<<

Magnetism as seen with X Rays

Elke Arenholz Lawrence Berkeley National Laboratory and Department of Material Science and Engineering, UC Berkeley

1 What to expect:

+ Magnetic Materials Today + Magnetic Materials Characterization Wish List + Soft X-ray Absorption – Basic concept and examples + X-ray magnetic (XMCD) - Basic concepts - Applications and examples - Dynamics: X-Ray Ferromagnetic Resonance (XFMR) + X-Ray Linear Dichroism and X-ray Magnetic Linear Dichroism (XLD and XMLD) + Magnetic Imaging using soft X-rays + Ultrafast dynamics

2 Magnetic Materials Today

Magnetic materials for energy applications

Magnetic nanoparticles for biomedical and environmental applications

Magnetic thin films for information storage and processing

3 Permanent and Hard Magnetic Materials

Controlling grain and domain structure on the micro- and nanoscale

Engineering magnetic anisotropy on the atomic scale

4 Magnetic Nanoparticles

Optimizing magnetic nanoparticles for biomedical Tailoring magnetic applications nanoparticles for environmental applications

5 Magnetic Thin Films

Magnetic domain structure on the nanometer scale

Magnetic coupling at interfaces

Unique Ultrafast magnetic phases at reversal interfaces dynamics GMR Read Head Sensor

6 Magnetic Materials Characterization Wish List

+ Sensitivity to ferromagnetic and antiferromagnetic order + Element specificity = distinguishing Fe, Co, Ni, … + Sensitivity to oxidation state = distinguishing Fe2+, Fe3+, …

+ Sensitivity to site symmetry, e.g. tetrahedral, Td; octahedral, Oh + Nanometer spatial resolution + Ultra-fast time resolution

Soft X-Ray Spectroscopy and Microscopy

7 Spectroscopy

Light/Photon Source

Monochromator Sample

sample intensity

, photon energy intensity

wavelength, photon energy

8 Soft X-Ray Spectroscopy ( h  500-1000eV,   1-2nm)

0 / I t 1.0

0.9

0.8

Electron Storage Ring Monochromator 0.7

Sample 0.6 EY_TM.opj

transmitted intensity I intensity transmitted 770 780 790 800 photon energy (eV)

9 X-Ray Absorption  Detection Modes

0 / I t 1.0

0.9 Photons

0.8 absorbed 0.7

0.6 EY_TM.opj

transmitted intensity I intensity transmitted 770 780 790 800 photon energy (eV) mean 6

free 0 / I path e 5nm 4

generated

2 yield I yield electron

0 EY_TM.opj 770 780 790 800 photon energy (eV) J. Stöhr, H.C. Siegmann, Magnetism (Springer) Electron yield: + Absorbed photons create core holes subsequently filled by Auger electron emission + Auger electrons create low-energy secondary electron cascade through inelastic scattering + Emitted electrons  probability of Auger electron creation  absorption probability

10 Soft X-Ray Absorption – Probing Depth

Element 10eV below L3 at L3 40 eV above L3 1/ [nm] 1/ [nm] 1/ [nm] Fe 550 17 85 Co 550 17 85 Ni 625 24 85

// // // 3nm Mn Fe Co Ni Ru 1.0 NiFe 15nm

0 3nm

/ I

t Ru

I

0.8 CoFe 15nm

MnIr 15nm // // // luminescence_BL402_Apr2012.opj 640 660 700 720 780 800 860 880 5nm photon energy (eV) Ru

10-20 nm layer thick films supported by substrates transparent to soft X rays

11 X-Ray Absorption  Detection Modes and Probing Depth

 Mn Fe Co Ni e

1.0 1.0 1.0 1.0

0 Ru 3nm

/ I

t

I

0.8 0.8 0.8 0.8 NiFe 15nm Ru 3nm 1.1 1.0 CoFe 15nm 1.0 1.4 MnIr 15nm

1.0 1.2 0.9 Ru 5nm 1.0 0.9

luminescence_BL402_Apr2012.opj

electron yield (arb. units) 640 650 660 710 720 780 790 850 860 870 photon energy (eV) photon energy (eV) photon energy (eV) photon energy (eV)

+ Electron sample depth: 2-5 nm in Fe, Co, Ni  60% of the electron yield originates form the topmost 2-5 nm

12 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+ Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray , experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

13 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+ Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray polarization, experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

14 ‘White Line’ Intensity

Fe valence states

2p L 3/2 3 core level 2p1/2 L2

Intensity of L3,2 resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the .

