Geology.Gsapubs.Org on 23 September 2009

Total Page:16

File Type:pdf, Size:1020Kb

Geology.Gsapubs.Org on 23 September 2009 Downloaded from geology.gsapubs.org on 23 September 2009 Geology Porphyroblast rotation and strain localization: Debate settled! Scott E. Johnson Geology 2009;37;663-666 doi: 10.1130/G25729A.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2009 Geological Society of America Downloaded from geology.gsapubs.org on 23 September 2009 Porphyroblast rotation and strain localization: Debate settled! Scott E. Johnson Department of Earth Sciences, University of Maine, Orono, Maine 04469-5790, USA ABSTRACT (reviewed by Johnson, 1999; Carlson, 2002; This contribution shows unequivocally that porphyroblasts rotate relative to one another Johnson et al., 2006). The topic of whether por- during ductile deformation. The porphyroblasts described here have special signifi cance phyroblasts rotate relative to one another and a because they are from the original “millipede” rocks that led to the nonrotation hypothe- fi xed reference frame during ductile deforma- sis. Thus, the debate that has lasted for more than 20 years is settled. Despite this fi nding, tion has attracted particularly energetic debate porphyroblast microstructures continue to provide important evidence for deformation and over the past two decades (reviewed by John- metamorphic histories. Although porphyroblasts clearly rotate relative to one another dur- son, 1999; cf. Fay et al., 2008; Bons et al., ing ductile deformation, there are several factors that contribute to relatively minor rotation 2009). The debate gathered momentum when in many instances, including (1) low strain during and after porphyroblast growth in com- Bell (1985) questioned porphyroblast micro- parison, for example, to mylonitic shear zones; (2) small axial ratios combined with relatively structures that had previously been used as evi- low internal vorticity during growth and post-growth deformation; and (3) strain localization dence for rotation relative to an externally fi xed at the porphyroblast-matrix interface. Thus, given the right circumstances, porphyroblasts kinematic reference frame, suggesting instead may preserve the approximate orientations of deformation fabrics present at the time of their that they may form by growth, without rota- growth, but each case must be individually assessed. tion, during crenulation cleavage development. This hypothesis was based on a geometrical strain fi eld designed to mimic the so-called mil- INTRODUCTION for a wide range of studies in deformed meta- lipede microstructure preserved in and around Porphyroblasts are relatively large metamor- morphic rocks, including those that examine plagioclase porphyroblasts described by Bell phic minerals that commonly show chemical deformation and metamorphic histories, rates and Rubenach (1980). Much of the debate sur- zonation and trap preexisting structural fabrics of diffusion and chemical reaction, deformation rounding porphyroblast rotation can therefore as inclusion trails during their growth (Fig. 1). kinematics, fi nite strain, kinematic vorticity, be traced back to these plagioclase porphyro- For these reasons, they are centrally important pluton emplacement, and folding mechanisms blast microstructures, so they fi gure centrally in the porphyroblast rotation debate. In this paper I show that these same plagioclase porphyro- blasts have rotated relative to one another and to a developing crenulation cleavage, and discuss S some implications for deformation histories and 3 strain localization in rocks. a BACKGROUND b Comprehensive theoretical (Jeffery, 1922) S2 and experimental (Ghosh and Ramberg, 1976) studies provide a fi rm foundation for evaluating the rotational behavior of rigid objects embed- ded in a Newtonian viscous medium, but with A rare exceptions (e.g., Holcombe and Little, 2001) these studies have been diffi cult to suc- cessfully apply to porphyroblasts. Some reasons for this are discussed herein, but in general, the kinematic history of porphyroblasts in region- ally deformed metamorphic rocks is ambiguous compared to, for example, the kinematic history of porphyroclasts in mylonitic shear zones with well-defi ned boundaries (e.g., Passchier et al., 1992; Johnson and Vernon, 1995). The primary evidence used to argue against porphyroblast rotation is the tight clustering of average inclusion-trail orientations over areas ranging in size from sample-scale and outcrop- S2 S2 B scale folds to tens or hundreds of square kilome- Figure 1. Examples of porphyroblast microstructures from rocks discussed in this paper ters (see Bell et al., 1992; references in Johnson and by Bell and Rubenach (1980). A: Thin section that cuts