Watermarking Spot Colors in Packaging

Total Page:16

File Type:pdf, Size:1020Kb

Watermarking Spot Colors in Packaging Copyright 2015 Society of Photo-Optical Instrumentation Engineers and IS&T-The Society for Imaging Science and Technology. This paper was published in the proceedings of the 2015 IS&T/SPIE Electronic Imaging conference: Media Watermarking, Security, and Forensics, San Francisco, CA February 8, 2015, volume 9409 and is made available as an electronic reprint with permission of SPIE. Single print or electronic copies for personal use only are allowed. Systematic or multiple reproduction, or distribution to multiple locations through an electronic list server or other electronic means, or duplication of any material in this paper for a fee or for commercial purposes is prohibited. By choosing to view or print this document, you agree to all the provisions of the copyright law protecting it. Watermarking Spot Colors in Packaging Alastair Reed, Tomáš Filler, Kristyn Falkenstern, Yang Bai Digimarc Corporation, 9405 SW Gemini Drive, Beaverton, OR 97008, USA ABSTRACT In January 2014, Digimarc announced Digimarc Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed. 1. INTRODUCTION In January 2014, Digimarc announced Digimarc Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers.4 Digimarc Barcode is a machine readable code that carries the same information as a traditional UPC and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the POS station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design, and thus eliminates the need to search for the barcode at the checkout. This significantly improves the IPM metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Quantitative model of expected savings is available in Ref. 4. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode.8 Automation and workflow considerations for embedding Digimarc Barcodes at large scale has been presented in Ref. 16. Although digital watermarking is a well-established field with a long list of successful applications5 spanning various media such as audio, video and print, watermarking consumer package goods on a large scale brings new challenges not encountered before. In this paper, we address one such challenge caused by the use of special inks and a barcode imaging system, a case often seen in packaging and retail. Packages are printed with two common ink systems: 1. Process colors – Cyan, Magenta, Yellow and Black (CMYK) inks are used to simulate a wide range of colors, by mixing the ink on a substrate and printing half tone dots. This ink system is used in most consumer printers. E-mail: {Alastair.Reed, Tomas.Filler, Kristyn.Falkenstern, Yang.Bai}@digimarc.com; http://www.digimarc.com 2. Spot colors are custom pre-mixed inks designed to achieve a certain color when printed on a specified substrate. The motivation to watermark spot colors is that a significant proportion of packages are printed using spot colors or contain some spot color regions. Packages are often printed with spot colors to reduce cost and for color accuracy and consistency. Other reasons for using spot colors in packaging are to obtain colors outside of the process color gamut, or to create special effects such as fluorescent∗, metallic or optically variable inks.15 Industry standard library of spot inks, published by PANTONE, contains several hundreds of inks. In packaging, Digimarc Barcodes are inserted in the chrominance (as opposed to luminance) domain to obtain the best robustness per unit visibility10 at a spatial frequency corresponding to 75 DPI (Dots Per Inch). The choice of spatial resolution allows Digimarc Barcode to be printed by typical offset and flexographic presses on a range of substrates, and read by modern imaging-based barcode scanners. Modern barcode scanners are monochrome imaging devices typically with red LED illumination. The red LED is a narrow-band light source with a wavelength of 660 nm, which implies that the scanner can only see image content on packages printed with inks that have low reflectivity at this wavelength, such as Cyan or Black. In this paper, we describe a set of algorithms along with working examples of embedding Digimarc Barcode in a package design. In general, the watermark embedding method minimize the visual impact of the added signal while achieving specified signal strength as seen by the POS scanner. This problem is solved for cases involving a mix of process and/or spot colors while considering practical limitations coming from actual presses. The watermark embed method described in Ref. 10 was enhanced to support multiple spot colors and detection with a barcode scanner. The method minimizes the impact on the printer workflow by maintaining colors used in the original design as much as possible. The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted either internally by the Professional Services Group at Digimarc or externally by a pre-press partner. Standard proofing methods using Photoshop, internal or third party tools can be used to preview the results for visibility and robustness. Due to multidisciplinary nature of this paper, we first describe necessary print and color background in Section 2. Section 3 discusses embed constraints posed by POS scanner and possibly other imaging devices. Watermark embed in process inks and associated challenges are described in Section 4. Section 5 generalizes the embed strategies to handle both process and spot colors. Finally, a brief summary can be found in Section 6. 