15 ‘White Line’ Intensity

Fe valence states

2p L 3/2 3 core level 2p1/2 L2

Intensity of L3,2 resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.

16 ‘White Line’ Intensity

Co valence states

2p3/2 L3 core level 2p1/2 L2

Intensity of L3,2 resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.

17 ‘White Line’ Intensity

Ni valence states

core level 2p3/2 L3 2p1/2 L2

Intensity of L3,2 resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.

18 ‘White Line’ Intensity

Cu valence states

core level 2p3/2 L3 2p1/2 L2

Intensity of L3,2 resonances is proportional to number of d states above the Fermi level, i.e. number of holes in the d band.

19 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+, … Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray polarization, experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

20 X-ray Absorption – Valence State

Influence of the charge state of the absorber

N. Telling et al., Appl. Phys. Lett. 95, 163701 (2009)

J.-S. Kang et al., Phys. Rev. B 77, 035121 (2008)

21 X-Ray Absorption – Configuration Model

Ni2+ in NiO: 2p6 3d8 → 2p5 3d9 Configuration model, e.g. L edge absorption : + Excited from ground/initial state configuration, 2p63d8 to exited/final state configuration, 2p53d9 + Omission of all full subshells (spherical symmetric) + Takes into account correlation effects in the ground state as well as in the excited state + Leads to multiplet effects/structure

http://www.anorg.chem.uu.nl/CTM4XAS/ 2S+1L

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

22 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+ Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray polarization, experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

23 4+ Sensitivity To Site Symmetry: Ti L3,2

PbZr Ti O 3d orbitals 0.2 0.8 2

e e t2

t2

XA (arb. units)

J. Stöhr, H.C. Siegmann,

+ Electric dipole transitions: d02p53d1 Magnetism (Springer) PZT_XA.opj 455 460 465 470 + Crystal field splitting 10Dq acting on 3d orbitals: photon energy (eV) Octahedral symmetry: Tetragonal symmetry:

e orbitals towards ligands  higher energy e orbitals  b2 = dxy, e = dyz, dyz 2 2 2 2 t2 orbitals between ligands  lower energy t2 orbitals  b1 = dx y , a1 = d3z r

24 X-Ray Absorption  Lattice Symmetry

TiO2

rutile Influence of lattice site symmetry at the absorber

Oh

anataseTiO2

ray absorption ray

- x

D2h G. Van der Laan Phys. Rev. B 41, 12366 (1990)

25 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+ Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray polarization, experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

26 X-Ray Absorption  Fundamentals

Experimental Concept: Monitor reduction in X-ray flux transmitted through sample as function of photon energy

E  Charge state of absorber Fe2+, Fe3+ Valence  Symmetry of lattice site of absorber: Oh, Td states  Sensitive to magnetic order

 Absorption probability: X-ray energy, X-ray polarization, experimental geometry

2p L 3/2 3 Core level  Atomic species of absorber Fe, Co, Ni, …. 2p1/2 L2

27 Stoner Model For Ferromagnetic Metals

+ Magnetic moments in Fe, Co, Ni

spin-down well described by Stoner model: spin-up d-bands containing up and down empty states, “holes” spins shifted relative to each other empty states, “holes” by exchange splitting + Spin-up and spin-down bands filled exchange splitting according to Fermi statistics + |m| determined by difference in number of electrons in majority and minority bands J. Stöhr, H.C. Siegmann, Magnetism (Springer) 3d shell maj min |m|  μB (ne  ne )

28 Origin of X-ray Magnetic Circular Dichroism

2-Step Model for photoexcitation of electrons

from 2p3/2, 2p1/2 to 3d states by absorption 3d of circularly polarized X rays: + Transfer of angular momentum of incident circular polarized X rays to excited electrons (angular momentum conservation, selection rules) + Spin polarization of excited electrons opposite for incident X rays with opposite helicity. + Unequal spin-up and spin-down populations in exchange split valence shell acts as detector for spin of excited electrons.

