Host Preference of Pratylenchus Neglectus to Major Crops of the Prairie Provinces of Canada

Total Page:16

File Type:pdf, Size:1020Kb

Host Preference of Pratylenchus Neglectus to Major Crops of the Prairie Provinces of Canada Host Preference of Pratylenchus neglectus to Major Crops of the Prairie Provinces of Canada By Priscillar Wenyika A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfilment of the requirements of the degree of Master of Science Department of Soil Science University of Manitoba Winnipeg, Manitoba, Canada Copyright © 2019 ABSTRACT Wenyika Priscillar, M.Sc., The University of Manitoba, November 2019. Host Preference of Pratylenchus spp. to Major Crops Grown in the Prairie Provinces of Canada. Advisor: Dr. M. Tenuta. Root lesion nematodes of the genus Pratylenchus Filipjev, 1936 are pests of economic importance worldwide. Pratylenchus spp. have recently been identified in soils from commercial fields in the Canadian Prairie Provinces, and there is a lack of knowledge about the host preferences of these nematodes. This research was conducted to determine: a) the crop hosts preferred by the Pratylenchus spp., b) the effects of selected pulse and non-pulse crops mainly grown in the Canadian Prairies in building-up densities of the nematode under growth chamber conditions, c) the effect of the nematode and population density over several crop growth cycles on performance of the plants, and d) the species identity of the Pratylenchus spp. Host suitability to Pratylenchus spp. was evaluated on the most widely grown varieties of selected pulse and non-pulse crops available in Canadian Prairies including canola, chickpea, lentil, pinto bean, soybean, Canada Western Red Spring Wheat, and yellow pea. Host status was assessed using the reproductive factor (Rf = final/ initial density) and plant growth parameters (plant height, above-ground, and root biomass) were measured at the end of each cycle. Nematodes recovered from the test soils and roots of host crops were identified using morphological identification and molecular assays. The suitable hosts for Pratylenchus (Rf >1) were canola, chickpea, pinto bean, soybean, and spring wheat. Soybean was the most preferred host for these nematodes with a mean above the threshold level for Pratylenchus spp. (>1000 nematodes per kg-1 of soil) in the final cycle. The population of Pratylenchus spp. in pots planted to canola, chickpea, pinto bean, soybean, and wheat significantly increased across the three growth cycles. Lentil was a poor host and yellow pea was a non-host for Pratylenchus spp. High densities of Pratylenchus reduced plant height, above-ground and root biomasses of canola, lentil, pinto bean, spring wheat, and yellow pea. Plant height and biomass of chickpea and soybean were not reduced by increasing Pratylenchus densities. The Pratylenchus spp. was identified as P. neglectus using morphometric characters, PCR with species-specific primers and DNA sequencing. Most of the crops mainly grown in the Canadian Prairies are hosts for P. neglectus. ii ACKNOWLEDGEMENTS For this work to come together, it took several hands from a lot of helpful people that surround me. I am profoundly grateful to my main supervisor, Dr. M. Tenuta for his motivation, immense knowledge and valuable guidance throughout the research. He was very supportive and enthusiastic about this work making sure that we had a success story. I would like to extend my greatest appreciation to my committee members, Dr. D. Flaten and Dr. R. Gulden who helped me with constructive ideas and insightful comments in my thesis. Surely their inputs in this work, went a long way. I would also like to thank Dr. F. Zvomuya for letting us take their space for my growth chamber experiments. My sincere gratitude to the Manitoba Pulse and Soybean Growers, Alberta Pulse Growers, Saskatchewan Pulse Growers for providing financial support towards this research work. Special thanks to Lanny Gardiner, who at the onset of this research, helped me much with soil sampling. I could have not imagined pulling all the work without the hands of these wonderful technicians, Terri Fairman and Krista Hanis-Gervais, who helped me to their best regardless of the amount of work that needed to be done. Many thanks also to the following technicians; Brad Sparling, Mervin Bilous and Rob Ellis for their technical assistance. I am grateful to my colleagues Fernanda Gouvea-Pereira, Abhishek Agarwal, Mick Runzika and Nazanin Ghavami who made the lab a better place through their assistance and knowledge accompanied by tips on research and academic writing. My heartfelt gratitude goes to my mum and dad for their unfailing love, support and encouragement during my studies. They will forever be my cheerleaders. I would also like to thank my friend Tamuka for encouragement and raising prayers for me as I was conducting this work. Thank you everyone for your support and patience with me. Above all, I thank the Almighty God for grace and guidance throughout the academic phase. iii FOREWORD This thesis is organized into three chapters. Chapter 1 contains the introduction, literature review and research objectives. The second chapter will discuss the host preference of Pratylenchus spp. on the selected pulse and non-pulse crops in three replicate trials of a single growth cycle under growth chamber conditions. The chapter also covers the effects of host crops on Pratylenchus abundance following three crop growth cycles. The third chapter discusses the effect of Pratylenchus spp. on crop performance, endomigratory nature of the nematodes and the species identification of recovered nematodes. The thesis is organized in a “Sandwich” style as specified by the Faculty of Graduate Studies, and Department of Soil Science, University