Pollen Tube Development in Petunia Hybrida Following Compatible and Incompatible Intraspecific Matings

Total Page:16

File Type:pdf, Size:1020Kb

Pollen Tube Development in Petunia Hybrida Following Compatible and Incompatible Intraspecific Matings J. Cell Sd. 47, 365-383 (1981) 365 Printed in Great Britain © Company of Biologists Limited ig8i POLLEN TUBE DEVELOPMENT IN PETUNIA HYBRIDA FOLLOWING COMPATIBLE AND INCOMPATIBLE INTRASPECIFIC MATINGS MARIA HERRERO* AND H. G. DICKINSON Department of Botany, Plant Science Laboratories, University of Reading, Whiteknights, Reading RG6 2AS, U.K. SUMMARY Pollen tubes formed following compatible and incompatible intraspecific matings in Petunia have been examined with light and electron microscopes. Compatible and incom- patible tubes develop in an identical fashion on the stigma but, on entry into the top 1 mm of the stylar transmitting tissue changes occur both to the cytology of the tubes and their rates of growth. The early cytological changes are common to tubes of both compatibilities but, although both types of tube accelerate on entry into the style, incompatible tubes grow more slowly than compatible. Cytological differences became apparent between compatible and incompatible tubes following a short period of growth in the style, the latter possessing thicker cell walls and a cytoplasm packed with both organelles and reserves. Incompatible tubes subsequently burst or simply cease growth and die. The characteristic image afforded by this cytoplasm resembles that of burst or dead compatible tubes, except in that proportions of the cell com- ponents may differ. These data are discussed in terms of current models proposed to explain pollen tube growth and the operation of the self-incompatibility response in Petunia. INTRODUCTION As in many plants with gametophytic control of pollen compatibility with respect to the style, pollen tubes of Petunia formed following a self-mating fail to reach the ovary. Growing more slowly than tubes from a cross-pollination they eventually cease development in a region some two-thirds of the way down the style. Since much is known of the physiology of and structures involved in pollen tube growth, it is not unreasonable to expect that the differences in development between tubes of different compatibilities might easily be explained by changes in the ultrastructure and physio- logy of the tube cytoplasm. This has not proved to be the case. Striking ultrastructural differences between compatible and incompatible tubes were reported as early as 1966 by van der Pluijm & Linskens who described the walls of incompatible tubes as being far thicker than those derived from compatible crosses. In a comprehensive investigation into the cytology of pollen tube growth in Lyco- persicum (de Nettancourt et al. 1973), the arrest of incompatible pollen tubes was reported to result partly from the cessation of protein synthesis, itself caused by ribosome-coated endoplasmic reticulum forming into concentric whorls (de Nettan- court et al. 1974), and from the binding of an 'incompatibility protein' to wall-precursor containing bodies in the tube cytoplasm. Such results were not fully • Present address: INIA, Apartado 202, Zaragoza, Spain. 366 M. Herrero and H. G. Dickinson confirmed by work on Oenothera (Dickinson & Lawson, 19756) where growth of incompatible tubes appeared to be accompanied in the first instance by changes in the carbohydrate metabolism of the tube, with resultant changes in the cell wall. Data from this investigation did, however, reveal that considerable modification of the cytoplasmic components involved in cellulose biosynthesis is required to permit the very rapid rate of growth characteristic of these tube cells. Because the elongating pollen tubes are embedded in stylar tissue, physiological investigations have not been easy. Work by van der Donk (1974) has, however, shown differences between tubes of differing compatibilities to become evident very soon after pollination. So much so that Linskens (1975) has proposed the 'recognition' stage of the self-incompatibility response to operate in the stigma. Despite the considerable effort expended in these and other investigations, we are still in ignorance both as to the point in tube metabolism at which the self-incompa- tibility mechanism has its primary effect and, indeed, of the means by which pollen tube elongation is arrested. We report here an investigation into these events in Petunia, the results of which are discussed in terms of the accompanying changes that occur in the tissue of the pistil (Herrero & Dickinson, 1979). MATERIALS AND METHODS Details of the plant material used in this study, together with the methods of preparation of tissue for light and electron microscopy are set out in Herrero & Dickinson (1979). The methods for staining resin-embedded material with Coomassie Brilliant Blue (CBB) are described by Fisher (1968). RESULTS Pollen germination and tube growth at the stigma surface Within 30 min of pollination most grains germinate (Fig. 2) and develop a tube at least 30 jim in length. Conspicuous changes overcome the pollen during early stages in germination, firstly a fibrogranular