29 Origin of X-ray Magnetic Circular Dichroism

+ Calculate transition probabilities

from filled 2p3/2 and 2p1/2 states to empty states in d-band for circularly polarized X rays using Fermi’s Golden Rule

30 Origin of X-ray Magnetic Circular Dichroism

+ Wave functions describe electronic and photon states final state |f Energies include electronic and photon energies final state energy f + Calculate transitions probabilities Tif considering photon as time-dependent perturbation, i.e. an electromagnetic (EM) field

Fermi’s Golden Rule

ρ(εf ) = density of final states per unit energy

−1 Tif Dimension [time ] initial state |i

initial state energy i

31

Origin of X-ray Magnetic Circular Dichroism ↓

↓ ↓

↓ + Consider strong ferromagnet with one filled spin band:  All spin down d states filled  Spin up d states partially filled X-ray absorption of + This specific case: circularly polarized Only spin up electron excited photons with angular momentum q = ±1 in units of ħ

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

32 Origin of X-ray Magnetic Circular Dichroism

q = +1 q = 1 q = 0 q=+1 q=1 q=0

50 30 10 30

L3

L2 J. Stöhr, H.C. Siegmann, Magnetism (Springer)

L3: X rays with q = +/1 excite 62.5%/37.5% of the spin up electrons L2: X rays with q = +/1 excite 25%/75% of the spin up electrons

33

Origin of X-ray Magnetic Circular Dichroism ↓

↓ ↓

 = 25%  = -50%

Taking into account 2x higher

population of 2p3/2 state as compared to 2p1/2 state:

 Identical magnitude XMCD

at L3 and L2 with opposite sign

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

34 X-Ray Magnetic Circular Dichroism (XMCD)

Co 1.0

L Magnitude of XMCD depends on 3 L 0.5 2 + expectation value of 3d magnetic moment XA (arb. units) + degree of circular photon

0.0 polarization, Pcirc + geometry 0.0

-0.2

XMCD -0.4 IXMCD = I  I

(arb. units)

FeCo_GaAs_XMCD.opj 770 780 790 800 photon energy (eV)

35 X-Ray Magnetic Circular Dichroism (XMCD)

CoFe O 1.0 2 4

L3 Fe L3 Co

0.5

H XA (arb. units) L2 L2

0.0

3+ circularly Fe , Td

polarized 0.0 XMCD 3+ Fe , Oh (arb. units) -0.2 2+ 2+ Co

Fe ,Oh CoFe2O4.opj 700 710 720 730 780 790 800 J. Stöhr, H.C. Siegmann, photon energy (eV) Magnetism (Springer) + XMCD provides magnetic information resolving elements Fe, Co, … valence states: Fe2+, Fe3+, …

lattice sites: octahedral, Oh, tetrahedral, Td,

36 Magnetic Bionanospinels

3+ Fe , Td + Geobacter sulfurreducens bacteria Fe3O4 form magnetite nanocrystals (15nm) via extracellular reduction of 3+ amorphous Fe(III)-bearing minerals Fe , Oh Fe2+,O h Co-ferrite-1

6 at% Co XMCD

Co-ferrite-2 23 at% Co

60

)

1 

0 M (emu g M +60 photon energy (eV)

V. Cocker et al., 2 0 +2 Eur. J. Mineral. 19, 707–716 (2007) H (T)

37 Magnetic Bionanospinels

+ Geobacter sulfurreducens bacteria form magnetite nanocrystals (15nm) via extracellular reduction of amorphous Fe(III)-bearing minerals

2+ Co Oh

60

)

1 

0 M (emu g M +60

V. Cocker et al., 2 0 +2 Eur. J. Mineral. 19, 707–716 (2007) H (T)

38 Co-doped TiO2

Co-doped TiO2 Co2+ in CoFe O

2 4

dilute magnetic XA 0

semiconductors XMCD

XA, XMCD

XA (arb. units) (arb. XA

Co metal

XA

0 Co_Co2+.opj

XMCD

XA, XMCD

XMCD (arb. units) (arb. XMCD

780 790 800 810 780 790 800 photon energy (eV) photon energy (eV) J.-Y. Kim et al., Phys. Rev. Lett. 90, 017401 (2003)