of Manitoba. The data chapters follow a manuscript format of the Journal of Nematology which they are intended to be published. The thesis closes with a general discussion of conclusions of the findings in the research work conducted and recommendations of future studies. iv TABLE OF CONTENTS Contents Page ABSTRACT ........................................................................................................................... ii ACKNOWLEDGEMENTS ................................................................................................. iii FOREWORD ........................................................................................................................ iv TABLE OF CONTENTS ....................................................................................................... v LIST OF TABLES ............................................................................................................. viii LIST OF FIGURES .............................................................................................................. ix LIST OF ABBREVIATIONS ................................................................................................ x 1 GENERAL INTRODUCTION .......................................................................................... 1 1.1. Major crop production in Canadian Prairies ............................................................... 1 1.2. The genus Pratylenchus .............................................................................................. 2 1.2.1. Morphology.......................................................................................................... 3 1.2.2. Hosts of Pratylenchus species ............................................................................. 3 1.2.3. Importance of Pratylenchus species .................................................................... 4 1.2.4. Pratylenchus species in Canada ........................................................................... 4 1.2.5. Symptoms caused by Pratylenchus species ......................................................... 5 1.2.6. Life cycle and reproduction ................................................................................. 6 1.2.7. Pathogenicity of Pratylenchus species. ................................................................ 7 1.2.8. Economic thresholds of Pratylenchus species ..................................................... 8 1.2.9. Survival strategies ................................................................................................ 9 1.2.10. Dispersal ......................................................................................................... 13 1.3. Factors affecting nematode population densities ...................................................... 13 1.4. Assessing host suitability to Pratylenchus species ................................................... 14 1.5. Plant disease complexes involving Pratylenchus species ......................................... 15 1.6. Identification of Pratylenchus species ...................................................................... 17 1.6.1. Morphological identification ............................................................................. 18 1.6.2. Molecular identification ..................................................................................... 19 1.7. Management of Pratylenchus species ....................................................................... 21 1.7.1. Cultural control .................................................................................................. 21 1.7.2. Plant resistance to Pratylenchus spp. ................................................................. 23 1.7.3. Pesticide Control ................................................................................................ 25 1.7.4. Integration of management strategies ...............................................................
Recommended publications
  • JOURNAL of NEMATOLOGY Description of Heterodera
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-097 e2020-97 | Vol. 52 Description of Heterodera microulae sp. n. (Nematoda: Heteroderinae) from China a new cyst nematode in the Goettingiana group Wenhao Li1, Huixia Li1,*, Chunhui Ni1, Deliang Peng2, Yonggang Liu3, Ning Luo1 and Abstract 1 Xuefen Xu A new cyst-forming nematode, Heterodera microulae sp. n., was 1College of Plant Protection, Gansu isolated from the roots and rhizosphere soil of Microula sikkimensis Agricultural University/Biocontrol in China. Morphologically, the new species is characterized by Engineering Laboratory of Crop lemon-shaped body with an extruded neck and obtuse vulval cone. Diseases and Pests of Gansu The vulval cone of the new species appeared to be ambifenestrate Province, Lanzhou, 730070, without bullae and a weak underbridge. The second-stage juveniles Gansu Province, China. have a longer body length with four lateral lines, strong stylets with rounded and flat stylet knobs, tail with a comparatively longer hyaline 2 State Key Laboratory for Biology area, and a sharp terminus. The phylogenetic analyses based on of Plant Diseases and Insect ITS-rDNA, D2-D3 of 28S rDNA, and COI sequences revealed that the Pests, Institute of Plant Protection, new species formed a separate clade from other Heterodera species Chinese Academy of Agricultural in Goettingiana group, which further support the unique status of Sciences, Beijing, 100193, China. H. microulae sp. n. Therefore, it is described herein as a new species 3Institute of Plant Protection, Gansu of genus Heterodera; additionally, the present study provided the first Academy of Agricultural Sciences, record of Goettingiana group in Gansu Province, China.
