthotic. Reducing pain and pressure may involve footwear that has plenty of room in the toe area and using hammertoe pads. Because tendons have tightened in the development of the hammertoe, stretching exercises can be helpful. If the deformity is severe surgery may be considered. Aging Causes Flat feet Nerve damage resulting from diabetes, stroke or arthritis Poor fitting shoes and high heels You can avoid many foot problems with shoes that fit What can I do? properly. Here’s what to look for when buying shoes Adequate toe space – avoid shoes with pointed toes Low heels- provide better balance and avoids back problems Adjustability – laced or Velcro shoes can be expanded as your feet swell throughout the day Breathability – avoid vinyl or plastic shoes, these do not breathe when your feet perspire Buy shoes at midday- your feet expand during the day Measure both feet while standing – your shoe size will change as you age – especially the width Clients with diabetes or poor circulations are encouraged to seek professional help.
    [Show full text]