Environmental Drivers of Benthic Fish Distribution in and Around Barrow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boreogadus Saida) and Safron Cod (Eleginus Gracilis) Early Life Stages in the Pacifc Arctic
Polar Biology https://doi.org/10.1007/s00300-019-02494-4 ORIGINAL PAPER Spatio‑temporal distribution of polar cod (Boreogadus saida) and safron cod (Eleginus gracilis) early life stages in the Pacifc Arctic Cathleen D. Vestfals1 · Franz J. Mueter2 · Janet T. Dufy‑Anderson3 · Morgan S. Busby3 · Alex De Robertis3 Received: 24 September 2018 / Revised: 15 March 2019 / Accepted: 18 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Polar cod (Boreogadus saida) and safron cod (Eleginus gracilis) are key fshes in the Arctic marine ecosystem, serving as important trophic links between plankton and apex predators, yet our understanding of their life histories in Alaska’s Arctic is extremely limited. To improve our knowledge about their early life stages (ELS), we described the spatial and temporal distributions of prefexion larvae to late juveniles (to 65 mm in length) in the Chukchi and western Beaufort seas based on surveys conducted between 2004 and 2013, and examined how their abundances varied in response to environmental factors. Species-specifc diferences in habitat use were found, with polar cod having a more ofshore and northern distribution than safron cod, which were found closer inshore and farther south. Polar cod prefexion and fexion larvae were encountered throughout the sampling season across much of the shelf, which suggests that spawning occurs over several months and at multiple locations, with Barrow Canyon potentially serving as an important spawning and/or retention area. Polar cod ELS were abundant at intermediate temperatures (5.0–6.0 °C), while safron cod were most abundant at the highest temperatures, which suggests that safron cod may beneft from a warming Arctic, while polar cod may be adversely afected. -
2021 Alaska Studies Plan
U.S. Department of the Interior Bureau of Ocean Energy Management Alaska Outer Connental Shelf Region Anchorage, Alaska November 2020 Prepared by U.S. Department of the Interior Bureau of Ocean Energy Management Anchorage, Alaska Office 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823 November 2020 The Environmental Studies Program has chosen to “go green.” This document can be accessed in electronic format at http://www.boem.gov/akstudies/. For assistance accessing the document or for further information about the Studies Program and our planning process, please contact [email protected] or Dr. Heather Crowley at [email protected]. The inclusion of study profiles in this document does not constitute a commitment by the U.S. Department of the Interior, Bureau of Ocean Energy Management to conduct or fund any or all of the studies. Method of procurement may be selected at the discretion of BOEM. The scope of the studies is subject to change prior to initiation of any work. Any use of trade names is for descriptive purposes only and does not constitute endorsement of these products by the Bureau of Ocean Energy Management. Cover Image: Sea urchins in the intertidal zone, Cook Inlet, Alaska. Photo credit: “ShoreZone Imaging and Mapping along the Alaska Peninsula” project team; OCS Study BOEM 2018-037. United States Department of the Interior BUREAU OF OCEAN ENERGY MANAGEMENT Alaska Regional Office 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823 November 2, 2020 Dear Stakeholder: Thank you for your interest in the Environmental Studies Program (ESP) of the Bureau of Ocean Energy Management (BOEM). -
Chukchi Sea Itrs 2013
Biological Opinion for Polar Bears (Ursus maritimus) and Conference Opinion for Pacific Walrus (Odobenus rosmarus divergens) on the Chukchi Sea Incidental Take Regulations Prepared by: U.S. Fish and Wildlife Service Fairbanks Fish and Wildlife Field Office 110 12th Ave, Room 110 Fairbanks, Alaska 99701 May 20, 2013 1 Table of Contents Introduction ................................................................................................................................5 Background on Section 101(a)(5) of MMPA ...........................................................................6 The AOGA Petition .................................................................................................................6 History of Chukchi Sea ITRS ..............................................................................................7 Relationship of ESA to MMPA ...........................................................................................7 MMPA Terms: ........................................................................................................................7 ESA Terms: ............................................................................................................................8 The Proposed Action ...................................................................................................................8 Information Required to Obtain a Letter of Authorization .......................................................9 Specific Measures of LOAs .................................................................................................. -
