1.3 the Chemokine Receptors

Total Page:16

File Type:pdf, Size:1020Kb

1.3 the Chemokine Receptors Kelly, Christopher James (2019) Profiling chemokine signalling bias of CCR4, CCR7 and CCR10. PhD thesis https://theses.gla.ac.uk/41049/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] 1 Profiling chemokine signalling bias of CCR4, CCR7 and CCR10 Christopher James Kelly A thesis submitted to the College of Medicine, Veterinary and Life Sciences, University of Glasgow in fulfillment of the requirements for the degree of Doctor of Philosophy October 2018 Institute of Infection, Immunity and Inflammation University of Glasgow 120 University Place G12 8TA 2 Author’s declaration I declare that, except where explicit reference is made to the contribution of others, that this thesis is the result of my own work and has not been submitted for any other degree at the University of Glasgow or any other institution. Signature .................................................... Printed name: Christopher James Kelly 3 List of abbreviations 7 transmembrane domains (7TM) Adult t-cell leukaemia/lymphomas (ATLL) Angiotensin 2 type 1 receptor (AT1R) Atypical chemokine receptors (ACKRs) Bioluminescence resonance energy transferred (BRET) Bone marrow derived dendritic cell (BMDC) Calcitonin gene-related peptide (CGRP) Cells from 4 days into the BMDC differentiation protocol (D4) Cells from 7 days into the BMDC differentiation protocol (D7) Central memory T-cells (Tcm) Central nervous system (CNS) Cutaneous lymphocyte antigen positive (CLA+) CXCL12-abundant reticular (CAR) cells Dendritic cells (DCs) Dopamine D2 receptor (D2R) Double negative thymocytes (DNTs) Double positive thymocytes (DPT) Doxycycline (DOX) Dulbecco’s minimal essential medium (DMEM) Dulbecco’s phosphate buffered saline, calcium and magnesium free (DPBS) Effector memory T-cells (Tem) Endoneuraminidase-N (endo-N) Foetal calf serum (FCS), G-protein coupled receptor kinases (GRKs) G-protein coupled receptors (GPCRs) Gene/genes of interest (GOI) Granulocyte-macrophage colony stimulating factor (GM-CSF) Guanidine diphosphate (GDP) 4 Guanidine nucleotide exchange factor (GEF) Guanidine triphosphate (GTP) Hanks balanced salt solution (HBSS, Gibco) Hematopoietic stem cells (HSC) High endothelial venules (HEVs) High fidelity (HF) Human immune deficiency virus (HIV) Human T-lymphotropic virus 1 (HTLV-1) Imiquimod treated (Imq) Immunoprecipitation (IP) Interferon alpha (INFa) Interleukin 4 IL-4 Knockout mouse strain (KO) Lipopolysaccharide (LPS) -Logarithm of 50% maximal response (pEC50) -Logarithm of dissociation constant (pKi) Lymph nodes (LNs) Mean fluorescence intensity (MFI) Medullary thymic epithelial cells (mTECs) Mesenchymal stem cells (MSCs) Mitogen-activated protein kinase (MAPK) Molecular weight (MW) Nanoluciferase (nLuc) Natural killer (NK) Neural cell adhesion molecule (NCAM) Neuropilin 2 (NRP2) No-chemokine control (NC) Percentage staining/band density compared to WT (%WT) Pertussis toxin (PTX) 5 Polyethylenimine (PEI) Polymerase chain reaction (PCR) Polysialic acid (pSia) Post-translational modifications (PTMs) Rat corticotropin releasing factor receptor (CRF1R) Regulatory T-cell (Treg) Relative efficacy (RA) Renilla luciferase (rLuc) Reverse transcription quantitative PCR (qPCR) Rheumatoid arthritis (RA) Secondary lymphoid organs (SLOs), Single positive (i.e. CD4+ or CD8+) thymocytes (SPTs) Sphingosine-1-phosphate 1 receptor (S1P1R) Standard deviation (SD) Streptavidin-BV421 (SABV421) Streptavidin-PE (SAPE) Systematic protein affinity strength modulation (SPASM) T-helper 2 (Th2) TATA binding protein (TBP) Tertiary lymphoid organs (TLOs) Tissue culture (TC) Toll like receptor (TLR) Toll-like receptor 7 (TLR7) Tris-acetate-EDTA (TAE) Tumour associated macrophages (TAMs) Tumour necrosis factor alpha (TNFa, Miltenyi) Unnatural amino acids (UAA) Unstimulated bone marrow (D0) Vascular endothelial growth factor D (VEGF-D) 6 Vehicle treated (Veh) Wildtype (WT) Yellow fluorescent protein (YFP) 7 Acknowledgements I would like to thank my supervisors Gerard Graham and Graeme Milligan for their support and advice over the years, and for giving me the freedom to follow my own path. I would also like to thank the GLAZgo discovery centre for funding and supporting me throughout my time at the university. Thanks to everyone on level 3 (and beyond), past and present. It’s been a fantastic experience getting to know everyone and I really couldn’t have asked for a better or friendlier environment to spend the last 4 years in. I think it’s fair to say I’ve made a number of lifelong friends here. I would especially like to thank Sam and Robin, who did take on the slightly onerous task of living with me. I’m not easy to live with at the best of times, and don’t imagine I improved during the final few stages. I definitely wouldn’t have made over the finish line without you guys, and I owe you a lot for that. Lastly, I’d like to thank my entire family, but in particular my parents, without whom I both literally and figuratively wouldn’t be here. It’s not always been easy, but you helped turn impossible in to not-easy on more than one occasion, and I don’t think I can thank you enough for that. I promise, this time I will actually stop being a student once I’ve finished here. 8 Table of Contents List of abbreviations ......................................................................................................................................... 