matrix (Figs. 1, 3) that encased the mature grain Fig. 1. Colpal region of uninucleate microspore (p), still retained in the anther. Fibrils (/) are visible in the sculptured exine, facing the loculus (/). x 8620. Fig. 2. Scanning electron micrograph of mature pollen grain (g) on the stigma (s). Note the absence of any deposition on the exine surface. The globules (/) are presumably derived from the stigmatic fluid. A germinal pore (p) is also visible, x 5640. Fig. 3. Low-power transmission micrograph of material shown in Fig. 6. The exine (e) is free from fibrils. The vegetative nucleus (n) and a germinal pore (/>) are also shown, x 2050. Fig. 4. Light-microscopic preparation of pollen grain germinating on the stigma, reacted to reveal acid phosphatase. Higher levels of the enzyme, which appears to be in packets, are contained in the tube (f) than the grain (g). x 730. Pig. 5. Tip of pollen tube growing on the stigmatic surface. Note the spherical vesicles (arrows). The cell wall (w) is fibrous and disorganized, and the ground cyto- plasm very electron-opaque, x 16300. Pollen tube development in Petunia 367 368 M. Herrero and H. G. Dickinson in the anther becomes no longer detectable and, secondly, marked changes occur in the pollen cytoplasm. Here, instead of the electron-opaque protoplast characteristic of the grain prior to dispersal, a more electron-lucent cytoplasm is seen, containing increased amounts of rough endoplasmic reticulum, dictyosomes, and associated vesicles. The plasma membrane, previously smooth and featureless, now appears active, and is formed into numerous small projections associated with vesicles. Other components of this germinating protoplast are droplets of unsaturated lipid, diffuse fibrous masses, mitochondria, the vegetative nucleus and the generative cell. Although all the microbodies present in the cytoplasm appear identical under the electron microscope, light-microscopic histochemical tests indicate 2 classes of microbody to be present, one containing acid phosphatase (Fig. 4) and the other a peroxidase. The peroxidase-containing bodies survive for only some 60 min after germination, whereas those containing acid phosphatase may be found throughout development of the pollen tube. Clearly the cytoplasm of the young pollen tube on the stigma surface is contin- uous with that of the pollen grain, but since differences occur in the composition of the cytoplasm between the various regions of the tube, these areas are probably more helpfully described individually. At the tube tip, the cytoplasm is comparatively electron-opaque and the protoplast surface very irregular, such that the plasma membrane is undetectable (Fig. 5). At this surface are numerous vesicles, similar to those seen near dictyosomes deeper in the cytoplasm. The wall of the pollen tube tip consists solely of loosely woven fibrils showing no particular organization (Fig. 5). Back from the tip, the plasma membrane of the tube becomes better defined and the fibrils of the wall organized in particular directions (Fig. 6). Even at this point, the presence of callose is neither indicated by electron microscopy nor by cytochemical tests. While only small mitochondria may occasionally be discerned in the cytoplasm of the tube tip, here these organelles are far more frequent. Conspicuous also are large aggregates of fibrous material, similar to that of the tube wall, and masses of folded membrane reminiscent of the myelin figures of animal cells. Numerous vesicles still populate this cytoplasm, many of which appear associated either with the plasma membrane or with the fibrous masses (Fig. 6). Examination of the pollen tube wall close to the grain reveals it to consist of an outer, well organized fibrillar layer and an inner, electron-lucent layer adjacent to the plasma membrane (Fig. 7). Conspicuous in this cytoplasm are large numbers of Fig. 6. Transverse section of pollen tube, as depicted in Fig. 5, but further back from the tip. Large fibrous masses are present (/), as are vesicles (arrows) and mitochondria (w). «>, wall, x 21400. Fig. 7. As Fig. 5, further back along the tube towards the grain, showing the presence of a thin electron-lucent layer (p) between the plasma membrane (arrows) and the fibrous wall (w). x 15200. Fig. 8. Transverse section of pollen tube, as depicted in Figs. 6, 7. Here the cytoplasm is more electron-lucent, containing elements of rough endoplasmic reticulum (e), mitochondria (m), and a paramural body (p). The lipidic stigmatic fluid (s) is also visible, x 14170. Pollen tube development in Petunia 369 . 8 370 M. Herrero and H. G. Dickinson membranous cisternae, normally identified with paramural bodies (Fig. 8). This cytoplasm is also rich in rough endoplasmic reticulum, mitochondria, plastids and microbodies (Figs. 7, 8). Light-microscopic tests indicate callose to be present in this wall (Fig. 10) and bodies containing acid phosphatase to populate the protoplast. By the time the tube has grown to a length of some 200 /tm the vegetative nucleus and the generative cell are also to be found in this region (Fig. 9). A large vacuole has developed in the pollen grain by this stage, sometimes extending into the tube itself.
