Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra

Total Page:16

File Type:pdf, Size:1020Kb

Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra Chem. Mater. 1990,2,557-563 557 Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra Yan Wang, Daniel C. Alsmeyer, and Richard L. McCreery" Department of Chemistry, The Ohio State University, 120 W. 18th Ave., Columbus, Ohio 43210 Received April 17, 1990 The first- and second-order Raman spectral features of graphite and related sp2carbon materials were examined with laser wavelengths ranging from 293 to 1064 nm. A wide range of carbon materials was considered, including highly ordered pyrolytic graphite (HOPG), powdered and randomly oriented graphite, and glassy carbon prepared at different heat-treatment temperatures. Of particular interest is boron-doped highly ordered pyrolytic graphite (BHOPG), in which boron substitution decreases local lattice symmetry but does not disrupt the ordered structure. New second-order bands at 2950,3654, and -4300 cm-' are reported and assigned to overtones and combinations. The D band at 1360 cm-l, which has previously been assigned to disordered carbon, was observed in ordered boronated HOPG, and its overtone is strong in HOPG. The observed Raman shift of the D band varies with laser wavelength, but these shifts are essentially independent of the type of carbon involved. It is concluded that the D band results from symmetry breaking occurring at the edges of graphite planes in sp2carbon materials or at boron atoms in BHOPG. The observations are consistent with the phonon density of states predicted for graphitic materials, and the fundamental and higher order Raman features are assignable to theoretically predicted lattice vibrations of graphite materials. The laser wavelength dependence of the D band frequency appears to result from scattering from different populations of phonons, perhaps through a resonance enhancement mechanism. However, the results are inconsistent with resonance enhancement of graphite microcrystallites of varying size. Introduction Table I. Reported Vibrational Modes for Graphitic Carbon The lattice dynamics and vibrational spectroscopy of sp2 Materials carbon materials have been the subject of numerous in- carbon type Av, cm-' re1 int" assgnt ref vestigations, and representative references are included natural single 1575 vs E, 1 Raman spectroscopy has been an important tool crystal in such investigations, because the Raman spectrum is HOPG 1581 vs Ezr 5 particularly sensitive to the microstructure of the carbon. HOPG 1582 vs E% 3 The a- and c-axis coherence lengths, and L,, and the HOPG 1582 vs E, 15 La HOPG 127 2, 41 dW2interplanar spacing all affect the Raman spectrum of W B, HOPG 42 W Ezr 2 graphitic materials, thus providing useful diagnostics for HOPG 868 IR only AZu 14 carbon structure and pr~perties.'~~~~~~J~Despite the sig- HOPG 1588 IR only E,, 14 nificant research effort invested by many laboratories on HOPG -1620 S E', 42 understanding the Raman spectroscopy of graphitic ma- HOPG 3248 vw 2 X 1624 cm-' 5 terials, the assignments and behavior of several Raman HOPG 2710 S 2 X 1355 cm-' 5 HOPG - 2450 W 2 X 1225 cm-'? 5 spectral features remain unclear. Our own laboratory has HOPG, ion 2970 vw E'Zg + D 24 correlated the Raman spectroscopy of sp2carbon materials implanted with their electrochemical behavior'6,21v22and the same glassy carbon 1582-1600b vs E2r 9, 17 questions arise about the structural basis of Raman fea- GC-20 1605 vs Ezr 16 tures. The current work was initiated to provide new GC 1355c vs Ah 1 information about the physical basis of the observed Ra- GC 136OC 16 GC 1355c vs 9 5 man spectra, with particular emphasis on relationships of GC, PG, HOPG 2640-2732c s 2 X 1360 7 Raman spectra with carbon microstructure. GC, PG 132O-136Oc s D 7 Single crystal graphite belongs to the D& symmetry Ovs = very strong, s = strong, w = weak, vw = very weak. group, and vibrational modes are of the types 2Ezg,2Bzg, *Depends on heat-treatment temperature. Depends on &,. Elu,and A2u,193fiJ219shown in Figure 1. The two E, modes are Raman active and have been identified with the Raman calculations of the phonon density of states, Al-Jishi and band at 1582 cm-' and a low-frequency neutron scattering Dresselha~s~~~~~have attributed the second-order bands feature at 47 cm-l, while the E,, (1588 cm-') and AzU(868 cm-') are IR active and observable with IR refle~tance.'~ The Bag modes are optically inactive, but one has been (1) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. observed by neutron scattering at 127 cm-'. Highly or- (2) Nicklow, R.; Wakabayashi, N.; Smith, H. G. Phys. Reu. B 1972,5 4951. dered pyrolytic graphite (HOPG)exhibits only the 1582- (3) Nemanich, R. J.; Lucovsky, G.; Solin, S. A. Mater. Sci. Eng. 1977, cm-' band in the fundamental region between 1100 and 31, 157. 