3 Acknowledgements ........................................................................................................................................... 7 List of figures/tables ..................................................................................................................................... 11 Abstract ............................................................................................................................................................ 16 1 Introduction ........................................................................................................................................... 18 1.1 Overview ........................................................................................................................................ 18 1.2 The chemokines .............................................................................................................................. 19 1.2.1 Homeostatic chemokines .......................................................................................................... 21 1.2.2 Inflammatory chemokines ........................................................................................................ 22 1.3 The chemokine receptors ............................................................................................................... 23 1.3.1 Chemokine receptor signalling ................................................................................................. 23 1.3.2 Atypical chemokine receptors ................................................................................................... 25 1.3.3 Chemokine/receptor interaction ................................................................................................ 25 1.3.4 Pharmacological targeting of the chemokine system ................................................................ 27 1.3.5 Biased agonism in chemokine biology ..................................................................................... 28 1.4 CCR4 in health and disease ........................................................................................................... 31 1.5 CCR7 in health and disease ........................................................................................................... 34 1.6 CCR10 in health and disease ......................................................................................................... 36 1.7 Aims of the project ......................................................................................................................... 38 2 Materials and Methods ......................................................................................................................... 45 2.1 RNA extraction and cDNA conversion .......................................................................................... 45 2.2 PCR, DNA digest and purification ................................................................................................ 45 2.2.1 PCR ........................................................................................................................................... 45 2.2.2 DNA digests .............................................................................................................................. 46 2.3 Cloning and sub-cloning, mutagenesis programme, bacterial transformation and culture, and plasmid purification ..................................................................................................................................... 47 2.3.1 Cloning and sub-cloning ..........................................................................................................
Recommended publications
  • Regulation of CCR7-Dependent Cell Migration Through CCR7 Homodimer Formation
    www.nature.com/scientificreports OPEN Regulation of CCR7-dependent cell migration through CCR7 homodimer formation Received: 6 September 2016 Daichi Kobayashi 1,2,6,7, Masataka Endo2, Hirotaka Ochi2, Hironobu Hojo3, Accepted: 24 July 2017 Masayuki Miyasaka4,5,6 & Haruko Hayasaka2 Published: xx xx xxxx The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efcacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers, we demonstrated a direct contribution of CCR7 homodimerization to CCR7-dependent cell migration and signaling. Induction of stable CCR7 homodimerization resulted in enhanced CCR7- dependent cell migration and CCL19 binding, whereas induction of CXCR4/CCR7 heterodimerization did not. In contrast, dissociation of CCR7 homodimerization by a novel CCR7-derived synthetic peptide attenuated CCR7-dependent cell migration, ligand-dependent CCR7 internalization, ligand-induced actin rearrangement, and Akt and Erk signaling in CCR7-expressing cells. Our study indicates that CCR7 homodimerization critically regulates CCR7 ligand-dependent cell migration and intracellular signaling in multiple cell types. Recruitment of lymphocytes from the blood into secondary lymphoid tissues is a process contributing to con- tinuous immune surveillance. Tis process is tightly regulated by the interaction between lymphoid chemokines expressed in lymphoid tissues and their specifc G-protein-coupled receptors in migrating cells1, 2. CCR7 is one of the major chemokine receptors preferentially expressed in a wide range of immune cells, including naïve T and B cells, central memory T cells, mature dendritic cells3, and plasmacytoid dendritic cells4, 5.