Alaska Arctic Marine Fish Ecology Catalog
Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Alaska Arctic Marine Fish Ecology Catalog Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs of various fish studied for this report. Background photograph shows Arctic icebergs and ice floes. Photograph from iStock™, dated March 23, 2011. Alaska Arctic Marine Fish Ecology Catalog By Lyman K. Thorsteinson and Milton S. Love, editors Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov. Disclaimer: This Scientific Investigations Report has been technically reviewed and approved for publication by the Bureau of Ocean Energy Management. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. -
Trophic Dynamics and Stock Characteristics of Snow Crabs, Chionoecetes Opilio, in the Alaskan Arctic
Trophic dynamics and stock characteristics of snow crabs, Chionoecetes opilio, in the Alaskan Arctic Item Type Thesis Authors Divine, Lauren Mallory Download date 04/10/2021 10:11:16 Link to Item http://hdl.handle.net/11122/6810 TROPHIC DYNAMICS AND STOCK CHARACTERISTICS OF SNOW CRABS, CHIONOECETES OPILIO, IN THE ALASKAN ARCTIC By Lauren Mallory Divine, B.S., M.S. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Marine Biology University of Alaska Fairbanks August 2016 APPROVED: Katrin Iken, Committee Chair Bodil A. Bluhm, Committee Member James R. Lovvorn, Committee Member Gordon H. Kruse, Committee Member Franz J. Mueter, Committee Member Sarah M. Hardy, Department Chair, Department of Marine Biology Bradley Moran, Dean, School of Fisheries and Ocean Sciences John C. Eichelberger, Dean, Graduate School ABSTRACT Arctic waters off the coast of Alaska have become increasingly open to human activities via dramatic climatic changes, such as reduced sea ice thickness and extent, warming ocean temperatures, and increased freshwater input. This research advances knowledge of snow crab trophic dynamics and stock characteristics in Arctic waters off the Alaska coast. Here, I provided baseline information regarding snow crab position in Beaufort Sea benthic food webs, its specific dietary habits in the Chukchi and Beaufort seas, and expanded upon previously limited life-history and population dynamic data in the Chukchi and Beaufort seas. I first detailed benthic food webs on the Alaskan Beaufort Sea shelf and snow crab trophic positions within these food webs using stable S13C and S15N isotope analysis. Water column and sediment particulate organic matter (POM) were used as primary food web end members. -
Late Summer Distribution of Cetaceans Near Barrow, Alaska: Results from Aerial Surveys Conducted During the Bowhead Whale Feeding Ecology Study, 2007–11
Late Summer Distribution of Cetaceans near Barrow, Alaska: Results from Aerial Surveys Conducted During the Bowhead Whale Feeding Ecology Study, 2007–11 KIM E. W. SHELDEN, JULIE A. MOCKLIN, KIMBERLY T. GOETZ, DAVID J. RUGH, LINDA VATE BRATTSTRÖM, and NANCY A. FRIDAY Introduction arctic. For management purposes, four Endangered Species Act (Muto et bowhead whale stocks are currently al., 2016). These stocks occur in the Bowhead whales, Balaena mystice- recognized by the International Whal- Okhotsk Sea (Russian waters), Da- tus, are distributed in seasonally ice ing Commission (IWC) (IWC, 2010) vis Strait and Hudson Bay (western covered waters of the Arctic and sub- and are protected under the U.S. Ma- Greenland and eastern Canadian wa- rine Mammal Protection Act and U.S. ters), the eastern North Atlantic (the Spitsbergen stock near Svalbard), and Kim Shelden ([email protected]), Julie the Bering/Chukchi/Beaufort seas. Mocklin, Kim Goetz, Linda Vate Brattström, Institute of Water and Atmospheric Research, and Nancy Friday are with the Marine Mam- Ltd., 301 Evans Bay Parade, Greta Point, Wel- The latter is the Western Arctic mal Laboratory (MML), Alaska Fisheries Sci- lington 6021 NZ. Dave Rugh (retired MML) is stock, the largest remnant popula- ence Center, National Marine Fisheries Service, at 17416 95th Ave. NE, Bothell, WA 98011. The NOAA, 7600 Sand Point Way N.E., Seattle, findings and conclusions in this paper are those tion and only stock found within U.S. WA 98115-6349. Julie Mocklin and Linda Vate of the author(s) and do not necessarily represent waters (Rugh et al., 2003), gener- Brattström are currently with the Joint Institute the views of the National Marine Fisheries Ser- ally north of lat. -
2013 Chukchi Sea 2D Seismic Survey Environmental Evaluation Document