1700 cm-',' but also shows second order features between (4) Mani, K. K.; Ramani, R. Phys. Status Solidi 1974, 61, 659. (5) Nemanich, R. J.; Solin, S. A. Phys. Rev. B 1979, 20, 392. 2400 and 3300 cm-1.5*9923 Nemanich and Solin have at- (6) Nakamizo, M.; Kammereck, R.; Walker, P. L. Carbon 1974,12,259. tributed the strong feature at ca. 2720 cm-' and weaker (7) Vidano, R. P.; Fischbach, D. B.; Willis, L. J.; Loehr, T. M. Solid peaks at N 2450 and 3248 cm-' to overtones of fundamental State Commun. 1981,39,341. (8) Nakamizo, M.; Tamai, K. Carbon 1984,22, 197. modes and accounted for their presence using phonon (9) Vidano, R.; Fischbach, D. B. J. Am. Ceram. SOC.1978, 61, 13. dispersion relationship^.^ On the basis of theoretical (10) Tau, R.; Gonzales, J.; Hernandez, I. Solid State Commun. 1978, 27, 507. (11) Dresselhaus, M. S.; Dresselhaus, G. Adu. Phys. 1981, 30, 139. *Author to whom correspondence should be addressed. (12) Reference 11, pp 290-298. 0897-4756/90/2802-0557$02.50/0 0 1990 American Chemical Society 558 Chem. Mater., Vol. 2, No. 5, 1990 Wang et al. Table I1 &, nm lase? spectrometer* detector ref 292.8 QCWc ISA 640 CCDd 40 350.7 Krt Spex 1403 PMT (RCA 31034) 36, 37 406.7 Kr+ Spex 1403 PMT 36, 37 457.9-514.5 Art Spex 1403 PMT 36, 37 568.2 Kr+ Spex 1403 PMT 36, 37 647.1 Kr+ Spex 1403 PMT 36, 37 infra-Red 782 Diode ISA 640 CCD 38, 39 Active 1064 YAG' interferome- germaniume 34 tere "Krt was a Coherent Model 100, Art was a Coherent 90-5;the diode laser was Liconix "Diolite" AlGaAs. * Spex 1403 is an addi- tive dispersion double monochromator; ISA 640 is a 640 mm single spectrograph. 'Quasi-CW YAG pumped dye laser; see ref 32. Optically dCharge couple device array detector. "Located at DuPont, Wil- inactive mington, DE; see refs 26 and 27. 127 cm" -870 cm" or even C,.19251n New vibrational modes of the lattice may then become active, such as an Al mode proposed by Tuinstca and Koenig.' A related mecianism is breakdown of the k = 0 selection rule for optical phonons near crys- Figure 1. Vibrational modes for single-crystal graphite. Drawings tallite edges.'~2~5~23~24Such breakdown permits phonons were adapted from ref 3; vibrational assignments are from refs other than 1582 and 47 cm-' to become active, and the 3,5,and 20. The B,(" frequency is predicted but not yet observed spectra reflect the density of phonon states in the lattice. experimentally. A very different explanation for the 1360-cm-' mode is the existence of specific vibrations at the edges, e.g., oxides or at -2450, 2730, and 3248 cm-' to overtones of Raman- C=C groups which are present only at the edge.25 Unlike forbidden fundamentals, with good agreement between the proposed A', mode, these edge vibrations are not di- predicted and observed second order peaks. They have rectly related to the hexagonal graphite lattice but are also theoretically predicted the dependence of fundamental analogous to functional groups. All reports concur that intensities on La for partially graphitized carbon, on the the 1360-cm-' mode is related to structural disorder (and basis of breakdown of the wave vector selection rule.'* The it will be referred to as the D band hereafter), but there HOPG spectrum will be discussed in more detail below, is not a clear consensus on its origin. but one can conclude from the available literature that the A further complication of the D band is its unusual assignments for known Raman features in pristine HOPG dependence on laser wavelength X@7J9925 Vidano et al. are uncontroversial. Representative frequencies and as- reported that the position (AP) of the D band shifted from signments for carbon vibrational features from the liter- 1360 to 1330 cm-' when A,, was increased from 488 to 647 ature are listed in Table I. nm,7 and several possible explanations for this effect have The spectrum changes significantly for finite-sized mi- been proposed. Variations in X, will change the Raman crocrystallites (La < lo00 A), and the origin of the changes sampling depth, possibly leading to variation in the is not clear.'-5.6J7~23*25~26The most obvious effect is the spectrum if the carbon structure varies with depth.25 appearance of a band at ca. 1360 cm-' with the 1360 Alternatively, the D band may be resonance enhanced, so cm-l/ 1582 cm-' intensity ratio (I13eo) increasing with de- that different subpopulations of crystallites (with different creasing microcrystallite size.' The empirical linear rela- Aij) may be sampled at different hP7 Polyacetylene ex- tionship between l/La and I1360 is a useful means to de- hibits such behavior,28s29and perhaps graphite is acting like termine the average La for a given carbon sample.