    [Show full text]
  • Following Ligation of CCL19 but Not CCL21 Arrestin 3 Mediates
    Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL21 Melissa A. Byers, Psachal A. Calloway, Laurie Shannon, Heather D. Cunningham, Sarah Smith, Fang Li, Brian C. This information is current as Fassold and Charlotte M. Vines of September 25, 2021. J Immunol 2008; 181:4723-4732; ; doi: 10.4049/jimmunol.181.7.4723 http://www.jimmunol.org/content/181/7/4723 Downloaded from References This article cites 82 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/181/7/4723.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL211 Melissa A. Byers,* Psachal A. Calloway,* Laurie Shannon,* Heather D. Cunningham,* Sarah Smith,* Fang Li,† Brian C.
    [Show full text]
  • Atypical Chemokine Receptor 4 Shapes Activated B Cell Fate
    Brief Definitive Report Atypical chemokine receptor 4 shapes activated B cell fate Ervin E. Kara,1 Cameron R. Bastow,1 Duncan R. McKenzie,1 Carly E. Gregor,1 Kevin A. Fenix,1 Rachelle Babb,1 Todd S. Norton,1 Dimitra Zotos,3 Lauren B. Rodda,4 Jana R. Hermes,6 Katherine Bourne,6 Derek S. Gilchrist,7 Robert J. Nibbs,7 Mohammed Alsharifi,1 Carola G. Vinuesa,8 David M. Tarlinton,3,9 Robert Brink,6,10 Geoffrey R. Hill,11 Jason G. Cyster,4,5 Iain Comerford,1 and Shaun R. McColl1,2 1Department of Molecular and Cellular Biology, School of Biological Sciences and 2Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia 3Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia 4Department of Microbiology and Immunology and 5Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, Downloaded from http://rupress.org/jem/article-pdf/215/3/801/1168927/jem_20171067.pdf by guest on 28 September 2021 San Francisco, San Francisco, CA 6Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia 7Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK 8Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia 9Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia 10St Vincent’s Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia 11Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia Activated B cells can initially differentiate into three functionally distinct fates—early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells—by mechanisms that remain poorly understood.
    [Show full text]
  • G Protein-Coupled Receptors As Therapeutic Targets for Multiple Sclerosis
    npg GPCRs as therapeutic targets for MS Cell Research (2012) 22:1108-1128. 1108 © 2012 IBCB, SIBS, CAS All rights reserved 1001-0602/12 $ 32.00 npg REVIEW www.nature.com/cr G protein-coupled receptors as therapeutic targets for multiple sclerosis Changsheng Du1, Xin Xie1, 2 1Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sci- ences and Technology, Tongji University, Shanghai 200092, China; 2State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Pudong New District, Shanghai 201203, China G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmit- ters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spec- trum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated de- myelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or phar- macological manipulations.
    [Show full text]
  • The Unexpected Role of Lymphotoxin Β Receptor Signaling
    Oncogene (2010) 29, 5006–5018 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW The unexpected role of lymphotoxin b receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development MJ Wolf1, GM Seleznik1, N Zeller1,3 and M Heikenwalder1,2 1Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland and 2Institute of Virology, Technische Universita¨tMu¨nchen/Helmholtz Zentrum Mu¨nchen, Munich, Germany The cytokines lymphotoxin (LT) a, b and their receptor genesis. Consequently, the inflammatory microenviron- (LTbR) belong to the tumor necrosis factor (TNF) super- ment was added as the seventh hallmark of cancer family, whose founder—TNFa—was initially discovered (Hanahan and Weinberg, 2000; Colotta et al., 2009). due to its tumor necrotizing activity. LTbR signaling This was ultimately the result of more than 100 years of serves pleiotropic functions including the control of research—indeed—the first observation that tumors lymphoid organ development, support of efficient immune often arise at sites of inflammation was initially reported responses against pathogens due to maintenance of intact in the nineteenth century by Virchow (Balkwill and lymphoid structures, induction of tertiary lymphoid organs, Mantovani, 2001). Today, understanding the underlying liver regeneration or control of lipid homeostasis. Signal- mechanisms of why immune cells can be pro- or anti- ing through LTbR comprises the noncanonical/canonical carcinogenic in different types of tumors and which nuclear factor-jB (NF-jB) pathways thus inducing cellular and molecular inflammatory mediators (for chemokine, cytokine or adhesion molecule expression, cell example, macrophages, lymphocytes, chemokines or proliferation and cell survival.