PUBLIC OCS Permit 13-02 2013 CHUKCHI SEA 2D SEISMIC SURVEY ENVIRONMENTAL EVALUATION DOCUMENT Prepared for: TGS 2500 CityWest Boulevard Suite 2000 Houston, TX 77042 USA Tel: +1 713 860 2100 Fax: +1 713 334 3308 www.tgs.com Steve Whidden, P. Geophysist TGS Program Manager Tel: + 1 403 852 6115 Prepared by: ASRC Energy Services, Alaska Inc. 3900 C Street, Suite 700 Anchorage, Alaska 99503 Tel: +1 907 339 6200 Fax: +1 907 339 5475 PUBLIC OCS Permit 13-02 PUBLIC OCS Permit 13-02 Environmental Evaluation Document Chukchi Sea, Alaska Table of Contents Page Executive Summary ................................................................................................................................ ES-1 Project Description .................................................................................................................... ES-1 Purpose of the Environmental Evaluation Document ................................................................ ES-1 Regulatory Setting ..................................................................................................................... ES-2 Community Outreach and Stakeholder Engagement ................................................................. ES-2 Mitigation and Monitoring ......................................................................................................... ES-2 Biological, Physical, Socioeconomic, and Subsistence Resources Effects ................................ ES-3 1.0 Introduction .................................................................................................................................. -
THE Official Magazine of the OCEANOGRAPHY SOCIETY
OceThe OfficiaaL MaganZineog of the Oceanographyra Spocietyhy CITATION Bluhm, B.A., A.V. Gebruk, R. Gradinger, R.R. Hopcroft, F. Huettmann, K.N. Kosobokova, B.I. Sirenko, and J.M. Weslawski. 2011. Arctic marine biodiversity: An update of species richness and examples of biodiversity change. Oceanography 24(3):232–248, http://dx.doi.org/10.5670/ oceanog.2011.75. COPYRIGHT This article has been published inOceanography , Volume 24, Number 3, a quarterly journal of The Oceanography Society. Copyright 2011 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. downLoaded from www.tos.org/oceanography THE CHANGING ARctIC OCEAN | SPECIAL IssUE on THE IntERNATIonAL PoLAR YEAr (2007–2009) Arctic Marine Biodiversity An Update of Species Richness and Examples of Biodiversity Change Under-ice image from the Bering Sea. Photo credit: Miller Freeman Divers (Shawn Cimilluca) BY BODIL A. BLUHM, AnDREY V. GEBRUK, RoLF GRADINGER, RUssELL R. HoPCROFT, FALK HUEttmAnn, KsENIA N. KosoboKovA, BORIS I. SIRENKO, AND JAN MARCIN WESLAwsKI AbstRAct. The societal need for—and urgency of over 1,000 ice-associated protists, greater than 50 ice-associated obtaining—basic information on the distribution of Arctic metazoans, ~ 350 multicellular zooplankton species, over marine species and biological communities has dramatically 4,500 benthic protozoans and invertebrates, at least 160 macro- increased in recent decades as facets of the human footprint algae, 243 fishes, 64 seabirds, and 16 marine mammals. -
Ice Seal Movements and Foraging: Village-Based Satellite Tracking and Collection of Traditional Ecological Knowledge Regarding Ringed and Bearded Seals
_______________ OCS Study BOEM 2019-079 Ice Seal Movements and Foraging: Village-Based Satellite Tracking and Collection of Traditional Ecological Knowledge Regarding Ringed and Bearded Seals – Final Report NMFS Permit #20466 U.S. Department of the Interior Bureau of Ocean Energy Management Alaska Region www.boem.gov OCS Study BOEM 2019-079 _______________ OCS Study BOEM 2019-079 Cover photo: An adult male ringed seal (RS19-03-M) captured near Utqiaġvik, Alaska, on 23 June 2019 with a satellite-linked transmitter (SPLASH tag) epoxied to the hair on its back. Photo by Kevin Fisher. Prepared under BOEM Contract M13PC00015 ii Pinniped Movements and Foraging: Village-Based Satellite Tracking and Collection of Traditional Ecological Knowledge Regarding Ringed and Bearded Seals Authors Lori T. Quakenbush Justin A. Crawford Mark. A. Nelson Justin R. Olnes Prepared under BOEM Contract M13PC00015 by Alaska Department of Fish and Game P.O. Box 25526 Juneau, Alaska 99802-5526 Published by U.S. Department of the Interior Bureau of Ocean Energy Management Anchorage, Alaska Alaska Outer Continental Shelf Region November 2019 iii DISCLAIMER This report was prepared under contract between the Bureau of Ocean Energy Management (BOEM) and the Alaska Department of Fish and Game. This report has been technically reviewed by BOEM, and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of BOEM, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY This report may be downloaded from the boem.gov website through the Environmental Studies Program Information System (ESPIS) by referencing OCS Study BOEM 2019-079. -
A Community Workshop on the Conservation and Management of Walruses on the Chukchi Sea Coast