2. PRINT AND COLOR BACKGROUND This section includes preliminary material required to understand different aspects of color science and printing. Readers familiar with these areas are welcome to skip this section and return back when necessary. Key terms used in the paper are printed in bold. 2.1 Color and Human Visual System As mentioned, Digimarc Barcodes are inserted in the chrominance domain rather than luminance to reduce the visibility of the mark. In this section we briefly describe a few of the fundamental concepts which are used throughout the paper which are related to: color, color spaces and the visibility of color differences. 2.1.1 Color Perception The color of an object is the result of the interaction between a light source, an object and a detector (often the human visual system). Light is radiation which can be seen, in the wavelength range of about 380 to 780 nm. Spectral reflectance is used to describe how an object interacts with light. The spectral reflectance curves describe the fraction of light reflected at each wavelength from the object. When the reflected light is detected and interpreted through the visual system it results in an object having a particular color. The most common way to capture the spectral data with a device is by using a spectrophotometer. ∗Fluorescent inks are used to create eye-catching colors such as Tide orange (www.dayglo.com, en.wikipedia.org/ wiki/Tide\_(brand)). Red LED Paper Cyan Magenta Yellow Black 1931 CIE standard observer color matching functions 100% x¯(λ) y¯(λ) z¯(λ) 1.5 75% 1 50% Reflectance 25% 0.5 0% 0 400 450 500 550 600 660 700 400 450 500 550 600 650 700 Wavelength λ nm Wavelength λ nm Figure 1. (Left) Spectral reflectance of PANTONE process inks as measured using X-Rite i1Pro spectrophotometer. Graph also shows spectrum emitted by red LED centered at 660nm. (Right) 1931 CIE 2° standard observer matching functions used for converting spectral reflectance to CIE XYZ color space.
Recommended publications
  • Color Models
    Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates.
    [Show full text]
  • An Improved SPSIM Index for Image Quality Assessment
    S S symmetry Article An Improved SPSIM Index for Image Quality Assessment Mariusz Frackiewicz * , Grzegorz Szolc and Henryk Palus Department of Data Science and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; [email protected] (G.S.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +48-32-2371066 Abstract: Objective image quality assessment (IQA) measures are playing an increasingly important role in the evaluation of digital image quality. New IQA indices are expected to be strongly correlated with subjective observer evaluations expressed by Mean Opinion Score (MOS) or Difference Mean Opinion Score (DMOS). One such recently proposed index is the SuperPixel-based SIMilarity (SPSIM) index, which uses superpixel patches instead of a rectangular pixel grid. The authors of this paper have proposed three modifications to the SPSIM index. For this purpose, the color space used by SPSIM was changed and the way SPSIM determines similarity maps was modified using methods derived from an algorithm for computing the Mean Deviation Similarity Index (MDSI). The third modification was a combination of the first two. These three new quality indices were used in the assessment process. The experimental results obtained for many color images from five image databases demonstrated the advantages of the proposed SPSIM modifications. Keywords: image quality assessment; image databases; superpixels; color image; color space; image quality measures Citation: Frackiewicz, M.; Szolc, G.; Palus, H. An Improved SPSIM Index 1. Introduction for Image Quality Assessment. Quantitative domination of acquired color images over gray level images results in Symmetry 2021, 13, 518. https:// the development not only of color image processing methods but also of Image Quality doi.org/10.3390/sym13030518 Assessment (IQA) methods.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Robust Pulse-Rate from Chrominance-Based Rppg Gerard De Haan and Vincent Jeanne
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. ?, NO. ?, MONTH 2013 1 Robust pulse-rate from chrominance-based rPPG Gerard de Haan and Vincent Jeanne Abstract—Remote photoplethysmography (rPPG) enables con- PPG signal into two independent signals built as a linear tactless monitoring of the blood volume pulse using a regular combination of two color channels [8]. One combination camera. Recent research focused on improved motion robustness, approximated the clean pulse-signal, the other the motion but the proposed blind source separation techniques (BSS) in RGB color space show limited success. We present an analysis of artifact, and the energy in the pulse-signal was minimized the motion problem, from which far superior chrominance-based to optimize the combination. Poh et al. extended this work methods emerge. For a population of 117 stationary subjects, we proposing a linear combination of all three color channels show our methods to perform in 92% good agreement (±1:96σ) defining three independent signals with Independent Compo- with contact PPG, with RMSE and standard deviation both a nent Analysis (ICA) using non-Gaussianity as the criterion factor of two better than BSS-based methods. In a fitness setting using a simple spectral peak detector, the obtained pulse-rate for independence [5]. Lewandowska et al. varied this con- for modest motion (bike) improves from 79% to 98% correct, cept defining three independent linear combinations of the and for vigorous motion (stepping) from less than 11% to more color channels with Principal Component Analysis (PCA) [6]. than 48% correct. We expect the greatly improved robustness to With both Blind Source Separation (BSS) techniques, the considerably widen the application scope of the technology.