    [Show full text]
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel
    Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses This information is current as Endothelial Cell Regulators of September 26, 2021. Carolyn A. Thomson, Serge A. van de Pavert, Michelle Stakenborg, Evelien Labeeuw, Gianluca Matteoli, Allan McI Mowat and Robert J. B. Nibbs J Immunol published online 14 May 2018 Downloaded from http://www.jimmunol.org/content/early/2018/05/11/jimmun ol.1700967 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2018/05/11/jimmunol.170096 Material 7.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2018, doi:10.4049/jimmunol.1700967 The Journal of Immunology Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators Carolyn A. Thomson,*,1 Serge A.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Characterization of Mononuclear Phagocytic Cells in Medaka Fish
    Characterization of mononuclear phagocytic cells in medaka fish transgenic for a cxcr3a:gfp reporter Narges Aghaallaeia,1, Baubak Bajoghlia,1, Heinz Schwarzb, Michael Schorppa, and Thomas Boehma,2 aDepartment of Developmental Immunology, Max-Planck Institute of Immunobiology, D-79108 Freiburg, Germany; and bMax-Planck Institute for Developmental Biology, D-72076 Tübingen, Germany Edited* by Laurie H. Glimcher, Harvard University, Boston, MA, and approved September 10, 2010 (received for review January 13, 2010) Chemokines and chemokine receptors are key evolutionary innova- vertebrates possess many cell types that are characteristic of the tions of vertebrates. They are involved in morphogenetic processes adaptive and innate immune systems of mammals. The sites of or- and play an important role in the immune system. Based on an igin and developmental pathways of lymphocytes (1, 16, 17), as well analysis of the chemokine receptor gene family in teleost genomes, as those of the myeloid lineages (macrophages, neutrophils) (18– and the expression patterns of chemokine receptor genes during 22), have been well characterized. This was achieved by use of cell embryogenesis and the wounding response in young larvae of Ory- type-specific antibodies recognizing characteristic and evolution- zias latipes,weidentified the chemokine receptor cxcr3a as a marker arily conserved cell surface molecules or, for some species—most of innate immune cells. Cells expressing cxcr3a were characterized notably zebrafish—by use of transgenic fish in which the expression in fish transgenic for a cxcr3a:gfp reporter. In embryos and larvae, of fluorescent reporter proteins is directed by the regulatory regions cxcr3a-expressing cells are motile in healthy and damaged tissues, of specific genes to allow the in vivo visualization and preparative and phagocytic; the majority of these cells has the morphology of recovery of individual cell types.
    [Show full text]
  • CCL21 Modulates the Migration of NSCL Cancer by Changing the Concentration of Intracellular Ca2+
    ONCOLOGY REPORTS 27: 481-486, 2012 CCL21 modulates the migration of NSCL cancer by changing the concentration of intracellular Ca2+ JUN LIU, LEI ZHANG and CHANGLI WANG Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China Received September 23, 2011; Accepted October 31, 2011 DOI: 10.3892/or.2011.1528 Abstract. Recurrence and metastasis are the major factors with more than 1.1 million new cases of NSCLC reported associated with the poor prognosis of non-small cell lung annually and nearly 1.2 million deaths each year (1-3) and the cancer (NSCLC). It has been shown that multiple chemokines incidence continues to increase (4). After clinical diagnosis and their receptors are related to the progression and metastasis of lung cancer, only about 20% patients benefit from curative of NSCLC. The aim of this study was to conduct an investiga- surgical therapies such as lung resection. Furthermore, a tion into whether CCL21 and its receptor, CCR7, play a role in recurrence rate as high as around 65% is seen within five NSCLC invasion and metastasis. We used Western blotting, years and the survival rate is only 30-40% at five years immunocytochemistry and flow cytometry to detect CCR7 post-operatively. NSCLC recurrence and metastasis are the protein expression in four NSCLC cell lines EKVX, HOP-62, main causes of treatment failure and the high fatality rate NCI-H23 and Slu-01; and we conducted a cell migration of this cancer. So the major factors associated with the poor experiment to observe the pseudopodia formation and mobility prognosis of NSCLC are the high frequency of tumor recur- of the lung cancer cells.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • Exploring the Methylation Status of RAI1 and the RAI1 Consensus Binding Sequence
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2009 Exploring the Methylation Status of RAI1 and the RAI1 Consensus Binding Sequence Eri Kamura Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Genetics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/1891 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Eri Kamura 2009 All Rights Reserved Exploring the Methylation Status of RAI1 and the RAI1 Consensus Binding Sequence A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by ERI KAMURA Bachelor of Science (B.S.) Virginia Military Institute, Lexington, Virginia, 2007 Director: Sarah H. Elsea, Ph.D.,F.A.C.M.G. Associate Professor, Departments of Pediatrics and Human and Molecular Genetics Virginia Commonwealth University Richmond, Virginia August, 2009 Acknowledgements First and foremost I would like to thank Dr. Sarah H. Elsea for giving me the opportunity to work and learn in her lab. She provided me with great support and guidance throughout the two years I spent in the lab and was also enjoyable to talk to. I would also like to acknowledge everyone in the Elsea lab starting with Stephen Williams for all his help and guidance. He was always there to address any question and concerns and was pretty much the “go-to-guy” in the lab.
    [Show full text]