+ Comparing XMCD spectra with model compounds and/or calculations  Identifying magnetic phases

39 Induced Moments At Co/Cu Interfaces

Co Cu Co

Cu …

+ The element-specificity makes XMCD measurements an ideal tool to determine induced moments at interfaces between magnetic and non-magnetic elements. M. G. Samant et al., Phys. Rev. Lett. 72, 1112 (1994)

40 Magnetic Interfaces

20 Å Co / 200 Å Ir20Mn80 + Weak Mn XMCD signal H = +/-0.5T  Uncompensated Mn at FM Co Co/IrMn interface AFM IrMn Co L3,2

+ Same sign of XMCD signal

for Co and Mn XA (arb. units) Mn L3,2  Parallel coupling of Co and Mn moments x20 + Nominal thickness of 0 uncompensated interface moments: (0.50.1)ML

XMCD (arb. units) 630 640 650 660 770 780 790 800 810 photon energy (eV) H. Ohldag et al., Phys. Rev. Lett. 91, 017203 (2003)

41 Band Filling In GaxFe1−x

1.0 0.00 GaxFe1−x Fe L 3,2 (eV) -0.25

3

L

Fe

0.5

-0.50

XA (arb. units) 0.0 0.2 0.4 0.6 x

0.0 0.02 0.25

0.00 0.00

-0.25 XMCD (arb. units) J. Stöhr, H.C. Siegmann, XMCD (arb. units) -0.02 Magnetism (Springer) -0.50 710 712 photon energy (eV) 705 710 715 720 725 photon energy (eV) 0.00 + Fe majority-spin filled for x=0.3 -0.25 + x  0.3: Fe moment decrease strongly,

XMCD

3

L Formation of D03 precipitates

(arb. units) E. Arenholz et al., Fe Fe -0.50 Phys. Rev. B 82, 180405 ( 2010) 0.0 0.2 0.4 0.6 x

42 Composition Dependence of Fe moment in Fe1-xMnx

Drop of magnetic moment

in bcc Fe1-xMnx, i.e. independent of structural transition

43 Sum Rules

+ Theoretically derived sum rules correlate XMCD spectra with spin and orbital moment providing unique tool for studying magnetic materials.

B > 0

A < 0

Nh =  IL3 + IL2 /C mL = –2BA + B / 3C m =  –A + 2B / C S B J. Stöhr, H.C. Siegmann, Magnetism (Springer)

44 Orbital Moment Of Co Nanoparticles

+ Strong variation of orbital and spin magnetic moment observable as change in

relative L3 and L2 intensity in XMCD spectrum. + Co atoms and nanoparticles on Pt have

enhanced orbital moments up to 1.1 B

P. Gambardella et al., Science 300, 1130 (2003)

45 Element-specific Magnetization Reversal

Co L 3,2 +/- circ. pol.

H = -0.5T

XA (arb. units) (arb. XA

0

(arb. units) (arb.

-

- I -

+

I

780 800 photon energy (eV)

+ Monitoring field dependence of XMCD  Element-specific information on magnetization reversal in complex magnetic nanostructures.

46 Element-specific Magnetization Reversal

Co L Co L 3,2 3,2 +/- circ. pol. +/- circ. pol.

H = -0.5T H = +0.5T

XA (arb. units)

XA (arb. units) (arb. XA

0 0

(arb. units)

(arb. units) (arb. -

- - I

- I - +

+ I

I

780 800 780 800 photon energy (eV) photon energy (eV)

+ Monitoring field dependence of XMCD  Element-specific information on magnetization reversal in complex magnetic nanostructures.

47 Element-specific Magnetization Reversal

Co L Co L 3,2 3,2 +/- circ. pol. +/- circ. pol.

H = -0.5T H = +0.5T

XA (arb. units)

XA (arb. units) (arb. XA

0 0 0

XMCD (arb. units)

(arb. units) (arb. -

- - I

- I - +

+ I

I

780 800 -0.4 -0.2 0.0 0.2 0.4 780 800 photon energy (eV) (T) photon energy (eV)

+ Monitoring field dependence of XMCD  Element-specific information on magnetization reversal in complex magnetic nanostructures.