Recommended publications
  • Pollen Tube Guidance by Pistils Ensures Successful Double Fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto
    Advanced Review Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube’s journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube–pistil interactions. 2011 Wiley Periodicals, Inc.
    [Show full text]
  • Ap09 Biology Form B Q2
    AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.
    [Show full text]
  • Lesson 6: Plant Reproduction
    LESSON 6: PLANT REPRODUCTION LEVEL ONE Like every living thing on earth, plants need to make more of themselves. Biological structures wear out over time and need to be replaced with new ones. We’ve already looked at how non-vascular plants reproduce (mosses and liverworts) so now it’s time to look at vascular plants. If you look back at the chart on page 17, you will see that vascular plants are divided into two main categories: plants that produce seeds and plants that don’t produce seeds. The vascular plants that do not make seeds are basically the ferns. There are a few other smaller categories such as “horse tails” and club mosses, but if you just remember the ferns, that’s fine. So let’s take a look at how ferns make more ferns. The leaves of ferns are called fronds, and brand new leaves that have not yet totally uncoiled are called fiddleheads because they look like the scroll-shaped end of a violin. Technically, the entire frond is a leaf. What looks like a stem is actually the fern’s equivalent of a petiole. (Botanists call it a stipe.) The stem of a fern plant runs under the ground and is called a rhizome. Ferns also have roots, like all other vascular plants. The roots grow out from the bottom of the rhizome. Ferns produce spores, just like mosses do. At certain times of the year, the backside of some fern fronds will be covered with little dots called sori. Sori is the plural form, meaning more than one of them.
    [Show full text]
  • Two Expansin Genes, Atexpa4 and Atexpb5, Are Redundantly Required for Pollen Tube Growth and Atexpa4 Is Involved in Primary Root Elongation in Arabidopsis Thaliana
    G C A T T A C G G C A T genes Article Two Expansin Genes, AtEXPA4 and AtEXPB5, Are Redundantly Required for Pollen Tube Growth and AtEXPA4 Is Involved in Primary Root Elongation in Arabidopsis thaliana Weimiao Liu 1,2, Liai Xu 1,2 , Hui Lin 3 and Jiashu Cao 1,2,4,* 1 Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; [email protected] (W.L.); [email protected] (L.X.) 2 Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China 3 Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; [email protected] 4 Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China * Correspondence: [email protected]; Tel.: +86-131-8501-1958 Abstract: The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4 atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root Citation: Liu, W.; Xu, L.; Lin, H.; Cao, elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower.