    [Show full text]
  • Description and Identification of Four Species of Plant-Parasitic Nematodes Associated with Forage Legumes
    5 Egypt. J. Agronematol., Vol. 17, No.1, PP. 51-64 (2018) Description and Identification of Four Species of Plant-parasitic Nematodes Associated with Forage Legumes * * Mahfouz M. M. Abd-Elgawad ; Mohamed F.M. Eissa ; Abd-Elmoneim Y. ** *** **** El-Gindi ; Grover C. Smart ; and Ahmed El-bahrawy . * Plant Pathology Department, National Research Centre. ** Department of Agricultural Zoology and Nematology, Faculty of Agriculture, University of Cairo, Giza, Egypt. *** Department of Entomology and Nematology, IFAS, University of Florida, USA. **** Institute for Sustainable Plant Protection, National Council of Research, Bari, Italy. Abstract Four species of plant parasitic nematodes were present in soil samples planted with forage legumes at Alachua County, Florida, USA. The detected species Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, and Paratrichodorus minor were described in the present study. They belong to orders Rhabditida (Belonolaimus longicaudatus, Criconemella ornate, and Hoplolaimus galeatus) and Triplonchida (Paratrichodorus minor) and to taxonomical families Dolichodoridae (Belonolaimus longicaudatus), Hoplolaimidae (Hoplolaimus galeatus) Criconematidae (Criconemella ornate), and Trichodoridae (Paratrichodorus minor). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys. Keywords: Belonolaimus longicaudatus, Criconemella ornate, Hoplolaimus galeatus, Paratrichodorus minor, morphology,
    [Show full text]
  • Nematodes in Potato Soils in New Brunswick J Kimpinski I and EM
    Canadian Plant Disease Survey 68:2,1988 147 Nematodes in potato soils in New Brunswick J Kimpinski I and EM. Smith2 Root-lesion nematodes (Pratylenchus spp.) were the dominant plant-parasitic nematodes in potato fields in the Grand Falls region of New Brunswick, Canada. Pratylenchus crenatus was more prevalent than P. penetrans. The northern root-knot nematode (Meloidogyne hapla) and clover-cyst nematode (Hetemdera trifolid were not detected in the survey. Can. Plant Dis. Surv. 68:2. 147-148, 1988. Dans des champs de pommes de terre de la region de Grand Falls au Nouveau-Brunswick (Canada), les principaux nematodes parasites des vegetaux identifies Btaient des nematodes radicicoles (Pratylenchus spp.). On a signale plus de Pratylenchus crenatus que de P. penetrans. On n'a pas trouve de nematode cecidogbne du nord (Meloidogyne hapla) ou de nematode B kyste du trefle (Heterodera trifolid au cours de I'enquste. Introduction and counted, and other nematode genera were identified with a stereomicroscope at 60 X Extracted nematodes were pre- A nematode survey conducted in 1979 in the Grand Falls . served in 5% formalin and up to 100 nematodes from each region of New Brunswick indicated that root-lesion nematodes sample were selected randomly and examined at 1000 X with (Pratylenchus crenatus Loof and P. penetrans (Cobb) Filipjev a compound microscope. and Sch. Stek.) were the dominant species of plant-parasitic nematodes in potato roots and soils (4).It was also determined that population levels of the northern root-knot nematode Results (Meloidogyne hapla Chitwood) were very low, being detected Root-lesion nematodes were the dominant plant-parasitic in only 5% of the root and soil samples.