Recommended publications
  • The Gyrotrons As Promising Radiation Sources for Thz Sensing and Imaging
    applied sciences Review The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging Toshitaka Idehara 1,2, Svilen Petrov Sabchevski 1,3,* , Mikhail Glyavin 4 and Seitaro Mitsudo 1 1 Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; idehara@fir.u-fukui.ac.jp or [email protected] (T.I.); mitsudo@fir.u-fukui.ac.jp (S.M.) 2 Gyro Tech Co., Ltd., Fukui 910-8507, Japan 3 Institute of Electronics of the Bulgarian Academy of Science, 1784 Sofia, Bulgaria 4 Institute of Applied Physics, Russian Academy of Sciences, 603950 N. Novgorod, Russia; [email protected] * Correspondence: [email protected] Received: 14 January 2020; Accepted: 28 January 2020; Published: 3 February 2020 Abstract: The gyrotrons are powerful sources of coherent radiation that can operate in both pulsed and CW (continuous wave) regimes. Their recent advancement toward higher frequencies reached the terahertz (THz) region and opened the road to many new applications in the broad fields of high-power terahertz science and technologies. Among them are advanced spectroscopic techniques, most notably NMR-DNP (nuclear magnetic resonance with signal enhancement through dynamic nuclear polarization, ESR (electron spin resonance) spectroscopy, precise spectroscopy for measuring the HFS (hyperfine splitting) of positronium, etc. Other prominent applications include materials processing (e.g., thermal treatment as well as the sintering of advanced ceramics), remote detection of concealed radioactive materials, radars, and biological and medical research, just to name a few. Among prospective and emerging applications that utilize the gyrotrons as radiation sources are imaging and sensing for inspection and control in various technological processes (for example, food production, security, etc).
    [Show full text]
  • Study of CVD Diamond Layers with Amorphous Carbon Admixture by Raman Scattering Spectroscopy
    Materials Science-Poland, 33(4), 2015, pp. 799-805 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2015-0067 Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy ANNA DYCHALSKA1,PIOTR POPIELARSKI2,WOJCIECH FRANKOW´ 2,KAZIMIERZ FABISIAK2,3, KAZIMIERZ PAPROCKI2,MIROSŁAW SZYBOWICZ1∗ 1Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan,´ Poland 2Institute of Physics, Kazimierz Wielki University, Powstanc´ ow´ Wielkopolskich 2, 85-090 Bydgoszcz, Poland 3Medical Physics Department, Oncology Center, I. Romanowskiej 2, 85-796 Bydgoszcz, Poland Raman spectroscopy is a most often used standard technique for characterization of different carbon materials. In this work we present the Raman spectra of polycrystalline diamond layers of different quality, synthesized by Hot Filament Chemical Vapor Deposition method (HF CVD). We show how to use Raman spectroscopy for the analysis of the Raman bands to deter- mine the structure of diamond films as well as the structure of amorphous carbon admixture. Raman spectroscopy has become an important technique for the analysis of CVD diamond films. The first-order diamond Raman peak at ca. 1332 cm−1 is an unambiguous evidence for the presence of diamond phase in the deposited layer. However, the existence of non-diamond car- bon components in a CVD diamond layer produces several overlapping peaks in the same wavenumber region as the first order diamond peak. The intensities, wavenumber, full width at half maximum (FWHM) of these bands are dependent on quality of diamond layer which is dependent on the deposition conditions. The aim of the present work is to relate the features of diamond Raman spectra to the features of Raman spectra of non-diamond phase admixture and occurrence of other carbon structures in the obtained diamond thin films.