    [Show full text]
  • NTE1416 Integrated Circuit Chrominance and Luminance Processor for NTSC Color TV
    NTE1416 Integrated Circuit Chrominance and Luminance Processor for NTSC Color TV Description: The NTE1416 is an MSI integrated circuit in a 28–Lead DIP type package designed for NTSC systems to process both color and luminance signals for color televisions. This device provides two functions: The processing of color signals for the band pass amplifier, color synchronizer, and demodulator cir- cuits and also the processing of luminance signal for the luminance amplifier and pedestal clamp cir- cuits. The number of peripheral parts and controls can be minimized and the manhours required for assembly can be considerbly reduced. Features: D Few External Components Required D DC Controlled Circuits make a Remote Controlled System Easy D Protection Diodes in every Input and Output Pin D “Color Killer” Needs No Adjustements D “Contrast” Control Does Not Prevent the Natural Color of the Picture, as the Color Saturation Level Changes Simultaneously D ACC (Automatic Color Controller) Circuit Operates Very Smoothly with the Peak Level Detector D “Brightness Control” Pin can also be used for ABL (Automatic Beam Limitter) Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Supply Voltage, VCC . 14.4V Brightness Controlling Voltage, V3 . 14.4V Resolution Controlling Voltage, V4 . 14.4V Contrast Controlling Voltage, V10 . 14.4V Tint Controlling Voltage, V7 . 14.4V Color Controlling Voltage, V9 . 14.4V Auto Controlling Voltage, V8 . 14.4V Luminance Input Signal Voltage, V5 . +5V Chrominance Signal Input Voltage, V13 . +2.5V Demodulator Input Signal Voltage, V25 . +5V R.G.B. Output Current, I26, I27, I28 . –40mA Gate Pulse Input Voltage, V20 . +5V Gate Pulse Output Current, I20 .
    [Show full text]
  • Colornet--Estimating Colorfulness in Natural Images
    COLORNET - ESTIMATING COLORFULNESS IN NATURAL IMAGES Emin Zerman∗, Aakanksha Rana∗, Aljosa Smolic V-SENSE, School of Computer Science, Trinity College Dublin, Dublin, Ireland ABSTRACT learning-based objective metric ‘ColorNet’ for the estimation of colorfulness in natural images. Based on a convolutional neural Measuring the colorfulness of a natural or virtual scene is critical network (CNN), our proposed ColorNet is a two-stage color rating for many applications in image processing field ranging from captur- model, where at stage I, a feature network extracts the characteristics ing to display. In this paper, we propose the first deep learning-based features from the natural images and at stage II, a rating network colorfulness estimation metric. For this purpose, we develop a color estimates the colorfulness rating. To design our feature network, rating model which simultaneously learns to extracts the pertinent we explore the designs of the popular high-level CNN based fea- characteristic color features and the mapping from feature space to ture models such as VGG [22], ResNet [23], and MobileNet [24] the ideal colorfulness scores for a variety of natural colored images. architectures which we finally alter and tune for our colorfulness Additionally, we propose to overcome the lack of adequate annotated metric problem at hand. We also propose a rating network which dataset problem by combining/aligning two publicly available color- is simultaneously learned to estimate the relationship between the fulness databases using the results of a new subjective test which characteristic features and ideal colorfulness scores. employs a common subset of both databases. Using the obtained In this paper, we additionally overcome the challenge of the subjectively annotated dataset with 180 colored images, we finally absence of a well-annotated dataset for training and validating Col- demonstrate the efficacy of our proposed model over the traditional orNet model in a supervised manner.
