Late Summer Distribution of Cetaceans Near Barrow, Alaska: Results from Aerial Surveys Conducted During the Bowhead Whale Feeding Ecology Study, 2007–11

Total Page:16

File Type:pdf, Size:1020Kb

Late Summer Distribution of Cetaceans Near Barrow, Alaska: Results from Aerial Surveys Conducted During the Bowhead Whale Feeding Ecology Study, 2007–11 Late Summer Distribution of Cetaceans near Barrow, Alaska: Results from Aerial Surveys Conducted During the Bowhead Whale Feeding Ecology Study, 2007–11 KIM E. W. SHELDEN, JULIE A. MOCKLIN, KIMBERLY T. GOETZ, DAVID J. RUGH, LINDA VATE BRATTSTRÖM, and NANCY A. FRIDAY Introduction arctic. For management purposes, four Endangered Species Act (Muto et bowhead whale stocks are currently al., 2016). These stocks occur in the Bowhead whales, Balaena mystice- recognized by the International Whal- Okhotsk Sea (Russian waters), Da- tus, are distributed in seasonally ice ing Commission (IWC) (IWC, 2010) vis Strait and Hudson Bay (western covered waters of the Arctic and sub- and are protected under the U.S. Ma- Greenland and eastern Canadian wa- rine Mammal Protection Act and U.S. ters), the eastern North Atlantic (the Spitsbergen stock near Svalbard), and Kim Shelden ([email protected]), Julie the Bering/Chukchi/Beaufort seas. Mocklin, Kim Goetz, Linda Vate Brattström, Institute of Water and Atmospheric Research, and Nancy Friday are with the Marine Mam- Ltd., 301 Evans Bay Parade, Greta Point, Wel- The latter is the Western Arctic mal Laboratory (MML), Alaska Fisheries Sci- lington 6021 NZ. Dave Rugh (retired MML) is stock, the largest remnant popula- ence Center, National Marine Fisheries Service, at 17416 95th Ave. NE, Bothell, WA 98011. The NOAA, 7600 Sand Point Way N.E., Seattle, findings and conclusions in this paper are those tion and only stock found within U.S. WA 98115-6349. Julie Mocklin and Linda Vate of the author(s) and do not necessarily represent waters (Rugh et al., 2003), gener- Brattström are currently with the Joint Institute the views of the National Marine Fisheries Ser- ally north of lat. 54°N and south of for the Study of the Atmosphere and Ocean vice, NOAA. (JISAO), 3737 Brooklyn Ave NE, Seattle, WA lat. 75°N in the western Arctic Ba- 98105. Kim Goetz is currently with the National doi: https://doi.org/10.7755/MFR.79.2.1 sin (Moore and Reeves, 1993). This ABSTRACT—The aerial survey compo- years. Bowhead distribution was oriented area (e.g., 2008 and 2010). The lowest per- nent of the Bowhead Whale Feeding Ecol- along the barrier islands and 20 m isobath cent feeding both visually and photographi- ogy Study (BOWFEST) was designed to on the continental shelf and also included cally occurred in 2008, the only year whale document patterns and variability in the parts of the Barrow Canyon and shelf break swim direction was predominately westerly, timing and distribution of bowhead whales, that were close to shore. Gray whale distri- and open mouth (skim) feeding behavior Balaena mysticetus, and to provide an es- bution oriented along the Barrow Canyon was not observed. timate of temporal and spatial habitat use shelf break near the 50 m isobath; while Although the paucity of individual re- near Barrow, Alaska. Aerial surveys were beluga distribution ellipses centered over sightings (based on photographic recap- conducted from late August to mid-Septem- Barrow Canyon and offshore slope waters. tures) between survey days (3 matches out ber during the period 2007–11 for a total A four-parameter presence-absence model of 664 identified whales) suggested very low of 171.1 hours flown. In addition to the fo- (bathymetry, bathymetric slope, distance residence times, the photogrammetric sam- cal species, observed species included gray from shore, and distance from the shelf ple (654 whales) was largely comprised of whales, Eschrichtius robustus; one hump- break) found both distance from shore and juveniles (65%). Young whales typically are back whale, Megaptera novaeangliae; be- shelf break were significant in predicting unmarked and, therefore, not matched (only luga whales, Delphinapterus leucas; ringed the presence of bowhead whales. All four 3–6% were highly or moderately marked in seals, Phoca hispida; bearded seals, Erigna- parameters were significant in predict- at least one zone on the body). All intrayear thus barbatus; walrus, Odobenus rosmarus; ing gray whale presence. Only bathymetry matched whales moved east of their original and polar bears, Ursus maritimus. Small was significant in predicting beluga whale sighting location, which was not expected pinnipeds, such as ringed seal and spotted presence. so close to the