    [Show full text]
  • Electronic Crosstalk in Aqua MODIS Long-Wave Infrared Photovoltaic Bands
    remote sensing Letter Electronic Crosstalk in Aqua MODIS Long-Wave Infrared Photovoltaic Bands Junqiang Sun 1,2,* and Menghua Wang 1 1 NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, E/RA3, 5830 University Research Ct., College Park, MD 20740, USA; [email protected] 2 Global Science and Technology, 7855 Walker Drive, Suite 200, Greenbelt, MD 20770, USA * Correspondence: [email protected]; Tel.: +1-301-683-3338; Fax: +1-301-863-3301 Academic Editors: Gonzalo Pajares Martinsanz, Clement Atzberger, Richard Müller and Prasad S. Thenkabail Received: 13 July 2016; Accepted: 22 September 2016; Published: 28 September 2016 Abstract: Recent investigations have discovered that Terra MODerate-resolution Imaging Spectroradiometer (MODIS) long-wave infrared (LWIR) photovoltaic (PV) bands, bands 27–30, have strong crosstalk among themselves. The linear model developed to test the electronic crosstalk effect was instrumental in the first discovery of the effect in Terra MODIS band 27, and through subsequent investigations the model and the correction algorithm were tested further and established to be correct. It was shown that the correction algorithm successfully mitigated the anomalous features in the calibration coefficients as well as the severe striping and the long-term drift in the Earth view (EV) retrievals for the affected Terra bands. Here, the examination into Aqua MODIS using the established methodology confirms the existence of significant crosstalk contamination in its four LWIR PV, although the finding shows the overall effect to be of lesser degree. The crosstalk effect is characterized and the crosstalk correction coefficients are derived for all four Aqua LWIR PV bands via analysis of signal contamination in the lunar imagery.
    [Show full text]
  • Silicon Taper Based D-Band Chip to Waveguide Interconnect For
    1 Silicon Taper Based D-band Chip to Waveguide Interconnect for Millimeter-wave Systems Ahmed Hassona, Vessen Vassilev, Zhongxia Simon He, Chiara Mariotti, Franz Dielacher and Herbert Zirath wastes silicon area that can be utilized. Another approach is to Abstract— This paper presents a novel interconnect for use a separate transition [4] [5]. Using a separate transition is coupling Millimeter-wave (mmW) signals from integrated crucial from performance perspective, as coupling the RF circuits to air-filled waveguides. The proposed solution is realized through a slot antenna implemented in embedded Wafer Level signal directly to the MMIC from the waveguide causes Ball Grid Array (eWLB) process. The antenna radiates into a waveguide modes to leak into the circuit cavity and hence high-resistivity (HR) silicon taper perpendicular to its plane, affect performance. The drawback of this solution is that it which in turn radiates into an air-filled waveguide. The requires bondwire connections between the waveguide- interconnect achieves a measured average insertion loss of 3.4 dB transition and the MMIC. Using bondwires at frequencies over the frequency range 116-151 GHz. The proposed interconnect is generic and does not require any galvanic beyond 100 GHz requires special compensation techniques [6] contacts. The utilized eWLB packaging process is suitable for because of the high inductive behavior of bondwires at these low-cost high-volume production and allows heterogeneous frequencies. integration with other technologies. This work proposes a This work addresses mmW system integration challenges by straightforward cost-effective high-performance interconnect for utilizing eWLB packaging technology. eWLB packaging mmW integration and thus addressing one of the main challenges facing systems operating beyond 100 GHz.