    [Show full text]
  • Physiological Importance of Pectin Modifying Genes During Rice Pollen Development
    International Journal of Molecular Sciences Article Physiological Importance of Pectin Modifying Genes During Rice Pollen Development 1, 2, 1, 1 1 Yu-Jin Kim y , Ho Young Jeong y, Seung-Yeon Kang y, Jeniffer Silva , Eui-Jung Kim , Soon Ki Park 3, Ki-Hong Jung 1,* and Chanhui Lee 2,* 1 Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; [email protected] (Y.-J.K.); [email protected] (S.-Y.K.); jeniff[email protected] (J.S.); [email protected] (E.-J.K.) 2 Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea; [email protected] 3 School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; [email protected] * Correspondence: [email protected] (K.-H.J.); [email protected] (C.L.); Tel.:+82-31-201-3474 (K.-H.J.) These authors contributed equally to this work. y Received: 23 May 2020; Accepted: 7 July 2020; Published: 8 July 2020 Abstract: Although cell wall dynamics, particularly modification of homogalacturonan (HGA, a major component of pectin) during pollen tube growth, have been extensively studied in dicot plants, little is known about how modification of the pollen tube cell wall regulates growth in monocot plants. In this study, we assessed the role of HGA modification during elongation of the rice pollen tube by adding a pectin methylesterase (PME) enzyme or a PME-inhibiting catechin extract (Polyphenon 60) to in vitro germination medium. Both treatments led to a severe decrease in the pollen germination rate and elongation.
    [Show full text]
  • How Flowering Plants Discriminate Between Self and Non-Self Pollen to Prevent Inbreeding TEH-HUI KAO and ANDREW G
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12059-12065, October 1996 Symposium Paper This paper was presented at a symposium entitled "Frontiers in Plant Biology: How Plants Communicate, " organized by Hans Kende and held at the 133rd Annual Meeting of the National Academy of Sciences on April 30, 1996. How flowering plants discriminate between self and non-self pollen to prevent inbreeding TEH-HUI KAO AND ANDREW G. MCCUBBIN Department of Biochemistry and Molecular Biology, 403 Althouse Laboratory, Pennsylvania State University, University Park, PA 16802 ABSTRACT Flowering plants have evolved various ge- heteromorphic types. In the homomorphic type, flowers of the netic mechanisms to circumvent the tendency for self- same species have the same morphological type, whereas in the fertilization created by the close proximity of male and female heteromorphic type, flowers of the same species can have two reproductive organs in a bisexual flower. One such mecha- or three different morphological types, and pollination is nism is gametophytic self-incompatibility, which allows the compatible only between flowers of different morphological female reproductive organ, the pistil, to distinguish between types (2). The homomorphic type is further classified into self pollen and non-self pollen; self pollen is rejected, whereas gametophytic and sporophytic types based on whether the non-self pollen is accepted for fertilization. The Solanaceae pollen behavior in self-incompatibility interactions is deter- family has been used as a model to study the molecular and mined by the genotype of the pollen itself (gametophytic) or biochemical basis of self/non-self-recognition and self- by the genotype of the plant from which the pollen is derived rejection.
    [Show full text]
  • Chapter 12: Life Cycles: Meiosis and the Alternation of Generations
    Chapter 12 Life Cycles: Meiosis and the Alternation of Generations LIFE CYCLES TRANSFER GENETIC INFORMATION Asexual Reproduction Transfers Unchanged Genetic Information through Mitosis Sexual Reproduction Produces New Information through Meiosis and Fertilization ALTERNATION BETWEEN DIPLOID AND HAPLOID GENERATIONS Plants Vary in the Details of Their Life Cycles Sexual Cycles Can Be Heterosporic or Homosporic Only One Generation Is Multicellular in Zygotic or Gametic Life Cycles The Diploid Generation Has Become Dominant over Evolutionary Time SUMMARY 1 KEY CONCEPTS 1. Life perpetuates itself through reproduction, which is the transfer of genetic information from one generation to the next. This transfer is our definition of life cycle. Reproduction can be asexual or sexual. 2. Asexual reproduction requires a cell division know as mitosis. Asexual reproduction offers many advantages over sexual reproduction, one of which is that it requires only a single parent. A significant disadvantage of asexual reproduction is the loss of genetic diversity and the likelihood of extinction when the environment changes. 3. Sexual reproduction involves the union of two cells, called gametes, which are usually produced by two different individuals. Another kind of cell division, known as meiosis, ultimately is necessary to produce gametes. 4. Every species in the kingdom Plantae has both diploid and haploid phases--that is, plants whose cells are all diploid or all haploid. These phases are called generations, and they alternate with each other over time. 5. The fossil record reveals that the most recent groups to evolve have sporic life cycles, in which the gametophyte (haploid) generation is relatively small and the sporophyte (diploid) generation is dominant in terms of size, complexity, and longevity.