westbound fall migration. seals, Phoca largha, were often difficult to During the 5-year study, 664 unique bow- The BOWFEST aerial study provides differentiate and identify to species given head whales were identified from 1,415 pho- a 5-year record of late summer presence the relatively high survey altitude of 310 m tographic images. Observers noted feeding of cetaceans in the western Beaufort Sea, (1,000 ft). behavior during 7–50% of sightings and adding to the growing body of knowledge Habitat partitioning was evident among 15–49% of photographed whales exhibited on these species and their habitat prefer- the cetacean species observed in great- feeding behavior in any given year. Of the ences in this region. This information is est numbers: bowhead, gray, and beluga individual whales that were visually or pho- particularly important since the western whales. Abundance estimates during this tographically identified as feeding, 81–90% Beaufort Sea is undergoing rapid change time period ranged from 22 (CV 0.80) to were in shelf waters, and the majority of as the bowhead whale population con- 213 (CV 0.30) bowhead whales, 1 (CV those were clustered around the 20 m iso- tinues to grow, other species extend their 1.01) to 18 (CV 0.28) gray whales, and 0 bath. More feeding behavior was observed ranges and increase their numbers in the to 948 (CV 0.66) beluga whales. Standard and photographed during years when most area, and industrial activity, commercial deviation ellipses showed each species oc- sightings occurred on the shelf (2007, 2009, fishing, and shipping operations are ex- cupied a unique region within the study and 2010) but not necessarily in years when pected to increase in the Arctic as sea ice area with slight overlaps occurring in some bowheads were most abundant in the study decreases. 79(2) 1 stock migrates annually from the Ber- al., 1986; Landino et al., 1994). Dur- rameters, such as bathymetry, currents, ing Sea through the Chukchi to the ing the spring, most of the migration temperatures, ice conditions, and prey Beaufort Sea in the spring. During appears to be a steady flow of whales availability. the spring migration, bowhead whales traveling from the Chukchi Sea to the The Bowhead Whale Feeding Ecol- typically begin arriving in the Barrow Beaufort Sea; however, Carroll et al. ogy Study (BOWFEST) was initiated (now Utqiagævik), Alaska, area in early (1987) reported what appeared to be in May 2007 through an interagency April and continue migrating through feeding behavior (i.e., frequent turns) agreement (formal title: “The bow- until late June (Moore and Reeves, by some whales. Bowhead whales with head whale feeding variability in the 1993). The fall migration generally mud on their dorsal surfaces were also western Beaufort Sea: feeding obser- begins in early September and con- seen during the spring migration near vations and oceanographic measure- tinues to mid-October as bowhead Barrow, indicating that they were near ments and analyses”) between the U.S. whales migrate west across inner shelf the sea bottom, presumably feeding on Department of the Interior’s Minerals waters (Moore et al., 2000) out of the epibenthic prey (Mocklin et al., 2012). Management Service (MMS, now the Beaufort and into the Chukchi Sea, as Braham et al. (1979) stated that Es- Bureau of Ocean Energy Manage- evidenced during previous aerial sur- kimo whalers had occasionally seen ment, BOEM) and the Alaska Fisher- veys (Moore et al., 1989; Moore and bowhead whales near Point Barrow ies Science Center’s National Marine Clarke, 1992; Richardson1; Ljungblad during the summer, some of which Mammal Laboratory (NMML, now et al.2) and satellite-tracking (Quaken- were feeding east of Point Barrow Marine Mammal Laboratory, MML). bush et al., 2010; Citta et al., 2015). close to shore. In 1989, bowhead The goal of this 5-year study was to These whales are important to Na- whale feeding activity was reported facilitate future oil and gas develop- tive subsistence hunters of Alaska, off Barrow from late July to mid-Au- ment-related mitigation by estimating Russia, and Canada, and hunting is gust (George and Carroll5). Moore relationships among bowhead whale regulated through IWC quotas shared (1992) compiled additional records of prey, oceanographic conditions, and between Alaska and the Russian Fed- bowhead whales in the northeastern bowhead whale feeding behavior in eration.3 Barrow is the largest of the Chukchi Sea, comprising 26 sightings the western Beaufort Sea, with empha- Native subsistence whaling villages, that occurred from late July to early sis on identifying predictable aspects landing