ADAPTING TO CLIMATE CHANGE: A COMMUNITY WORKSHOP ON THE CONSERVATION AND MANAGEMENT OF WALRUSES ON THE CHUKCHI SEA COAST FEBRUARY 23-24, 2012 IÑUPIAT HERITAGE CENTER BARROW, ALASKA Photo Credit: Bill Tracey Sr., Point Lay, Alaska ACKNOWLEDGEMENTS This workshop was organized and sponsored by the U.S. Fish and Wildlife Service, Eskimo Walrus Commission, Alaska Department of Fish and Game, and the North Slope Borough Department of Wildlife Management. The workshop planning committee consisted of: Charles Brower, Joel Garlich-Miller, Vera Metcalf, Willard Neakok, Enoch Oktollik, Ronald Oviok, Sr., Leslie Pierce, and Lori Quakenbush. Alaska Summit Enterprises coordinated and facilitated the meeting; Cynthia Callivrourssi – project manager, Christine Celentano - meeting facilitator, Karen Morgan – recorder, and Joyce Winton – travel and logistics coordinator. Billy Adams, Michael Pederson, Joseph Sage, and Ernest Nageak provided logistical support and transportation to workshop participants while in Barrow. Funding for the workshop was provided by the U.S. Fish and Wildlife Service. ADAPTING TO CLIMATE CHANGE: A COMMUNITY WORKSHOP ON THE CONSERVATION AND MANAGEMENT OF WALRUSES ON THE CHUKCHI SEA COAST FEBRUARY 23-24, 2012 IÑUPIAT HERITAGE CENTER BARROW, ALASKA SPONSORED BY: U.S. FISH AND WILDLIFE SERVICE ESKIMO WALRUS COMMISSION ALASKA DEPARTMENT OF FISH AND GAME NORTH SLOPE BOROUGH DEPARTMENT OF WILDLIFE MANAGEMENT WORKSHOP PROCEEDINGS COMPILED AND EDITED BY: JOEL GARLICH-MILLER, USFWS USFWS ADMINISTRATIVE REPORT, R7/MMM 12-1 MARINE MAMMALS -
Safeguarding Important Areas in the U.S. Arctic Ocean
A brief from Aug 2015 Getty Images Milo Burcham Safeguarding Important Areas in the U.S. Arctic Ocean Overview The U.S. Arctic Ocean supports unique species found nowhere else in the country and is home to indigenous Inupiat people who have thrived on its bounty for thousands of years. The Pew Charitable Trusts believes that a balance must be struck between responsible economic development and preservation of ecosystem integrity and function in the Arctic Ocean. Safeguarding especially important areas can help the rapidly changing Arctic environment remain healthy, while providing local communities and the businesses that have invested there with more certainty about the future management of the region. Marine life is abundant throughout the Beaufort and Chukchi seas. But recent syntheses of the best available science support the idea that certain areas, often those with distinct physical or oceanographic features, make exceptional contributions to ecosystem function and subsistence.1 These sites have characteristics that make them important migration routes; provide vital habitat for marine mammal breeding, spawning, or foraging; and offer ideal conditions for the microscopic organisms that form the foundation of the marine food web. They are also crucial to the long-term health of the wildlife that sustain subsistence activities and to the spiritual, nutritional, and cultural well-being of the region’s communities. In January 2015, President Barack Obama permanently withdrew 9.8 million acres of Arctic marine waters from oil and gas leasing under the Outer Continental Shelf Lands Act.2 The five areas set aside include: a coastal corridor in the Chukchi Sea, two whaling areas adjacent to the communities of Barrow and Kaktovik, the northwestern waters of Barrow Canyon, and a shallow shelf known as Hanna Shoal. -
Recommended Physical Oceanographic Studies in the Alaskan Beaufort Sea
U.S. Department of the Interior Mineral Management Service OCS Study MMS 2010-018 RECOMMENDED PHYSICAL OCEANOGRAPHIC STUDIES IN THE ALASKAN BEAUFORT SEA Thomas J. Weingartner1, Robert S. Pickart2, and Mark A. Johnson1 1Institute of Marine Science, University of Alaska, Fairbanks, AK 99775 1Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 April 2010 Final Report MMS Contract: M06PC00030 RECOMMENDED PHYSICAL OCEANOGRAPHIC STUDIES IN THE ALASKAN BEAUFORT SEA Thomas J. Weingartner1, Robert S. Pickart2, and Mark A. Johnson1 1Institute of Marine Science, University of Alaska, Fairbanks, AK 99775 1Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543April 2010 This study was funded by the U.S. Department of the Interior, Minerals Management Service (MMS), Alaska Outer Continental Shelf Region, Anchorage Alaska, under Contract No. M06PC00030, as part of the MMS Environmental Studies Program. Final Report April 2010 This study was funded by the U.S. Department of the Interior, Minerals Management Service (MMS), Alaska Outer Continental Shelf Region, Anchorage Alaska, under Contract No. M06PC00030, as part of the MMS Environmental Studies Program. This report has been reviewed by the Minerals Management Service and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. i TABLE OF CONTENTS ABSTRACT. .1 1. INTRODUCTION. 2 2. APPLICABLE TECHNOLOGIES. .3 2.1 Airborne Microwave Remote Sensing Radiometers for Measuring Salinity. 3 2.2 High-frequency shore-based surface current mapping radars (HFR) . 4 2.3 Airborne electromagnetic measurements of sea ice thickness.