    [Show full text]
  • Wireless Backhaul Evolution Delivering Next-Generation Connectivity
    Wireless Backhaul Evolution Delivering next-generation connectivity February 2021 Copyright © 2021 GSMA The GSMA represents the interests of mobile operators ABI Research provides strategic guidance to visionaries, worldwide, uniting more than 750 operators and nearly delivering actionable intelligence on the transformative 400 companies in the broader mobile ecosystem, including technologies that are dramatically reshaping industries, handset and device makers, software companies, equipment economies, and workforces across the world. ABI Research’s providers and internet companies, as well as organisations global team of analysts publish groundbreaking studies often in adjacent industry sectors. The GSMA also produces the years ahead of other technology advisory firms, empowering our industry-leading MWC events held annually in Barcelona, Los clients to stay ahead of their markets and their competitors. Angeles and Shanghai, as well as the Mobile 360 Series of For more information about ABI Research’s services, regional conferences. contact us at +1.516.624.2500 in the Americas, For more information, please visit the GSMA corporate +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or website at www.gsma.com. visit www.abiresearch.com. Follow the GSMA on Twitter: @GSMA. Published February 2021 WIRELESS BACKHAUL EVOLUTION TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ................................................................................................................................................................................5
    [Show full text]
  • The Origin of Sub-Bands in the Raman D-Band of Graphene
    CARBON 50 (2012) 4252– 4258 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/carbon The origin of sub-bands in the Raman D-band of graphene Zhiqiang Luo a, Chunxiao Cong a, Jun Zhang a, Qihua Xiong a, Ting Yu a,b,c,* a Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore b Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore c Graphene Research Centre, National University of Singapore, Singapore 117542, Singapore ARTICLE INFO ABSTRACT Article history: In Raman spectroscopy investigations of defective suspended graphene, splitting in the D Received 27 March 2012 band is observed. Four double resonance Raman scattering processes: the outer and inner Accepted 6 May 2012 scattering processes, as well as the scattering processes with electrons first scattered by Available online 14 May 2012 phonons (‘‘phonon-first’’) or by defects (‘‘defect-first’’), are found to be responsible for these features of the D band. The D sub-bands associated with the outer and inner processes merge with increasing defect concentration. However a Stokes/anti-Stokes Raman study indicates that the splitting of the D band due to the separate ‘‘phonon-first’’ and ‘‘defect- first’’ processes is valid for suspended graphene. For graphene samples on a SiO2/Si sub- strate, the sub-bands of D band merge due to the increased Raman broadening parameter resulting from the substrate doping. Moreover, the merging of the sub-bands shows excita- tion energy dependence, which can be understood by considering the energy dependent lifetime and/or scattering rate of photo-excited carriers in the Raman scattering process.
    [Show full text]
  • Magnetism As Seen with X Rays Elke Arenholz
    Magnetism as seen with X Rays Elke Arenholz Lawrence Berkeley National Laboratory and Department of Material Science and Engineering, UC Berkeley 1 What to expect: + Magnetic Materials Today + Magnetic Materials Characterization Wish List + Soft X-ray Absorption Spectroscopy – Basic concept and examples + X-ray magnetic circular dichroism (XMCD) - Basic concepts - Applications and examples - Dynamics: X-Ray Ferromagnetic Resonance (XFMR) + X-Ray Linear Dichroism and X-ray Magnetic Linear Dichroism (XLD and XMLD) + Magnetic Imaging using soft X-rays + Ultrafast dynamics 2 Magnetic Materials Today Magnetic materials for energy applications Magnetic nanoparticles for biomedical and environmental applications Magnetic thin films for information storage and processing 3 Permanent and Hard Magnetic Materials Controlling grain and domain structure on the micro- and nanoscale Engineering magnetic anisotropy on the atomic scale 4 Magnetic Nanoparticles Optimizing magnetic nanoparticles for biomedical Tailoring magnetic applications nanoparticles for environmental applications 5 Magnetic Thin Films Magnetic domain structure on the nanometer scale Magnetic coupling at interfaces Unique Ultrafast magnetic magnetization phases at reversal interfaces dynamics GMR Read Head Sensor 6 Magnetic Materials Characterization Wish List + Sensitivity to ferromagnetic and antiferromagnetic order + Element specificity = distinguishing Fe, Co, Ni, … + Sensitivity to oxidation state = distinguishing Fe2+, Fe3+, … + Sensitivity to site symmetry, e.g. tetrahedral,
    [Show full text]
  • Terahertz Band: the Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M
    1 Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems Hadeel Elayan, Osama Amin, Basem Shihada, Raed M. Shubair, and Mohamed-Slim Alouini Abstract—Ultra-high bandwidth, negligible latency and seamless communication for devices and applications are envisioned as major milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic that we are witnessing recently has advocated the investigation of suitable regimes in the radio spectrum to satisfy users’ escalating requirements and allow the development and exploitation of both massive capacity and massive connectivity of heterogeneous infrastructures. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. Particularly, with the evolution of technologies and devices, advancements in THz communication is bridging the gap between the millimeter wave (mmW) and optical frequency ranges. Moreover, the IEEE 802.15 suite of standards has been issued to shape regulatory frameworks that will enable innovation and provide a complete solution that crosses between wired and wireless boundaries at 100 Gbps. Nonetheless, despite the expediting progress witnessed in THz Fig. 1. Wireless Roadmap Outlook up to the year 2035. wireless research, the THz band is still considered one of the least probed frequency bands. As such, in this work, we present an up-to-date review paper to analyze the fundamental elements I. INTRODUCTION and mechanisms associated with the THz system architecture. THz generation methods are first addressed by highlighting The race towards improving human life via developing the recent progress in the electronics, photonics as well as different technologies is witnessing a rapid pace in diverse plasmonics technology.