roughly half of the total num- September between 1975 and 1991. in those relationships. The study fo- ber of bowhead whales hunted each These sightings indicated that bow- cused on late summer oceanography year (Suydam and George4). head whales may occupy areas near and prey densities relative to bow- Bowhead whale feeding activity has Barrow during the summer months. head whale distribution over continen- been well documented in the eastern In the early 2000’s, local hunters re- tal shelf waters between the coast and Beaufort Sea (e.g., Richardson1) but ported bowhead whales feeding in ech- lat. 72°N, and between long. 152ºW only occasionally observed in other elon formation (i.e., animals lined up and 157ºW, which is north and east of areas along the migratory route, par- in a v-shaped pattern, head to tail) near Point Barrow, Alaska. Projects were ticularly during the fall (Ljungblad et Barrow in late August (George et al.6).
Recommended publications
  • Boreogadus Saida) and Safron Cod (Eleginus Gracilis) Early Life Stages in the Pacifc Arctic
    Polar Biology https://doi.org/10.1007/s00300-019-02494-4 ORIGINAL PAPER Spatio‑temporal distribution of polar cod (Boreogadus saida) and safron cod (Eleginus gracilis) early life stages in the Pacifc Arctic Cathleen D. Vestfals1 · Franz J. Mueter2 · Janet T. Dufy‑Anderson3 · Morgan S. Busby3 · Alex De Robertis3 Received: 24 September 2018 / Revised: 15 March 2019 / Accepted: 18 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Polar cod (Boreogadus saida) and safron cod (Eleginus gracilis) are key fshes in the Arctic marine ecosystem, serving as important trophic links between plankton and apex predators, yet our understanding of their life histories in Alaska’s Arctic is extremely limited. To improve our knowledge about their early life stages (ELS), we described the spatial and temporal distributions of prefexion larvae to late juveniles (to 65 mm in length) in the Chukchi and western Beaufort seas based on surveys conducted between 2004 and 2013, and examined how their abundances varied in response to environmental factors. Species-specifc diferences in habitat use were found, with polar cod having a more ofshore and northern distribution than safron cod, which were found closer inshore and farther south. Polar cod prefexion and fexion larvae were encountered throughout the sampling season across much of the shelf, which suggests that spawning occurs over several months and at multiple locations, with Barrow Canyon potentially serving as an important spawning and/or retention area. Polar cod ELS were abundant at intermediate temperatures (5.0–6.0 °C), while safron cod were most abundant at the highest temperatures, which suggests that safron cod may beneft from a warming Arctic, while polar cod may be adversely afected.
    [Show full text]
  • Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
    Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth.
    [Show full text]
  • 2021 Alaska Studies Plan
    U.S. Department of the Interior Bureau of Ocean Energy Management Alaska Outer Connental Shelf Region Anchorage, Alaska November 2020 Prepared by U.S. Department of the Interior Bureau of Ocean Energy Management Anchorage, Alaska Office 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823 November 2020 The Environmental Studies Program has chosen to “go green.” This document can be accessed in electronic format at http://www.boem.gov/akstudies/. For assistance accessing the document or for further information about the Studies Program and our planning process, please contact [email protected] or Dr. Heather Crowley at [email protected]. The inclusion of study profiles in this document does not constitute a commitment by the U.S. Department of the Interior, Bureau of Ocean Energy Management to conduct or fund any or all of the studies. Method of procurement may be selected at the discretion of BOEM. The scope of the studies is subject to change prior to initiation of any work. Any use of trade names is for descriptive purposes only and does not constitute endorsement of these products by the Bureau of Ocean Energy Management. Cover Image: Sea urchins in the intertidal zone, Cook Inlet, Alaska. Photo credit: “ShoreZone Imaging and Mapping along the Alaska Peninsula” project team; OCS Study BOEM 2018-037. United States Department of the Interior BUREAU OF OCEAN ENERGY MANAGEMENT Alaska Regional Office 3801 Centerpoint Drive, Suite 500 Anchorage, Alaska 99503-5823 November 2, 2020 Dear Stakeholder: Thank you for your interest in the Environmental Studies Program (ESP) of the Bureau of Ocean Energy Management (BOEM).