approximately through centers et al., 2006). These data are impressive and give of porphyroblasts marked a and b. B: Magnifi cation of region between porphyroblasts a and good reason to question the direct applicability b illustrating continuity between inclusion trails and matrix S2 foliation. Two individual folia- tions in the matrix that are adjacent, and parallel, to one another diverge and can be traced of the above-mentioned theoretical and experi- into edges of the two different porphyroblasts. See text for discussion. Both images under mental results to deformed rocks. However, cross-polarized light. Width of fi eld in A is 32 mm, in B is 17 mm. close examination of these data reveals a large © 2009 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, July July 2009; 2009 v. 37; no. 7; p. 663–666; doi: 10.1130/G25729A.1; 3 fi gures. 663 Downloaded from geology.gsapubs.org on 23 September 2009 range of inclusion-trail orientations in indi- and consistently oriented regional foliation that OCM geometry in three dimensions. We (John- vidual samples, typically between 40° and 80°. predated pluton emplacement by ~30 Ma. The son and Williams, 1998) developed a new strain This large variance in sample-scale orientations spread of inclusion-trail orientations in the por- tool by comparing the spacing between S2 sur- has generally been interpreted by proponents phyroblasts increases nonlinearly from ~16° to faces inside and outside of the porphyroblasts, of nonrotation as preserving initial variation 75° with increasing strain in the aureole. These calculating an elongation of 172% during the in foliation orientations prior to porphyroblast data provide strong evidence for rotation of the development of S3. growth, possibly refl ecting more than one por- staurolite porphyroblasts relative to one another, phyroblast growth episode (e.g., Bell et al., the amount of relative rotation increasing with PORPHYROBLAST, FOLIATION, AND 1992; Bell and Bruce, 2007). Nevertheless, it increasing strain. The Johnson et al. (2006) INCLUSION-TRAIL ORIENTATION can also be explained by variable rotation of study will not convince some nonrotation sup- RELATIONS porphyroblasts of different shape and orienta- porters, so here I provide a different example in tion (e.g., Passchier et al., 1992; Jiang, 2001; which the pre-deformation orientations of inclu- Orientation Data For All Sections Johnson et al., 2006). sion trails can be confi dently inferred at the thin- I intersected 22 complete porphyroblasts in In addition to measuring inclusion-trail ori- section scale, thus eliminating any uncertainty 42 thin sections from the four serial thin-section entations, a suite of more recent papers shows associated with multiple-sample data sets. blocks. Figures 2A and 2B show the same ori- clustering of relative rotation axes (referred to as entation data from these porphyroblasts plotted foliation intersection-infl ection axes) in porphy- DESCRIPTION OF SAMPLE in two different ways to clarify the relationships. roblasts that contain sigmoidal, spiral-shaped, A hand sample containing millipede micro- All data in these plots were measured in sections and other complex inclusion-trail geometries. structure, better described as oppositely concave that pass approximately through the center of These papers have consistently concluded that microfolds (OCMs), was serially thin sectioned each porphyroblast. the data indicate a lack of porphyroblast rotation at ~1.5 mm intervals and described in Johnson Figure 2A shows porphyroblast axial ratios (see references in Fay et al., 2008). However, and Moore (1996). The sample contained the plotted against both the angle between the as with inclusion-trail
Recommended publications
  • Actually Consists of 2 Cleavages
    Types of foliations • Crenulation Cleavage- – Actually consists of 2 cleavages – The first may be a slaty cleavage or schistosity that becomes microfolded – Fold axial planes typically form at high angle to the σ1 of the second compressional phase 1 Progressive development (a → c) of a crenulation cleavage for both asymmetric (top) and symmetric (bottom) situations. From Spry (1969) Metamorphic Textures. Pergamon. Oxford. 2 Figure 23.24a. Symmetrical crenulation cleavages in amphibole-quartz-rich schist. Note concentration of quartz in hinge areas. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 3 Figure 23.24b. Asymmetric crenulation cleavages in mica-quartz-rich schist. Note horizontal compositional layering (relict bedding) and preferential dissolution of quartz from one limb of the folds. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 4 Figure 23.25. Stages in the development of crenulation cleavage as a function of temperature and intensity of the second deformation. From Passchier and Trouw (1996) Microtectonics. Springer-Verlag. Development of S2 micas depends upon T and the intensity of the second deformation 5 Types of lineations a. Preferred orientation of elongated mineral aggregates b. Preferred orientation of elongate minerals c. Lineation defined by platy minerals d. Fold axes (especially of crenulations) e. Intersecting planar elements. Figure 23.26. Types of fabric elements that define a lineation. From Turner and Weiss (1963) Structural 6 Analysis of Metamorphic Tectonites. McGraw Hill. Analysis of Deformed Rocks • If two or more geometric elements are present, we can add a numeric subscript to denote the chronological sequence in which they were developed and superimposed- • Deformational events: D1 D2 D3 … • Metamorphic events: M1 M2 M3 … • Foliations: So S1 S2 S3 … • Lineations: Lo L1 L2 L3 … • Plot on a metamorphism-deformation-time plot showing the crystallization of each mineral 7 Deformation vs.
    [Show full text]
  • Megaliths and Geology: a Journey Through Monuments, Landscapes and Peoples
    Megaliths and Geology Megálitos e Geologia MEGA-TALKS 2 19-20 November 2015 (Redondo, Portugal) Edited by Rui Boaventura, Rui Mataloto and André Pereira Access Archaeology aeopr ch es r s A A y c g c e o l s o s e A a r c Ah Archaeopress Publishing Ltd Summertown Pavilion 18-24 Middle Way Summertown Oxford OX2 7LG www.archaeopress.com ISBN 978-1-78969-641-7 ISBN 978-1-78969-642-4 (e-Pdf) © the individual authors and Archaeopress 2020 Financial support for the meeting Mega-Talks 2 has been provided by the project Moving megaliths in the Neolithic (PTDC/EPH-ARQ/3971/2012), funded by FCT (Fundação para a Ciência e a Tecnologia, Portugal) and the Municipality of Redondo (Portugal). All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copyright owners. This book is available direct from Archaeopress or from our website www.archaeopress.com Contents Introduction: Megaliths and Geology: a journey through monuments, landscapes and peoples ........................... iii Moving megaliths in the Neolithic - a multi analytical case study of dolmens in Freixo-Redondo (Alentejo, Portugal). Rui Boaventura, Patrícia Moita, Jorge Pedro, Rui Mataloto, Luis Almeida, Pedro Nogueira, Jaime Máximo, André Pereira, José Francisco Santos & Sara Ribeiro ............................................................... 1 Funerary megalithism in the south of Beira Interior: architectures, spoils and cultural sequences. João Luís Cardoso .................................................................................................................................................................. 25 A look at Proença-a-Nova’s Megalithism (Beira Baixa Intermunicipal Community, UNESCO Global Geopark Naturtejo, Portugal).
    [Show full text]
  • Faults (Shear Zones) in the Earth's Mantle
    Tectonophysics 558-559 (2012) 1–27 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Faults (shear zones) in the Earth's mantle Alain Vauchez ⁎, Andréa Tommasi, David Mainprice Geosciences Montpellier, CNRS & Univ. Montpellier 2, Univ. Montpellier 2, cc. 60, Pl. E. Bataillon, F-34095 Montpellier cedex5, France article info abstract Article history: Geodetic data support a short-term continental deformation localized in faults bounding lithospheric blocks. Received 23 April 2011 Whether major “faults” observed at the surface affect the lithospheric mantle and, if so, how strain is distrib- Received in revised form 3 May 2012 uted are major issues for understanding the mechanical behavior of lithospheric plates. A variety of evidence, Accepted 3 June 2012 from direct observations of deformed peridotites in orogenic massifs, ophiolites, and mantle xenoliths to seis- Available online 15 June 2012 mic reflectors and seismic anisotropy beneath major fault zones, consistently supports prolongation of major faults into the lithospheric mantle. This review highlights that many aspects of the lithospheric mantle defor- Keywords: Faults/shear-zones mation remain however poorly understood. Coupling between deformation in frictional faults in the upper- Lithospheric mantle most crust and localized shearing in the ductile crust and mantle is required to explain the post-seismic Field observations deformation, but mantle viscosities deduced from geodetic data and extrapolated from laboratory experi- Seismic reflection and anisotropy ments are only reconciled if temperatures in the shallow lithospheric mantle are high (>800 °C at the Rheology Moho). Seismic anisotropy, especially shear wave splitting, provides strong evidence for coherent deforma- Strain localization tion over domains several tens of km wide in the lithospheric mantle beneath major transcurrent faults.