    [Show full text]
  • Infrared Spectroscopy of Carbohydrates
    iihrary, E-01 Admin. BIdg. JUN 2 1 t968 NBS MONOGRAPH 110 Infrared Spectroscopy Of Carbohydrates A Review of the Literature U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics^-—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]
  • Raman Spectroscopy of Graphene and the Determination of Layer Thickness
    Application Note: 52252 The Raman Spectroscopy of Graphene and the Determination of Layer Thickness Mark Wall, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Currently, a tremendous amount of activity is being directed Key Words towards the study of graphene. This interest is driven by the novel properties that graphene possesses and its potential • DXR Raman for use in a variety of application areas that include but Microscope are not limited to: electronics, heat transfer, bio-sensing, • 2D Band membrane technology, battery technology and advanced composites. Graphene exists as a transparent two dimen- • D Band sional network of carbon atoms. It can exist as a single • G Band atomic layer thick material or it can be readily stacked to form stable moderately thick samples containing millions • Graphene of layers, a form generally referred to as graphite. The • Layer Thickness interesting properties exhibited by graphene (exceptionally large electrical and thermal conductivity, high mechanical strength, high optical transparency, etc…), however, are only observed for graphene films that contain only one or a few layers. Therefore, developing technologies and devices based upon graphene’s unusual properties requires within the carbon lattice are present). These differences, accurate determination of the layer thickness for materials although they appear subtle, supply very important infor- under investigation. Raman spectroscopy can be employed mation when scrutinized closely. There are differences in to provide a fast, non destructive means of determining the band positions and the band shapes of the G band layer thickness for graphene thin films. 2D bands and the relative intensity of these bands are also significantly different.
    [Show full text]
  • ETSI GR Mwt 008 V1.1.1 (2018-08)
    ETSI GR mWT 008 V1.1.1 (2018-08) GROUP REPORT millimetre Wave Transmission (mWT); Analysis of Spectrum, License Schemes and Network Scenarios in the D-band Disclaimer The present document has been produced and approved by the millimetre Wave Transmission (mWT) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GR mWT 008 V1.1.1 (2018-08) Reference DGR/mWT-0008 Keywords D-band, license schemes, millimetre wave, mWT, network scenarios, spectrum ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Mm-Wave Sige Soc: E & D Band TRX Front-End for P2P Radio Links
    WS-01 Recent advances in SiGe BiCMOS: technologies, modelling & circuits for 5G, radar & imaging http://tima.univ-grenoble-alpes.fr/taranto/ Mm-wave SiGe SoC: E & D band TRX front-end for P2P radio links Alessandro Fonte#1, Fabio Plutino#1, Traversa Antonio#1, Pasquale Tommasino#2, Alessandro Trifiletti#2, Saleh Karman#3, Salvatore Levantino#3, Luca Larcher#4, Luca Aluigi#4, Carmine Mustacchio#5, Luigi Boccia#5, Andrea Mazzanti#6, Francesco Svelto#6, Andrea Pallotta#7 #1SIAE MICROELETTRONICA, Italy; #2Università di Roma "La Sapienza", Italy; #3Politecnico di Milano, Italy; #4Università di Modena e Reggio Emilia Italy; #5Universitá della Calabria Italy; #6Università di Pavia, Italy, #7ST-microelectronics, Italy [email protected] Outline • Intro • Application scenario • Project definition and involved partners • Specifications • E-band TX and RX testchips and D-band ext. module • Test board and E-band transitions • E- and D-band building blocks • Conclusions WS-01 - Recent advances in SiGe BiCMOS: technologies, modelling and circuits for 5G, radar and imaging - 2 - Intro (1/2) • The advent of 4G, and 5G in the future, brings with it a huge amount of traffic data which can saturate existing networks. • Radio spectrum up to 42 GHz has become congested due to the high demand and bands wider than 28/56 MHz are often not available • Up to 42 GHz the maximum channel bandwidth is 112 MHz and, with a very complex modulation (i.e. 4096-QAM), the maximum throughput is about 1Gbps. WS-01 - Recent advances in SiGe BiCMOS: technologies, modelling
    [Show full text]