    [Show full text]
  • Variation of Bowhead Whale Progesterone Concentrations Across Demographic Groups and Sample Matrices
    Vol. 22: 61–72, 2013 ENDANGERED SPECIES RESEARCH Published online November 7 doi: 10.3354/esr00537 Endang Species Res FREEREE ACCESSCCESS Variation of bowhead whale progesterone concentrations across demographic groups and sample matrices Nicholas M. Kellar1,*, Jennifer Keliher1, Marisa L. Trego1,2, Krista N. Catelani1,2, Cyd Hanns3, J. C. ‘Craig’ George3, Cheryl Rosa3 1Protected Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Services, National Oceanic and Atmospheric Administration, 8901 La Jolla Shores Dr., La Jolla, California 92037, USA 2Ocean Associates, 4007 N. Abingdon St., Arlington, Virginia 22207, USA 3North Slope Borough, Department of Wildlife Management, PO Box 69, Barrow, Alaska 99723, USA ABSTRACT: Bowhead whale Balaena mysticetus progesterone concentrations were measured in different sample matrices (serum, blubber, and urine) to investigate (1) concordance among sam- ple type and (2) variation among life-history class. Samples were collected from subsistence- hunted whales (n = 86) taken from 1999 to 2009. In general, irrespective of sample matrix, preg- nant females had the highest concentrations by orders of magnitude, followed by mature animals of both sexes, and subadults had the lowest concentrations. Subadult males and females had sim- ilar progesterone concentrations in all sample matrices measured. When pregnant animals were included in our analyses, permuted regression models indicated a strong positive relationship between serum and blubber progesterone levels (r2 = 0.894, p = 0.0002). When pregnant animals were not included, we found no significant relationship between serum and blubber levels (r2 = 0.025, p = 0.224). These results suggest that progesterone concentrations are mirrored in these sample types over longer periods (i.e.
    [Show full text]
  • The Bowhead Vs. the Gray Whale in Chukotkan Aboriginal Whaling IGOR I
    ARCTIC VOL. 40, NO. 1 (MARCH 1987) P. 16-32 The Bowhead vs. the Gray Whale in Chukotkan Aboriginal Whaling IGOR I. KRUPNIK’ (Received 5 September 1984; accepted in revised form 22 July 1986) ABSTRACT. Active whaling for large baleen whales -mostly for bowhead (Balaena mysricetus) and gray whales (Eschrichrius robustus)-has been practiced by aborigines on the Chukotka Peninsula since at least the early centuries of the Christian era. Thehistory of native whaling off Chukotka may be divided into four periods according to the hunting methods used and the primary species pursued: ancient or aboriginal (from earliest times up to the second half of the 19th century); rraditional (second half of the 19th century to the1930s); transitional (late 1930s toearly 1960s); and modern (from the early 1960s). The data on bowhead/gray whale bone distribution in theruins of aboriginal coastal sites, available catch data from native settlements from the late 19th century and local oral tradition prove to be valuable sources for identifying specific areas of aboriginal whaling off Chukotka. Until the 1930s, bowhead whales generally predominated in the native catch; gray whales were hunted periodically or locally along restricted parts of the coast. Some 8-10 bowheads and 3-5 gray whales were killed on the average in a “good year”by Chukotka natives during the early 20th century. Around the mid-20th century, however, bowheads were completely replaced by gray whales. On the basis of this experience, the author believes that the substitution of gray whales for bowheads, proposed recently by conservationists for modemAlaska Eskimos, would be unsuccessful.