    [Show full text]
  • Demosaicking: Color Filter Array Interpolation [Exploring the Imaging
    [Bahadir K. Gunturk, John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and Russel M. Mersereau] FLOWER PHOTO © PHOTO FLOWER MEDIA, 1991 21ST CENTURY PHOTO:CAMERA AND BACKGROUND ©VISION LTD. DIGITAL Demosaicking: Color Filter Array Interpolation [Exploring the imaging process and the correlations among three color planes in single-chip digital cameras] igital cameras have become popular, and many people are choosing to take their pic- tures with digital cameras instead of film cameras. When a digital image is recorded, the camera needs to perform a significant amount of processing to provide the user with a viewable image. This processing includes correction for sensor nonlinearities and nonuniformities, white balance adjustment, compression, and more. An important Dpart of this image processing chain is color filter array (CFA) interpolation or demosaicking. A color image requires at least three color samples at each pixel location. Computer images often use red (R), green (G), and blue (B). A camera would need three separate sensors to completely meas- ure the image. In a three-chip color camera, the light entering the camera is split and projected onto each spectral sensor. Each sensor requires its proper driving electronics, and the sensors have to be registered precisely. These additional requirements add a large expense to the system. Thus, many cameras use a single sensor covered with a CFA. The CFA allows only one color to be measured at each pixel. This means that the camera must estimate the missing two color values at each pixel. This estimation process is known as demosaicking. Several patterns exist for the filter array.
    [Show full text]
  • Color Appearance Models Today's Topic
    Color Appearance Models Arjun Satish Mitsunobu Sugimoto 1 Today's topic Color Appearance Models CIELAB The Nayatani et al. Model The Hunt Model The RLAB Model 2 1 Terminology recap Color Hue Brightness/Lightness Colorfulness/Chroma Saturation 3 Color Attribute of visual perception consisting of any combination of chromatic and achromatic content. Chromatic name Achromatic name others 4 2 Hue Attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors Often refers red, green, blue, and yellow 5 Brightness Attribute of a visual sensation according to which an area appears to emit more or less light. Absolute level of the perception 6 3 Lightness The brightness of an area judged as a ratio to the brightness of a similarly illuminated area that appears to be white Relative amount of light reflected, or relative brightness normalized for changes in the illumination and view conditions 7 Colorfulness Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic 8 4 Chroma Colorfulness of an area judged as a ratio of the brightness of a similarly illuminated area that appears white Relationship between colorfulness and chroma is similar to relationship between brightness and lightness 9 Saturation Colorfulness of an area judged as a ratio to its brightness Chroma – ratio to white Saturation – ratio to its brightness 10 5 Definition of Color Appearance Model so much description of color such as: wavelength, cone response, tristimulus values, chromaticity coordinates, color spaces, … it is difficult to distinguish them correctly We need a model which makes them straightforward 11 Definition of Color Appearance Model CIE Technical Committee 1-34 (TC1-34) (Comission Internationale de l'Eclairage) They agreed on the following definition: A color appearance model is any model that includes predictors of at least the relative color-appearance attributes of lightness, chroma, and hue.
    [Show full text]
  • Improved Television Systems: NTSC and Beyond
    • Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick­ er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi­ utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele­ but should use the component. rather than composite, technique for ment in creating interest in this sub­ color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap­ systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches­ CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen­ from many Japanese companies, im­ sation are described. ages have been produced that are comparable to 35mm theater quality.
    [Show full text]
  • Convolutional Color Constancy
    Convolutional Color Constancy Jonathan T. Barron [email protected] Abstract assumes that the illuminant color is the average color of all image pixels, thereby implicitly assuming that object Color constancy is the problem of inferring the color of reflectances are, on average, gray [12]. This simple idea the light that illuminated a scene, usually so that the illumi- can be generalized to modeling gradient information or us- nation color can be removed. Because this problem is un- ing generalized norms instead of a simple arithmetic mean derconstrained, it is often solved by modeling the statistical [4, 36], modeling the spatial distribution of colors with a fil- regularities of the colors of natural objects and illumina- ter bank [13], modeling the distribution of color histograms tion. In contrast, in this paper we reformulate the problem [21], or implicitly reasoning about the moments of colors of color constancy as a 2D spatial localization task in a log- using PCA [14]. Other models assume that the colors of chrominance space, thereby allowing us to apply techniques natural objects lie with some gamut [3, 23]. Most of these from object detection and structured prediction to the color models can be thought of as statistical, as they either assume constancy problem. By directly learning how to discrimi- some distribution of colors or they learn some distribution nate between correctly white-balanced images and poorly of colors from training data. This connection to learning white-balanced images, our model is able to improve per- and statistics is sometimes made more explicit, often in a formance on standard benchmarks by nearly 40%.