    [Show full text]
  • Kinematic and Vorticity Analyses of the Western Idaho Shear Zone, USA
    THEMED ISSUE: EarthScope IDOR project (Deformation and Magmatic Modification of a Steep Continental Margin, Western Idaho–Eastern Oregon) Kinematic and vorticity analyses of the western Idaho shear zone, USA Scott Giorgis1,*, Zach Michels2, Laura Dair1, Nicole Braudy2, and Basil Tikoff2 1DEPARTMENT OF GEOLOGICAL SCIENCES, STATE UNIVERSITY OF NEW YORK AT GENESEO, 1 COLLEGE CIRCLE, GENESEO, NEW YORK 14454, USA 2DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN–MADISON, 1215 W DAYTON STREET, MADISON, WISCONSIN 53706, USA ABSTRACT The western Idaho shear zone (WISZ) is a Late Cretaceous, mid-crustal exposure of intense shear localized in the Cordillera of western North America. This shear zone is characterized by transpressional fabrics, i.e., downdip stretching lineations and vertical foliations. Folded and boudinaged late-stage dikes indicate a dextral sense of shear. The vorticity-normal section is identified by examining the three-dimensional shape preferred orientation of feldspar populations and the intragranular lattice rotation in quartz grains in deformed quartzites. The short axes of the shape preferred orientation ellipsoid gather on a plane perpendicular to the vorticity vector. In western Idaho this plane dips gently to the west, suggesting a vertical vorticity vector. Similarly, sample-scale crystallographic vorticity axis analysis of quartzite tectonites provides an independent assessment of vorticity and also indicates a subvertical vorticity vector. Constraints on the magnitude of vorticity are provided by field fabrics and porphyroclasts with strain shadows. Together these data indicate that the McCall segment of the WISZ dis- plays dextral transpression with a vertical vorticity vector and an angle of oblique convergence ≥60°. North and south of McCall, movement is coeval on the Owyhee segment of the WISZ and the Ahsahka shear zone.