    [Show full text]
  • Bowhead Whale (Balaena Mysticetus) and Killer Whale (Orcinus Orca) Co-Occurrence in the U.S
    1 Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2 2009–2018: evidence from bowhead whale carcasses 3 4 Amy L. Willoughby1,2, Megan C. Ferguson2,3, Raphaela Stimmelmayr4,5, Janet T. Clarke1,2, Amelia A. Brower1,2 5 6 Contact e-mail: [email protected] 7 8 1 University of Washington, Joint Institute for the Study of the Atmosphere and Ocean, Seattle, WA, USA 9 2 Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA, Seattle, WA, USA 10 3 School of Fishery and Aquatic Sciences, University of Washington, Seattle, WA, USA 11 4 Department of Wildlife Management, North Slope Borough, Utqiaġvik, AK, USA 12 5 Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA 13 14 15 ABSTRACT 16 Imagery and sighting data on bowhead whale (Balaena mysticetus) carcasses documented from 2009 to 2018 during 17 aerial surveys in the eastern Chukchi and western Beaufort seas have provided evidence for killer whale (Orcinus 18 orca) predation on bowhead whales of the Bering-Chukchi-Beaufort Seas stock. The Aerial Surveys of Arctic 19 Marine Mammals (ASAMM) project provides information on distribution, behavior, and relative density of marine 20 mammals. ASAMM surveys large areas of bowhead whale and killer whale summer and autumn habitat and offers 21 consistent information on bowhead whale carcasses. Thirty-three bowhead whale carcasses were documented in 22 July–October, from 2009 to 2018. Carcasses were distributed across the eastern Chukchi and western Beaufort seas 23 from 141.6° W to 168.1° W and 68.9° N to 72.0° N.
    [Show full text]
  • Alaska Arctic Marine Fish Ecology Catalog
    Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Alaska Arctic Marine Fish Ecology Catalog Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey Cover: Photographs of various fish studied for this report. Background photograph shows Arctic icebergs and ice floes. Photograph from iStock™, dated March 23, 2011. Alaska Arctic Marine Fish Ecology Catalog By Lyman K. Thorsteinson and Milton S. Love, editors Prepared in cooperation with Bureau of Ocean Energy Management, Environmental Studies Program (OCS Study, BOEM 2016-048) Scientific Investigations Report 2016–5038 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov. Disclaimer: This Scientific Investigations Report has been technically reviewed and approved for publication by the Bureau of Ocean Energy Management. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of this information. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S.
    [Show full text]
  • Marine Mammals of the US North Pacific and Arctic
    Marine Mammals of the US North Pacific & Arctic 10 METER 0 10 FEET adult male Resident Killer Whale Blue Whale Orcinus orca subsp. Balaenoptera musculus adult female calf Bigg’s (transient) Killer Whale Orcinus orca subsp. Fin Whale Balaenoptera physalus Beluga or White Whale Delphinapterus leucas Sei Whale Balaenoptera borealis Sperm Whale Physeter macrocephalus adult female North Pacific Right Whale adult male Eubalaena japonica Baird’s Beaked Whale Berardius bairdii Minke Whale Balaenoptera acutorostrata Bowhead Whale Balaena mysticetus Cuvier’s Beaked Whale Ziphius cavirostris adult male Gray Whale Humpback Whale Eschrichtius robustus Megaptera novaeangliae adult female 180º 160ºW 140ºW calf ARCTIC OCEAN Marine Mammal Protection Act (MMPA) Stejneger’s Beaked Whale Beaufort Mesoplodon stejnegeri Sea In 1972, Congress enacted the NOAA Fisheries and the U.S. Fish and Wildlife Service are Chukchi 70ºN the lead federal agencies for enforcing this law to protect Design and illustrations: Uko Gorter (www.ukogorter.com) Sea MMPA, establishing a national Arctic Circle marine mammals. The MMPA protects all whales, dolphins, Alaska policy to help prevent the seals, sea lions, porpoises, manatees, polar bears, otters, NOAA Fisheries extinction or depletion of and walruses from human-induced harm. In the United Alaska Region States, NOAA Fisheries works with scientists, industry, and 60ºN 907-586-7221 Bering Sea Gulf of marine mammal populations conservation groups to develop measures that help to protect Alaska Alaska Fisheries Science Center from human activities. marine mammals from entanglement, ship strike, and other 206-526-4000 PACIFIC OCEAN activities that might cause these animals harm. TO REPORT STRANDED, ENTANGLED, INJURED, OR DEAD MARINE MAMMALS, CALL: NOAA FISHERIES 1-877-925-7773; ALASKA SEALIFE CENTER 1-888-774-7325 (SEAL); U.S.