    [Show full text]
  • Proteomic Responses of Uninfected Tissues of Pea Plants Infected by Root-Knot Nematode, Fusarium and Downy Mildew Pathogens Al-S
    PROTEOMIC RESPONSES OF UNINFECTED TISSUES OF PEA PLANTS INFECTED BY ROOT-KNOT NEMATODE, FUSARIUM AND DOWNY MILDEW PATHOGENS AL-SADEK MOHAMED SALEM GHAZALA A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy. Department of Applied Sciences, University of the West of England, Bristol. December 2012 This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. Al-Sadek Mohamed Salem Ghazala December 2012 Abstract Peas suffer from several diseases, and there is a need for accurate, rapid in-field diagnosis. This study used proteomics to investigate the response of pea plants to infection by the root knot nematode Meloidogyne hapla, the root rot fungus Fusarium solani and the downy mildew oomycete Peronospora viciae, and to identify potential biomarkers for diagnostic kits. A key step was to develop suitable protein extraction methods. For roots, the Amey method (Chuisseu Wandji et al., 2007), was chosen as the best method. The protein content of roots from plants with shoot infections by P. viciae was less than from non-infected plants. Specific proteins that had decreased in abundance were (1->3)-beta-glucanase, alcohol dehydrogenase 1, isoflavone reductase, malate dehydrogenase, mitochondrial ATP synthase subunit alpha, eukaryotic translation inhibition factor, and superoxide dismutase. No proteins increased in abundance in the roots of infected plants. For extraction of proteins from leaves, the Giavalisco method (Giavalisco et al., 2003) was best. The amount of protein in pea leaves decreased by age, and also following root infection by F.
    [Show full text]
  • Investigation of the Development of Root Lesion Nematodes, Pratylenchus Spp
    Türk. entomol. derg., 2021, 45 (1): 23-31 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.753614 E-ISSN 2536-491X Original article (Orijinal araştırma) Investigation of the development of root lesion nematodes, Pratylenchus spp. (Tylenchida: Pratylenchidae) in three chickpea cultivars Kök lezyon nematodlarının, Pratylenchus spp. (Tylenchida: Pratylenchidae) üç nohut çeşidinde gelişmesinin incelenmesi İrem AYAZ1 Ece B. KASAPOĞLU ULUDAMAR1* Tohid BEHMAND1 İbrahim Halil ELEKCİOĞLU1 Abstract In this study, penetration, population changes and reproduction rates of root lesion nematodes, Pratylenchus neglectus (Rensch, 1924), Pratylenchus penetrans (Cobb, 1917) and Pratylenchus thornei Sher & Allen, 1953 (Tylenchida: Pratylenchidae), at 3, 7, 14, 21, 28, 35, 42, 49 and 56 d after inoculation in chickpea Bari 2, Bari 3 (Cicer reticulatum Ladiz) and Cermi [Cicer echinospermum P.H.Davis (Fabales: Fabaceae)] were assessed in a controlled environment room in 2018-2019. No juveniles were observed in the roots in the first 3 d after inoculation. Although, population density of P. thornei reached the highest in Cermi (21 d), Bari 3 (42 d) and the lowest observed on Bari 2. Pratylenchus neglectus reached the highest population density in Bari 3 and Cermi on day 28. The population density of P. neglectus was the lowest in Bari 2. Also, population density of P. penetrans reached the highest in Bari 3 cultivar within 49 d, similar to P. thornei, whereas Bari 2 and Cermi had low population densities during the entire experimental period. Keywords:
    [Show full text]
  • Description of Pratylenchus Dunensis Sp. N. (Nematoda: Pratylenchidae
    Nematology, 2006, Vol. 8(1), 79-88 Description of Pratylenchus dunensis sp.n.(Nematoda: Pratylenchidae), a root-lesion nematode associated with the dune grass Ammophila arenaria (L.) Link ∗ Eduardo DE LA PEÑA 1, , Maurice MOENS 1,2, Adriaan VA N AELST 3 and Gerrit KARSSEN 4,5 1 Agricultural Research Centre, Crop Protection Department, Burg. van Gansberghelaan 96, 9820, Merelbeke, Belgium 2 Gent University, Laboratory for Agrozoology, Coupure 653, 9000 Gent, Belgium 3 Wageningen University & Research Centre, Laboratory of Plant Cell Biology, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands 4 Plant Protection Service, Nematology Section, P.O. Box 9102, 6700 HC Wageningen, The Netherlands 5 Wageningen University & Research Centre, Laboratory of Nematology, Binnenhaven 5, 6709 PD Wageningen, The Netherlands Received: 4 April 2005; revised: 7 November 2005 Accepted for publication: 7 November 2005 Summary – A root-lesion nematode, Pratylenchus dunensis sp. n., is described and illustrated from Ammophila arenaria (L.) Link, a grass occurring abundantly in coastal dunes of Atlantic Europe. The new species is characterised by medium sized (454-579 µm) slender, vermiform, females and males having two lip annuli (sometimes three to four; incomplete incisures only visible with scanning electron microscopy), medium to robust stylet (ca 16 µm) with robust stylet knobs slightly set off, long pharyngeal glands (ca 42 µm), lateral field with four parallel, non-equidistant, lines, the middle ridge being narrower than the outer ones, lateral field with partial areolation and lines converging posterior to the phasmid which is located between the two inner lines of the lateral field in the posterior half of the tail, round spermatheca filled with round sperm, vulva at 78% of total body length and with protruding vulval lips, posterior uterine sac relatively short (ca 19 µm), cylindrical tail (ca 33 µm) narrowing in the posterior third with smooth tail tip and with conspicuous hyaline part (ca 2 µm).