    [Show full text]
  • What Human Reproductive Organ Is Functionally Similar to This Seed?
    Fig. 30-1 What human reproductive organ is functionally similar to this seed? Overview: Transforming the World • Seeds changed the course of plant evolution, enabling their bearers to become the dominant producers in most terrestrial ecosystems • A seed consists of an embryo and nutrients surrounded by a protective coat Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig. 30-1 What human reproductive organ is functionally similar to this seed? Seeds and pollen grains are key adaptations for life on land • In addition to seeds, the following are common to all seed plants – Reduced gametophytes – Heterospory – Ovules – Pollen Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Advantages of Reduced Gametophytes • The gametophytes of seed plants develop within the walls of spores that are retained within tissues of the parent sporophyte • Protect female gametophyte from UV and desiccation (good for the land life!) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Fig. 30-2 PLANT GROUP Mosses and other Ferns and other seedless Seed plants (gymnosperms and angiosperms) nonvascular plants vascular plants Reduced, independent Reduced (usually microscopic), dependent on surrounding (photosynthetic and Gametophyte Dominant sporophyte tissue for nutrition free-living) Sporophyte Reduced, dependent on Dominant Dominant gametophyte for nutrition Gymnosperm Angiosperm Sporophyte Microscopic female (2n) gametophytes (n) inside ovulate cone Microscopic Sporophyte
    [Show full text]
  • Plant Reproduction Asexual Reproduction
    Plant Reproduction Asexual Reproduction • Asexual reproduction is natural “cloning.” Parts of the plant, such as leaves or stems, produce roots and become an independent plant. Sexual Reproduction • Sexual reproduction requires fusion of male cells in the pollen grain with female cells in the ovule. Terms to know: • Haploid: having a single set of chromosomes in each cell. • Diploid: having two sets of chromosomes in each cell, one set from each parent. • Mitosis: cell division, which produces two genetically identical diploid cells. • Meiosis: reduction division, which produces four haploid reproductive cells. Terms to know: • Spore: haploid reproductive cell that leads to a gametophyte in plant alternation of generations. • Gamete: mature haploid male or female germ cell able to unite with another of the opposite sex in sexual reproduction to form a zygote. • Zygote: diploid, eukaryotic cell formed during fertilization event between two gametes, combining DNA of each gamete, containing the genetic information to form a new individual. Terms to know: • Sporophyte: diploid, multicellular stage which develops from zygote, produced when a haploid female cell is fertilized by a haploid male cell, produces haploid spores by meiosis. • Gametophyte: haploid, multicellular stage, develops from a spore by mitosis, produces haploid gametes by mitosis. Plant Life Cycle Animals vs. Plants Plant Reproduction Animal Reproduction Alternation of No alternation of Life cycle generations generations Gametes Haploid gametes Haploid gametes Spores Haploid spores N/A (no spores) Gametes made Haploid gametophyte, Diploid organism, by by by mitosis meiosis Diploid sporophyte, by Spores made by N/A (no spores) meiosis Alternation of Generations • Plants have a double life cycle with two forms: • Sporophyte • Gametophyte Non-flowering plants • Mosses, ferns, and related plants have motile, swimming sperm.