    [Show full text]
  • Trophic Dynamics and Stock Characteristics of Snow Crabs, Chionoecetes Opilio, in the Alaskan Arctic
    Trophic dynamics and stock characteristics of snow crabs, Chionoecetes opilio, in the Alaskan Arctic Item Type Thesis Authors Divine, Lauren Mallory Download date 04/10/2021 10:11:16 Link to Item http://hdl.handle.net/11122/6810 TROPHIC DYNAMICS AND STOCK CHARACTERISTICS OF SNOW CRABS, CHIONOECETES OPILIO, IN THE ALASKAN ARCTIC By Lauren Mallory Divine, B.S., M.S. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in Marine Biology University of Alaska Fairbanks August 2016 APPROVED: Katrin Iken, Committee Chair Bodil A. Bluhm, Committee Member James R. Lovvorn, Committee Member Gordon H. Kruse, Committee Member Franz J. Mueter, Committee Member Sarah M. Hardy, Department Chair, Department of Marine Biology Bradley Moran, Dean, School of Fisheries and Ocean Sciences John C. Eichelberger, Dean, Graduate School ABSTRACT Arctic waters off the coast of Alaska have become increasingly open to human activities via dramatic climatic changes, such as reduced sea ice thickness and extent, warming ocean temperatures, and increased freshwater input. This research advances knowledge of snow crab trophic dynamics and stock characteristics in Arctic waters off the Alaska coast. Here, I provided baseline information regarding snow crab position in Beaufort Sea benthic food webs, its specific dietary habits in the Chukchi and Beaufort seas, and expanded upon previously limited life-history and population dynamic data in the Chukchi and Beaufort seas. I first detailed benthic food webs on the Alaskan Beaufort Sea shelf and snow crab trophic positions within these food webs using stable S13C and S15N isotope analysis. Water column and sediment particulate organic matter (POM) were used as primary food web end members.
    [Show full text]
  • Marine Mammal Taxonomy
    Marine Mammal Taxonomy Kingdom: Animalia (Animals) Phylum: Chordata (Animals with notochords) Subphylum: Vertebrata (Vertebrates) Class: Mammalia (Mammals) Order: Cetacea (Cetaceans) Suborder: Mysticeti (Baleen Whales) Family: Balaenidae (Right Whales) Balaena mysticetus Bowhead whale Eubalaena australis Southern right whale Eubalaena glacialis North Atlantic right whale Eubalaena japonica North Pacific right whale Family: Neobalaenidae (Pygmy Right Whale) Caperea marginata Pygmy right whale Family: Eschrichtiidae (Grey Whale) Eschrichtius robustus Grey whale Family: Balaenopteridae (Rorquals) Balaenoptera acutorostrata Minke whale Balaenoptera bonaerensis Arctic Minke whale Balaenoptera borealis Sei whale Balaenoptera edeni Byrde’s whale Balaenoptera musculus Blue whale Balaenoptera physalus Fin whale Megaptera novaeangliae Humpback whale Order: Cetacea (Cetaceans) Suborder: Odontoceti (Toothed Whales) Family: Physeteridae (Sperm Whale) Physeter macrocephalus Sperm whale Family: Kogiidae (Pygmy and Dwarf Sperm Whales) Kogia breviceps Pygmy sperm whale Kogia sima Dwarf sperm whale DOLPHIN R ESEARCH C ENTER , 58901 Overseas Hwy, Grassy Key, FL 33050 (305) 289 -1121 www.dolphins.org Family: Platanistidae (South Asian River Dolphin) Platanista gangetica gangetica South Asian river dolphin (also known as Ganges and Indus river dolphins) Family: Iniidae (Amazon River Dolphin) Inia geoffrensis Amazon river dolphin (boto) Family: Lipotidae (Chinese River Dolphin) Lipotes vexillifer Chinese river dolphin (baiji) Family: Pontoporiidae (Franciscana)
    [Show full text]
  • 53. Balaenidae