    [Show full text]
  • Basics of Video
    Basics of Video Yao Wang Polytechnic University, Brooklyn, NY11201 [email protected] Video Basics 1 Outline • Color perception and specification (review on your own) • Video capture and disppy(lay (review on your own ) • Analog raster video • Analog TV systems • Digital video Yao Wang, 2013 Video Basics 2 Analog Video • Video raster • Progressive vs. interlaced raster • Analog TV systems Yao Wang, 2013 Video Basics 3 Raster Scan • Real-world scene is a continuous 3-DsignalD signal (temporal, horizontal, vertical) • Analog video is stored in the raster format – Sampling in time: consecutive sets of frames • To render motion properly, >=30 frame/s is needed – Sampling in vertical direction: a frame is represented by a set of scan lines • Number of lines depends on maximum vertical frequency and viewingg, distance, 525 lines in the NTSC s ystem – Video-raster = 1-D signal consisting of scan lines from successive frames Yao Wang, 2013 Video Basics 4 Progressive and Interlaced Scans Progressive Frame Interlaced Frame Horizontal retrace Field 1 Field 2 Vertical retrace Interlaced scan is developed to provide a trade-off between temporal and vertical resolution, for a given, fixed data rate (number of line/sec). Yao Wang, 2013 Video Basics 5 Waveform and Spectrum of an Interlaced Raster Horizontal retrace Vertical retrace Vertical retrace for first field from first to second field from second to third field Blanking level Black level Ӈ Ӈ Th White level Tl T␷ T␷ ⌬t 2 ⌬ t (a) Խ⌿( f )Խ f 0 fl 2fl 3fl fmax (b) Yao Wang, 2013 Video Basics 6 Color
    [Show full text]
  • Color Spaces Analysis for Luminance & Chrominance Signals AS NTSC
    Journal Of Engineering And Development, Vol. 15, No.4, Des 2011 ISSN 1813- 7822 Color Spaces Analysis For Luminance & Chrominance Signals AS NTSC-TV System Riyad Mitieb Mahmood Assistant Lecturer Electrical Eng. Dept. Abstract There are many regulations related to television and video broadcast signals in various countries around the world, especially the developed countries in technology and communication systems including the United States, Japan and the two together using (NTSC) system . So this system was chosen in research to analyze the space of colors in which to enables us to know the nature of this system and the possibility to convert to other working systems (PAL, SECAM ,...) to ensure the exchange of information and video signals through systems of the global direct broadcasting and the Internet. The research has included analysis of the colors according to an international standard (International Commission on Illumination), which represents the evolution of Maxwell triangle to the process of mixing colors and thus determine the color space for this system for parameters (I,Q,Y) and calculate the values of quantitative color as well as the value of grayscale according to mathematical equations and illustrations of this, After that simulate those results in the image have been selected for the test to be analyzed according to the matlab program as it has proved assess the pattern of color change correct outcomes of the application in the analysis provided and the color that fits the selected image. Keywords : color’s system , Commission International (CIE) , National Television System Committee (NTSC). تحليﻻت فراغات اﻷلوان ﻹشارات اﻹضاءة والتلوين لنظام التلفازNTSC الخﻻصة هْاك أّظَت مثُشة حخص اىبث أىخيفاصٌ واﻹشاساث اىفذَىَت اىعاٍيت فٍ ٍخخيف دوه اىعاىٌ وباﻷخص اىذوه اىَخطىسة حقُْا فٍ ٍْظىٍاث اﻻحصاﻻث و ٍْها اىىﻻَاث اىَخحذة اﻷٍشَنُت و اىُاباُ و اﻻثْاُ ٍعا حسخعَو ّظاً ( NTSC ( .
    [Show full text]