    [Show full text]
  • Effects of Pollen Size on Siring Success in the Hermaphroditic Common
    RESEARCH ARTICLE AMERICAN JOURNAL OF BOTANY INVITED PAPER For the Special Issue: Ecology and Evolution of Pollen Performance Pollen competition in style: Eff ects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea 1 Britnie McCallum and Shu-Mei Chang 2 PREMISE OF THE STUDY: Pollen size varies greatly among fl owering plant species and has been shown to infl uence the delivery of sperm cells to the eggs. Relatively little is known, however, about the functional signifi cance of within-species genetic variation in pollen size. This study tests whether pollen size infl uences the relative siring success of a pollen donor during in vivo pollen competition experiments. METHODS: We used two groups of Ipomoea purpurea plants genetically divergent in their pollen sizes and applied equal number of pollen grains from one large-pollen and one small-pollen donor onto the same stigma. Using microsatellite genetic markers, we identifi ed the pollen parent of each of the result- ing progeny to determine the relative siring success of the competing donors. Competitions between donors of equal-sized pollen served as a control. KEY RESULTS: Diff erences in pollen size signifi cantly aff ected the relative siring success of a pollen donor; larger-grained individuals outcompeted smaller- grained competitors but not equal-sized competitors. Relative siring success, however, sometimes varied across diff erent pollen recipients. CONCLUSIONS: Pollen size can infl uence the relative siring success of diff erent individuals competing on the same stigma during postpollination processes. However, other factors, such as pollen–pistil interaction and environmental conditions, are likely to infl uence these competitions as well.
    [Show full text]
  • Ions and Pollen Tube Growth
    Plant Cell Monogr (3) R. Malhó: The Pollen Tube DOI 10.1007/7089_043/Published online: 26 January 2006 © Springer-Verlag Berlin Heidelberg 2006 Ions and Pollen Tube Growth Peter K. Hepler1 (u) · Alenka Lovy-Wheeler1 · Sylvester T. McKenna2 · Joseph G. Kunkel1 1Department of Biology, University of Massachusetts, Amherst, MA 01003, USA [email protected] 2Department of Biology, Long Island University, Brooklyn, NY 11201, USA Abstract Ions play a crucial role in the control of pollen tube growth. In this review we focus on four that seem especially important: calcium (Ca2+), protons (H+), potassium (K+), and chloride (Cl–). Ca2+ in the extracellular medium is essential for growth; it forms a steep intracellular tip-focused gradient, and exhibits a prominent extracellular tip-directed Ca2+ influx. pH is also essential for growth. H+ form an intracellular gra- dient consisting of a slightly acidic domain at the extreme apex and an alkaline band located along the clear zone. H+ also exhibit an apical influx, but in contrast to Ca2+ show an efflux along the clear zone, in the region occupied by the intracellular alka- line band. K+ and anions (possibly Cl–)appeartoparticipateinthegrowthprocess, as evidenced by the striking extracellular fluxes that are associated with tube elonga- tion. K+ exhibits an apical influx, while an anion displays an apical efflux. An exciting finding has been the discovery that pollen tube growth oscillates in rate, as do all the ionic expressions noted above. While the ionic activities and fluxes show the same period as growth, they usually do not show the same phase. The exploration of phase rela- tionships, using cross-correlation analysis, reveals that most ion expressions lag growth.
    [Show full text]
  • Botanical Aspects of Pollination
    Botanical Aspects of Pollination Teryl R. Roper Department of Horticulture, UW-Madison What is normally thought of as pollination in cranberry (and other fruit species) actually consists of a number of steps that must occur for fruit set and maturation to proceed. Cranberries have perfect flowers, that is to say, cranberry flowers have both male and female parts within the same flower. Cranberries are also apparently self fruitful, meaning that pollen from an individual flower when deposited on the stigma of the same flower will lead to fruit set and maturation. The purpose of this article is to outline in a simple way the steps that occur between deposition of pollen on a cranberry stigma and development of a mature fruit. Pollination Pollination is the movement of pollen from anther to stigma. Anthers are the male portion of the flower and are the site of pollen production (Figure 1.) The stigma is the outer portion of the female portions of flowers. It is connected to the ovary by a long stalk called a style. The stigma is receptive to pollination for up to seven days after emergence. After that point, any pollen deposited on the stigma would be inconsequential. Cranberry pollen is shed as a tetrad (four pollen grains fused together). This is a relatively large pollen that is not easily wind blown. Further, the stigmatic surface tends to point downwards making it unlikely that windblown pollen could land on it. Insects are the common pollinators (agents of pollen transfer) in cranberry. Once pollen is deposited on a receptive stigma the pollen grain germinates and a pollen tube grows through the style to the ovary.
    [Show full text]