48 Element-specific Magnetization Reversal

Ni H=+0.2 T Fe H=-0.2 T

Co 18 ML Ni

XA (arb. units) x3 8,10 ML Fe

5 ML Co 0

XMCD

700 750 800 850 photon energy (eV)

10 Ni Fe 5 Co

0

XMCD (%) -5

-10 8 ML Fe -40 -20 0 20 40 field (mT)

49 Element-specific Magnetization Reversal

Ni H=+0.2 T Fe H=-0.2 T

Co 18 ML Ni

XA (arb. units) x3 8,10 ML Fe

5 ML Co 0

XMCD

700 750 800 850 photon energy (eV)

10 Ni 10 Ni Fe Fe 5 5 Co Co

0 0

XMCD (%) -5 XMCD (%) -5 8 ML Fe 10 ML Fe -10 -10 -40 -20 0 20 40 -200 -100 0 100 200 field (mT) field (mT)

50 X-Ray Ferromagnetic Resonance

Co 1.0 + XMCD is the difference in X-ray H absorption between antiparallel L 3 L 0.5 2 and parallel orientation of magnetic moment and photon spin.

XA (arb. units) circularly + The XMCD magnitude reflects the polarized 0.0 magnetic moment aligned parallel to the X ray beam. 0.0

-0.2

XMCD -0.4

(arb. units)

FeCo_GaAs_XMCD.opj 770 780 790 800 photon energy (eV)

51 X-Ray Ferromagnetic Resonance

+ In fact: Co Magnetic moments are not 1.0 fully aligned with applied fields H L but precess around them. 3 L 2 0.5 M(t)

XA (arb. units) circularly polarized 0.0

0.0

-0.2

XMCD -0.4

(arb. units)

FeCo_GaAs_XMCD.opj 770 780 790 800 photon energy (eV)

52 X-Ray Ferromagnetic Resonance

+ In fact: Co Magnetic moments are not 1.0 fully aligned with applied fields H L but precess around them. 3 L 0.5 2 H

XA (arb. units) circularly polarized 0.0

0.0 M x H

-0.2

XMCD -0.4 M(t)

(arb. units)

FeCo_GaAs_XMCD.opj 770 780 790 800 photon energy (eV)

+ Is it possible to measure the pression of magnetic moments making use of the pulsed nature of synchrotron radiation and XMCD? (!)

53 X-Ray Ferromagnetic Resonance

Pulsed nature of synchrotron radiation Example: Advanced Light Source Pulse length 70 ps bunch + 256-320 bunches for spacing 500mA beam current + Bunch spacing: 2 ns (500MHz) + Pulse length 70ps

54 X-Ray Ferromagnetic Resonance

Dynamic XMCD measurement, i.e. synchronize X-ray pulses with FMR precession

2 ns H ~70 ps B Mz(t)

M(t) X-ray pulses X-ray pulse repetition signal, ~500 MHz driving field f = n500 MHz

55 X-Ray Ferromagnetic Resonance

Static XMCD Dynamic XMCD M(t) Co X-rays L3 1.0 4

L2

0.5 2

XA (arb. units)

0

0.0 -2 0.0 M

M XMCD (arb. units) -0.2 -4 XMCD -0.4 0 200 400 600 800 1000

(arb. units) FeCo_GaAs_XMCD.opj Microwave delay (ps) 770 780 790 800 photon energy (eV)

56 X-Ray Ferromagnetic Resonance

+ Precession is resonantly excited in the NiFe layer with an 4 GHz RF field. + The resonance field of the CO layer is higher, i.e. no precession is excited in the Co layer.

+ Precession in Py, Cu75Mn25, and Co layers are probed by XMCD using left- and right- circularly polarized X-rays at Ni, Mn, and Co edges, respectively.

+ The Cu75Mn25 spin precession is a direct indicator of the AC spin current through the structure.

57 X-Ray Linear Dichroism

O Cu L3 La1.85Sr0.15CuO4

Cu

L2

E units) (arb. XA XA

C. T. Chen et al. PRL 68, 2543 (1992) 920 940 960 photon energy (eV)

X-Ray Linear Dichroism: + Difference in X-ray absorption for different linear polarization direction relative to crystalline and/or spin axis. + Due to the anisotropic charge distribution about the absorbing atom caused by bonding and/or magnetic order. + “Search Light Effect”: X-ray absorption of linear polarized X rays proportional to density of empty valence states in direction of electric field vector E.