    [Show full text]
  • Metamorphism and the Origin of Granitic Rocks Northgate District Colorado
    Metamorphism and the Origin of Granitic Rocks Northgate District Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M Metamorphism and the Origin of Granitic Rocks Northgate District Colorado By T. A. STEVEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M A discussion of the progressive metamorphism, granitixation, and local rheomorphism of a layered sequence of rocks, and of the later emplacement and deuteric alteration of an unrelated granitic stock UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_________________________________ 335 Pre-Cambrian geology—Continued Introduction-_______________________________________ 335 Dacite porphyry—____ ——— __ —— _____________ 364 Acknowledgments__ ___--_____-____-_____-______-_ 336 Intrusive quartz monzonite_-____--_-__-_--_-_-_. 365 Geologic setting._______ — _________________________ 336 Petrography ________—— —— _______________ 365 Pre-Cambrian geology—___________________________ 337 Main body of the stock____________— 366 Hornblende gneiss___-_________-_-_____-________ 338 Marginal dikes_________-____-__-__——— 366 Quartz monzonite gneiss_________________________ 342 Satellitic dikes___-___.__________ 367 Biotite-garnet gneiss___________________________ 345 Wall-rock alteration_________ _ __——_ 368 Pegmatite_________________________________
    [Show full text]
  • Download the Scanned
    THn AMERIceN M INERALoGIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol.22 DECEMBER, 1937 No. 12,Part 1 DEVELOPMENT OF PLAGIOCLASE PORPHYROBLASTSI G. E. Gootsrooo, U niver si.tyoJ W ashington, S eattle, W ashington. Assrnacr Porphyroblastic textures are common to hornfels in the Cornucopia area oJ the Wal- lowa Mountains of northeastern Oregon. Recent petrographic studies indicate that they are also common to some of the rocks of the Cascades of Washington. Plagioclase porphyro- blasts range from initial allotrioblastic forms to fully developed idioblastic crystals. They exhibit many characteristic features which may include poikioblastic structures, helizitic inclusions and complex aggregates. The arrangement within the crystal of inclusions of either identifiable minerals or turbid material, is apparently directly related to the stage of development of the porphyroblast. This included matter differs chiefly in its arrange- ment from the products of endogenetic or subsequent alteration. Recognition of these metamorphic textures and structures is one of the points essential to the interpretation of recrystallization-replacement as applied to igneous-appearing rocks which are believed to have been formed in situ by processesof additive hydrothermal metamorphism. In a previous paper the writer outlined the development of qaartz porphyroblasts in a siliceoushornfels.2 The quartz porphyroblasts in the siliceoushornfels were too small (0.5 mm.) to be conspicuousin the hand specimens,but were readily seenunder crossednicols, although in plane light they merged almost completely with the groundmass of the horn- fels, and contained the sameabundance of small inclusions as the ground- mass. The siliceoushornfels is not the most abundant; biotitic and horn- blendic varieties are far more common.
    [Show full text]
  • Nucleation and Growth History in the Garnet Zone
    Spear and Daniel Geological Materials Research v.1, n.1, p.1 Three-dimensional imaging of garnet porphyroblast sizes and chemical zoning: Nucleation and growth history in the garnet zone Frank S. Spear and Christopher G. Daniel Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180 <[email protected]> (Received July 1, 1998; Published October 30, 1998) Abstract The three-dimensional (3-D) growth history of two garnet zone samples (Grt + Chl + Bt + Ms + Pl + Qtz + Ilm) from southwestern Maine was examined by serial sectioning and 3-D reconstructions of compositional zoning from backscatter images and X-ray maps. Mn, Fe, Mg, and Ca zoning is broadly concentric. The concentration of Mn in garnet cores generally correlates with size (d = 50 to 750 microns), indicating progressive nucleation. In detail, all elements show irregular, patchy zoning in the cores. Assuming constancy of Mn on the rims of all garnet crystals in a rock volume plus no subsequent diffusional modification, Mn concentration can be used as a Òtime lineÓ for garnet growth. Examination of the evolution of individual garnet crystals reveals that multiple nuclei formed simultaneously in the core regions and that nuclei expanded by growth in amoeba-shape forms along preexisting mineral grain boundaries (primarily quartz and plagioclase), dissolving the interior grains until the grains were either gone or encapsulated, at which time dissolution ceased. Amoeba-shaped garnet crystals coalesced as they grew and, simultaneously, new nuclei appeared in the nearby matrix. The net result was a single garnet porphyroblast that formed by the growth and coalescence of multiple nuclei.