    FAUNA of AUSTRALIA 53. BALAENIDAE J. L. BANNISTER 1 53. BALAENIDAE 2 53. BALAENIDAE DEFINITION AND GENERAL DESCRIPTION The Balaenidae (right whales) is one of the three families of whalebone or baleen whales (Suborder Mysticeti, within the Order Cetacea). Mysticetes differ from the other cetacean suborder (Odontoceti, toothed whales) by the presence of a highly specialised filter-feeder apparatus made up of baleen plates attached to the gum of the upper jaw (Fig. 53.1). Figure 53.1 Lateral view of the skull of the Southern Right Whale , Eubalaena australis, showing the attachment of the baleen plates to the upper jaw. (© ABRS) [M. Thompson] 0.5 m Balaenids are distinguished from the other two mysticete families, the grey whales (Eschrichtiidae) and rorquals (Balaenopteridae), by having long and narrow baleen plates and a highly arched upper jaw. Other balaenid features include: externally, a disproportionately large head, long thin rostrum, huge lower lips and lack of multiple ventral grooves (Fig. 53.2); and internally, the lack of a coronoid process on the lower jaw and fused cervical vertebrae. A 3 m B 1.75 m Figure 53.2 Lateral view of: A, the Southern Right Whale (Eubalaena australis); B, the Pygmy Right Whale (Caperea marginata). (© ABRS) [M. Thompson] 3 53. BALAENIDAE HISTORY OF DISCOVERY Erected by J.E. Gray in 1825 (Watson 1981), the family contains three genera: Balaena Linnaeus, 1758, Eubalaena Gray, 1864 and Caperea Gray, 1864. Some authors (see Honacki, Kinman & Koeppl 1982) include Eubalaena in Balaena, but as Schevill (1986a) pointed out, this is contrary to general practice within the last 60–70 years and obscures their obvious dissimilarities, which are greater, for example, than between the various species of Balaenoptera.
    [Show full text]
  • Preliminary Investigation of Stock Structure of B-C-B Bowhead Whales Based on Analyses of Biological Parameters
    THIS PAPER CAN NOT BE CITED EXCEPT IN THE CONTEXT OF IWC MEETINGS SC/56/BRG33 Preliminary investigation of stock structure of B-C-B bowhead whales based on analyses of biological parameters Takeharu Bando, Ryoko Zenitani and Seiji Ohsumi The Institute of Cetacean Research, 4-5 Toyomi-cho, Chuo-ku, Tokyo, 104-0055, Japan ABSTRACT The possibility of more than one stock mixing within B-C-B stock of bowhead whales was examined using biological parameters such as conception date, body length distribution of mature whales, migration period and mean cycle of δ13C oscillation in baleen. Heterogeneity was found in some of the parameters but statistical tests were not conducted due to the small sample size. To elucidate the stock structure of B-C-B bowhead whales, further research and samples are needed. KEYWORDS: BOWHEAD WHALE; STOCK IDENTITY; BIOLOGICAL PARAMETERS INTRODUCTION The comprehensive assessment of the bowhead whale conducted in 1991 identified five stocks of bowhead whales including the B-C-B stock (IWC, 1992). Since then, the Committee addressed the issue of stock identity of the B-C-B stock on several occasions (DeMaster et al., 2000). However, those discussions were based on very limited data and no comprehensive analyses on stock identity within the B-C-B have been presented. Despite the limited availability of data and comparative analyses, the Committee recommended a single B-C-B stock scenario for management in 2002, which is the only stock scenario being considered by the Aboriginal Whaling Management Procedure (AWMP). Accurate elucidation of the stock structure of the large whales requires not only genetic data but also non-genetic data (Donovan, 1991; Fujise et al., 2001; Perrin, 2001; Rugh et al., 2003, Pastene, 2003).
    [Show full text]