58 Structural Changes In PbZr0.2Ti0.8O3

1.0 t e 2 e 0.5 t2

XA

+ (arb. units) 0.0

//

// 0.2

 0.0

difference (arb. units) -0.2

//

// Pb2+ O2 Ti4+, Zr4+ 1.0

as grown 0.5

XA

(arb. units) 0.0

// ferroelectric // polarization reversed 0.00

-0.05

difference + Spontaneous electric polarization due to (arb. units) 455 460 465 470 4+ 4+ off-center shift of Ti , Zr associated with photon energy (eV) E. Arenholz et al., tetragonal distortion  linear dichroism Phys. Rev. B 82, 140103 (2010) + Reversing ferroelectric polarization changes XA  Change in tetragonal distortion

59 X-Ray Magnetic Linear Dichroism

// 1.0 CoFe2O4

Fe Co Isotropic d electron charge density 0.5 L3  No polarization dependence L3 L2 XA (arb. units) XA (arb. L2 → L → [001] S 0.0 0.02 //  = 0 H

Magnetically aligned system 0.00

 Spin-orbit coupling distorts -0.02  = 45 charge density H

 Polarization dependence CoFe2O4_110_Sept.opj XMLD (arb. units) XMLD (arb. // 700 710 720 730 780 790 800 photon energy (eV) 2 2 + IXMLD = I||  I  m , m  = expectation value of square of atomic magnetic moment + XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets + XMLD spectral shape and angular dependence are determined by magnetic order and lattice symmetry

60 X-Ray Magnetic Linear Dichroism

1.0 antiferromagnetic NiO

L3

CoNiO_4.0.2_Ni_XMLD.opj Isotropic d electron charge density 0.5  No polarization dependence

XA (arb. units) → L3 L → S 0.0 0.05

 = 0  Magnetically aligned system 0.00 [001]  Spin-orbit coupling distorts -0.05

charge density  = 45

 Polarization dependence

XMLD (arb. units) 850 855 860 865 870 875 [001] photon energy (eV)

2 2 + IXMLD = I||  I  m , m  = expectation value of square of atomic magnetic moment + XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets + XMLD spectral shape and angular dependence are determined by magnetic order and lattice symmetry

61 Magnetic Coupling At Interfaces

1.0 H La Sr MnO (LSMO) Mn XMCD H 0.7 0.3 3 ferromagnet 0.5 LSMO La0.7Sr0.3FeO3 (LSFO) antiferromagnet

XA (arb. units)

LSFO Fe 0.0

L 1.0 1.0 3,2 0.0 1.0 XMLD H

XMCD XMCD

(arb. units) (arb. (arb. units) 0.5 0.5 0.5 3,2

-0.2 L

640 650 (arb. units) photon energy (eV) Mn XA (arb. units) 0.0 0.0 0.0 1.0 1.0 Fe XMLD 0.2 0.0

0.5 XMLD XMLD

0.5

3,2 (arb. units)

-0.2 expt. calc. L (arb. units)

XA (arb. units) Fe 0.0 710 720 0.1 photon energy (eV) 0.0 0 100 200 300 400 temperature (K) 0.0  Perpendicular coupling

XMLD

(arb. units) -0.1 at LSMO/LSFO interface 710 720 E. Arenholz et al., photon energy (eV) Appl. Phys. Lett. 94, 072503 (2009)

62 Planar Domain Wall

1.0 Co/NiO

L3 Co FM Co 2

AFM

NiO XA H 1 H Ni

L (arb. units) (arb. units) 2 0.5 L3 L XA 2

, 0.0 NiO

x50

XMCD

0.0 XMLD

-0.2 Co/NiO (arb. units)

CoNiO_6.3.1.opj 770 780 790 850 860 870 868 870 872 photon energy (eV) photon energy (eV) 50o H 10 1.2 40o

wall angle wall Co 1.1 30o

ratio

0 2

L o 1.0 20

Ni o EH 10

Co XMCD (arb. units) -10 0.9 E||H 0o -0.5 0.0 0.5 0.0 0.2 0.4 0.6 NiO field (T) applied field (T) A. Scholl et al., Phys. Rev. Lett. 92, 247201 (2004)

63 Magnetic Microscopy

64 Magnetic Microscopy

J. Stöhr, H.C. Siegmann, 10-50 nm spatial resolution Magnetism (Springer)

65 Imaging Magnetic Domains Using X-Rays

left circ. right circ.