    [Show full text]
  • Field and Microstructure Study of Transpressive Jogdadi Shear Zone
    Field and Microstructure study of Transpressive Jogdadi shear zone near Ambaji, Aravalli- Delhi Mobile Belt, NW India and its tectonic implication on the exhumation of granulite Sudheer Kumar Tiwari, Tapas Kumar Biswal ([email protected], [email protected]) Indian Institute of Technology Bombay, Mumbai- 400076 Table1: Mean kinematic vorticity (WM) and percentage(%) of Pure shear for (A) Jogdadi and Surela Abstract 2. Geological map of study area 4. Microstructures shear zone N Aravalli- Delhi mobile belt is situated in the nortwestern part of Indian (A) NW SE (A) (B) shield. It comprises tectono- magmatic histories fromfrom Archean to W E Percentage (%) of Percentage (%) of A B C Sample No. Range of WM Sample No. Range of WM neoproterozoic age. It possesses three tectono- magmatic metamorphic Pure shear Pure shear C2 belts namely Bhilwara Supergroup (3000 Ma), Aravalli Supergorup (1800 Ma) S N A5 0.48- 0.53 65- 70 SA2 0.71- 0.80 42- 50 and Delhi Supergroup (1100 -750Ma). The Delhi Supergroup is divided in two (B) parts North Delhi and South Delhi; North Delhi (1100 Ma to 850 Ma) is older W E A21 0.47- 0.57 63- 71 MYL 0.73- 0.80 42- 49 than South Delhi (850 Ma to 750 Ma). The study area falls in the South Delhi JSZ A29 0.70- 0.73 48- 52 SC2 0.76- 0.82 40- 47 terrane; BKSK granulites are the major unit in this terrane. BKSK granulites S comprise gabbro- norite-basic granulite, pelitic granulite, calcareous granulite N A34 0.58- 0.61 59- 62 SE5 0.76- 0.79 44- 47 and occur within the surrounding of low grade rocks as meta- rhyolite, (C) quartzite, mica schist and amphibolites.
    [Show full text]
  • Petrologic Significance of Fe-Rich Staurolite in Pelitic Schists of the Silgará Formation, Santander Massif
    EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 20, No. 1 (March, 2016): C1 - C7 PETROLOGY Petrologic significance of Fe-rich staurolite in pelitic schists of the Silgará Formation, Santander Massif Carlos Alberto Ríos R.1*, Oscar Mauricio Castellanos A.2 1*. Escuela de Geología, Universidad Industrial de Santander, Bucaramanga, Colombia, e-mail: [email protected] 2. Programa de Geología, Universidad de Pamplona, Colombia ABSTRACT Keywords: Staurolite, pelitic schists, Silgará Medium grade metapelites of the Silgará Formation at the Santander Massif (Colombian Andes) have been Formation, metamorphism, Santander Massif. affected by a medium-pressure/high-temperature Barrovian type of metamorphism, developing a sequence of metamorphic zones (biotite, garnet, staurolite and sillimanite). These rocks record a complex tectono- metamorphic evolution and reaction history. Metapelitic rocks from the staurolite zone are typically foliated, medium- to coarse-grained, pelitic to semipelitic schists that contain the mineral assemblage biotite + garnet + staurolite ± kyanite; all contain muscovite + quartz + plagioclase with minor K-feldspar, tourmaline, apatite, zircon, epidote, calcite, and Fe–Ti oxides. Field and microscopic evidences reveal that Fe-rich staurolite in pelitic schists is involved in several chemical reactions, which explains its formation and transformation to other minerals, which are very important to elucidate the reaction history of the Silgará Formation metapelites. Significado Petrológico de Estaurolita Rica en Fe en Esquistos Pelíticos de la Formación Silgará, Macizo de Santander RESUMEN Palabras clave: Estaurolita, esquistos pelíticos, Medium grade metapelites of the Silgará Formation en el Macizo de Santander (Andes Colombianos) han sido Formación Silgará, metamorfismo, Macizo de afectadas por un metamorfismo de tipo Barroviense, el cual se ha producido en condiciones de media presión y Santander.
    [Show full text]
  • A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry
    PROPERTY OF DUG,r c LiiiRARYyw A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry By CYNTHIA DUSEL-BACON and HELEN L. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-E Petrographic, geothermometric, and structural data are used to support the hypothesis that a 600-km* area of pelitic metamorphic rocks is a gneiss dome -- -- UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Dusel-Bacon. Cynthia. A sillimanite gneiss dome in the Yukon crystalline terrane, eastcentral Alaska. (Shorter contributions to general geology) (Geological Survey Professional Paper 1170-E) Bibliography Supt. of Docs. no.: 1 19.412: 1170-E 1. Gneiss--Alaska. 2. Intrusions (Geology)-Alaska. I. Foster, Helen Laura. 1919- . 11. Title. Ill. Series. IV. Series: United States: Geological Survey. Professional Paper 1170-E. QE475.G55D87 1983 552'.4 83-60003 1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 42304 CONTENTS Page Abstract .............................................................................................................................................................. El Introduction .....................................................................................................................................................
