Open Talamantes Thesis May 2019
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School College of Engineering CHARACTERIZATION OF POLYOXYMETHYLENE AS A HIGH-DENSITY FUEL FOR USE IN HYBRID ROCKET APPLICATIONS A Thesis in Mechanical Engineering by Gerardo Talamantes Jr. 2019 Gerardo Talamantes Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2019 ii The thesis of Gerardo Talamantes was reviewed and approved* by the following: Richard Yetter Professor of Mechanical Engineering Director of the High Pressure Combustion Laboratory Thesis Advisor Stefan Thynell Professor of Mechanical Engineering Daniel Haworth Professor of Mechanical Engineering Associate Department Head of Mechanical and Nuclear Engineering Graduate Programs *Signatures are on file in the Graduate School iii ABSTRACT Experimental testing was conducted to investigate the behavior of polyoxymethylene (POM) for consideration as the solid fuel component in an upper stage hybrid rocket engine using high-density fuel and oxidizer. The regression rate of POM was experimentally measured using an opposed flow burner to determine the influence of color, oxidizer type, and nozzle separation distance on regression rate. The experimental measurements of regression rate on POM were compared to numerical findings that were obtained using a kinetic model developed for POM combustion in a counter-flowing geometry. It was found that natural vs. black POM does not influence the regression rate when measured in the opposed flow burner. The numerical findings were found to be consistent with the observed trends for all strain rates showing the fuel regression rate to increase with increasing oxidizer flow velocity. However, at smaller separation distances the experimental and numerical regression rates varied due to non-uniform burning surface characteristics breaking down the 1-D assumptions of the model. Numerical calculations were also performed at pressures from 0.1 MPa to 7 MPa and showed an increase in fuel regression rate due to the momentum flux of oxidizer increasing at a greater rate than momentum flux of the fuel with pressure, thus moving the flame closer to the fuel surface. POM combustion was also compared to hydroxyl-terminated polybutadiene (HTPB) combustion and was found to have similar linear regression rates with a 50% mass flux increase of POM due to increased density. iv TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ vi LIST OF TABLES .............................................................................................................. ix NOMECLATURE .............................................................................................................. x ACKNOWLEDGEMENTS ................................................................................................ xiii DEDICATION ................................................................................................................... xiv Introduction and Motivation ................................................................................ 1 1.1 Hybrid Rockets ...................................................................................................... 1 1.2 A Brief History of Hybrid Rocket Fuels ................................................................. 5 1.2.1 Particle Additives ........................................................................................ 10 1.3 Research Objectives............................................................................................... 11 1.3.1 Polyoxymethylene as a Fuel ........................................................................ 11 1.3.2 Key Objectives of Work .............................................................................. 12 Background ........................................................................................................ 13 2.1 Hybrid Rocket Engines and the Opposed Flow Burner ........................................... 13 2.2 Polyoxymethylene ................................................................................................. 21 2.3 Oxidizers ............................................................................................................... 22 2.4 High-Density Fuel and Oxidizer Application.......................................................... 23 Experimental and Numerical Model Approach .................................................... 26 3.1 Solid Fuel .............................................................................................................. 26 3.1.1 Opposed Flow Burner.................................................................................. 26 3.2 Numerical Modeling .............................................................................................. 32 3.2.1 Condensed-Phase Model ............................................................................. 34 3.2.2 Gas-Phase Modeling in ANSYS Chemkin ................................................... 36 3.2.3 Coupling of MATLAB Condensed-Phase Gasification Model and Chemkin Oppdiff Gas-Phase Solution ......................................................................... 39 3.2.4 Model Inputs ............................................................................................... 42 Results and Discussion ........................................................................................ 45 4.1 Color ..................................................................................................................... 45 4.2 Pellet Movement .................................................................................................... 47 4.3 Effect of Oxidizer Velocity .................................................................................... 50 4.4 Oxidizer Composition ............................................................................................ 59 4.5 Nozzle Separation Distance ................................................................................... 65 4.6 Pressure ................................................................................................................. 70 4.7 Other Solid Fuel vs POM ....................................................................................... 77 v Conclusions ........................................................................................................ 83 5.1 Scientific Findings of POM Study .......................................................................... 83 5.2 Future Work .......................................................................................................... 84 Appendix A Plumbing and Instrumentation Diagrams (PID) ............................................... 86 Appendix B MATLAB Code .............................................................................................. 89 Appendix C Mechanism ...................................................................................................... 95 REFERENCES ................................................................................................................... 107 vi LIST OF FIGURES Figure 1: Comparison of liquid engines, solid motors, and hybrid engines [5]. ................... 3 Figure 2: Hybrid engine schematic showing cross flow, diffusion flame, heat transfer, and flame location [9] ........................................................................................................ 4 Figure 3: Ball and stick model of polyoxymethylene. ........................................................... 9 Figure 4: Cross flow field found in a hybrid rocket engine [43] ........................................... 14 Figure 5: Boundary layer combustion model. Replicated from Marman [41] ....................... 15 Figure 6: Opposed flow burner configuration with diffusion flame [45]. ............................. 17 Figure 7: Typical structure of a diffusion flame [2]. ............................................................ 19 Figure 8: Molecular structure of POM ................................................................................ 21 Figure 9: Comparison of specific impulse of POM and HTPB with different oxidizers and aluminum content. ....................................................................................................... 25 Figure 10: Comparison of density specific impulse of POM and HTPB with different oxidizers and aluminum content. .................................................................................. 25 Figure 11: Conceptual rendering and image of opposed flow burner [66]. .......................... 27 Figure 12: Black POM opposed flow burning progression. ................................................. 30 Figure 13: Example data trace used to calculate regression rate. ........................................ 31 Figure 14: Control volume used for modeling of the condensed phase. ................................ 34 Figure 15: Diagram of Oppdiff execution [81] .................................................................... 38 Figure 16: Flow Chart of the MATLAB and Chemkin coupling to find regression rate [64]. .................................................................................................................................... 41 Figure 17: Regression rate vs. fuel surface temperature. ..................................................... 43 Figure 18: Flame profile at varying surface temperatures with 0.001 cm corresponding to the surface and