A B i070725_046.jpg

Co/NiO(001) 1.0

(arb. units) 0.5 i070725_050.jpg

XA A / B , A / B 0.0

XMCD

070727_Co_XMCD.opj 780 790 800

photon energy (eV) i070725_049_050_div.jpg E. Arenholz et al.,

Appl. Phys. Lett. 93, 162506 (2008) i070725_046_047_div.jpg + Images taken with left and right circularly polarized X-rays at photon energies

with XMCD, i.e. Co L3 edge, provide magnetic contrast and domain images.

66 Magnetic Coupling At Co/NiO Interface

X rays Co XMCD

+ Taking into account the geometry 5 m dependence of the Ni XMLD signal Ni XMLD  Perpendicular coupling of Co and NiO moments at the interface.

5 m E. Arenholz et al., Appl. Phys. Lett. 93, 162506 (2008) probing in-plane

67 Magnetic Vortices

+ First direct observation of vortex state in antiferromagnetic CoO and NiO disks in Fe/CoO and Fe/NiO bilayers using XMCD and XMLD. + Two types of AFM vortices: - conventional curling vortex as in ferromagnets - divergent vortex, forbidden in ferromagnets - thickness dependence of magnetic interface coupling

conventional curling divergent vortex vortex

J. Wu et al., Nature Phys. 7, 303 (2011)

68 Nanoscale Magnetic Phases

AFM

T R

AFM

2m + BiFeO3 – multiferroic = ferroelectric + antiferromagnetic + Compressive strain on rhombohedral phase (R-phase) induced by substrate  tetragonal-like phase (T-phase) + Partial relaxation of epitaxial strain  Formation of a nanoscale mixture of T- and R-phases 2m

Q. He et al., Nature Comm. 2, 225 (2011)

69 Nanoscale Magnetic Phases

AFM PFM

XMCD PEEM XMCD-PEEM

2m

+ Highly distorted R-phase is the source of 2m enhanced magnetic moment in the XMCD

Q. He et al., image. Nature Comm. 2, 225 (2011)

70 Ultrafast Magnetism

+ Energy reservoirs in a ferromagnetic metal + Deposition of energy in one reservoir  Non-equilibrium distribution and subsequent relation through energy and angular momentum exchange

Electron-phonon relaxation time

el-lat

  Electron-spin el-sp lat-sp relaxation time Spin-lattice J. Stöhr, H.C. Siegmann, Magnetism (Springer) relaxation time

71 Ultrafast Dynamics Of Spin And Orbital Moments

Co0.5Pt0.5 + Orbital (L) and spin (S) magnetic moments can change with total angular momentum is conserved. + Efficient transfer between L and S through spin–orbit interaction in solids + Transfer between L and S occurs on fs timescales.

+ Co0.5Pt0.5 with perpendicular magnetic anisotropy + 60 fs optical laser pulses change magnetization + Dynamics probed with XMCD using 120fs X-ray pulses

C. Boeglin, et al., + Linear relation connects Nature 465, 458 (2010) Co L3 and L2 XMCD with Lz and Sz using sum rules

72 Ultrafast Dynamics Of Spin And Orbital Moments

+ Thermalization: Faster decrease of orbital moment + Theory: Orbital magnetic moment strongly correlated with magnetocrystalline anisotropy + Reduction in orbital moment  Reduction in magnetocrystalline anisotropy + Typically observed at elevated temperatures in static measurements as well

Electron-phonon relaxation time

el-lat

  Electron-spin el-sp lat-sp

C. Boeglin, et al., relaxation time Spin-lattice Nature 465, 458 (2010) relaxation time

73 References And Further Reading

J. Stöhr, H.C. Siegmann Magnetism From Fundamentals to Nanoscale Dynamics Springer

74