    [Show full text]
  • Shearing in the Mylonites of the Mcatee Bridge Ridge, Montana, Usa: Compressional Shearing in the Big Sky Orogeny
    Schwab, A.R. 2006. 19th Annual Keck Symposium; http://keck.wooster.edu/publications SHEARING IN THE MYLONITES OF THE MCATEE BRIDGE RIDGE, MONTANA, USA: COMPRESSIONAL SHEARING IN THE BIG SKY OROGENY ARTHUR R. SCHWAB Beloit College Sponsor: Jim Rougvie INTRODUCTION et al., 2004) by adding additional evidence for large-scale continental accretion. At the same time as the metamorphism documented by previous Keck projects in the UNIT DESCRIPTIONS Tobacco Root Mountains, and explained by Harms et al. (this volume), rocks in the Southern The MBR outcrops are composed of four Madison and Gravelly Ranges were sheared lithologic units, the most common of which is into mylonites at temperatures between 350 and a granitic mylonite. There are also aplite and 500ºC (Erslev and Sutter, 1990). The mineral pegmatite units, which appear to be younger foliation in these mylonites strikes in the same than the meta-granite and co-genetic; they direction as in the Tobacco Root Mountains crosscut it and each other. Finally, there is a (Harms et al., 2004) and the mylonites may biotite-rich quartzofeldspathic gneiss that is cut be interpreted as foreland thrusts associated by all three of the other units (Fig. 1). All four with crustal compression during the Big Sky show foliation, mainly defined by micas, and Orogeny (O’Neill, 1998). lineation, mainly defined by quartz ribbons. Between the Gravelly and Southern Madison Ranges in southwest Montana, just to the south of the McAtee Bridge on the west side of the Madison River, three large outcrops of granitic mylonite protrude from the Quaternary gravel terraces and alluvium, which I have named the McAtee Bridge Ridge, or the MBR.
    [Show full text]
  • Fracturing of Ductile Anisotropic Multilayers: Influence of Material
    Solid Earth, 6, 497–514, 2015 www.solid-earth.net/6/497/2015/ doi:10.5194/se-6-497-2015 © Author(s) 2015. CC Attribution 3.0 License. Fracturing of ductile anisotropic multilayers: influence of material strength E. Gomez-Rivas1, A. Griera2, and M.-G. Llorens3 1Department of Geology and Petroleum Geology, University of Aberdeen, Aberdeen, Scotland, UK 2Departament de Geologia, Universitat Autònoma de Barcelona, Barcelona, Spain 3Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany Correspondence to: E. Gomez-Rivas ([email protected]) Received: 31 December 2014 – Published in Solid Earth Discuss.: 29 January 2015 Revised: 10 April 2015 – Accepted: 20 April 2015 – Published: 19 May 2015 Abstract. Fractures in rocks deformed under dominant duc- 1 Introduction tile conditions typically form simultaneously with viscous flow. Material strength plays a fundamental role during frac- ture development in such systems, since fracture propaga- The deformation behaviour of Earth’s crust rocks is often tion can be strongly reduced if the material accommodates seen as a transition from frictional and elastic–brittle be- most of the deformation by viscous flow. Additionally, the haviour at shallow depths to ductile crystal–plastic flow at degree and nature of anisotropy can influence the orienta- deeper levels. The change from brittle and discontinuous de- tion and type of resulting fractures. In this study, four plas- formation (i.e. fracture-dominated) to ductile and continuous ticine multilayer models have been deformed under coaxial deformation (i.e. flow-dominated) is known as the brittle- boundary conditions to investigate the influence of strength to-ductile transition and is typically characterised by sys- and anisotropy on the formation of fracture networks.
    [Show full text]