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • Nematodes and Agriculture in Continental Argentina
    Fundam. appl. NemalOl., 1997.20 (6), 521-539 Forum article NEMATODES AND AGRICULTURE IN CONTINENTAL ARGENTINA. AN OVERVIEW Marcelo E. DOUCET and Marîa M.A. DE DOUCET Laboratorio de Nematologia, Centra de Zoologia Aplicada, Fant/tad de Cien.cias Exactas, Fisicas y Naturales, Universidad Nacional de Cordoba, Casilla df Correo 122, 5000 C6rdoba, Argentina. Acceplecl for publication 5 November 1996. Summary - In Argentina, soil nematodes constitute a diverse group of invertebrates. This widely distributed group incJudes more than twO hundred currently valid species, among which the plant-parasitic and entomopathogenic nematodes are the most remarkable. The former includes species that cause damages to certain crops (mainly MeloicU:igyne spp, Nacobbus aberrans, Ditylenchus dipsaci, Tylenchulus semipenetrans, and Xiphinema index), the latter inc1udes various species of the Mermithidae family, and also the genera Steinernema and Helerorhabditis. There are few full-time nematologists in the country, and they work on taxonomy, distribution, host-parasite relationships, control, and different aspects of the biology of the major species. Due tO the importance of these organisms and the scarcity of information existing in Argentina about them, nematology can be considered a promising field for basic and applied research. Résumé - Les nématodes et l'agriculture en Argentine. Un aperçu général - Les nématodes du sol représentent en Argentine un groupe très diversifiè. Ayant une vaste répartition géographique, il comprend actuellement plus de deux cents espèces, celles parasitant les plantes et les insectes étant considèrées comme les plus importantes. Les espèces du genre Me/oi­ dogyne, ainsi que Nacobbus aberrans, Dùylenchus dipsaci, Tylenchulus semipenetrans et Xiphinema index représentent un réel danger pour certaines cultures.
    [Show full text]
  • Burrowing Nematode Radopholus Similis (Cobb, 1893) Thorne, 1949 (Nematoda: Secernentea: Tylenchida: Pratylenchidae: Pratylenchinae)1 Nicholas Sekora and William T
    EENY-542 Burrowing Nematode Radopholus similis (Cobb, 1893) Thorne, 1949 (Nematoda: Secernentea: Tylenchida: Pratylenchidae: Pratylenchinae)1 Nicholas Sekora and William T. Crow2 Introduction by fine textured soils rich in organic matter. However, soil texture plays a less important role on nematode population Radopholus similis, the burrowing nematode, is the most levels on banana (O’Bannon 1977). economically important nematode parasite of banana in the world. Infection by burrowing nematode causes toppling disease of banana, yellows disease of pepper and spreading Life Cycle and Biology decline of citrus. These diseases are the result of burrowing Burrowing nematode is an endoparasitic migratory nema- nematode infection destroying root tissue, leaving plants tode, meaning it completes its life cycle within root tissue. with little to no support or ability to take up water and All motile juvenile stages and females can infect root tissue translocate nutrients. Because of the damage that it causes at any point along the length of a root. After root penetra- to citrus, ornamentals and other agricultural industries, tion, these life stages mainly feed and migrate into the worldwide, burrowing nematode is one of the most regu- cortical parenchyma and also into the stele. Mature males lated nematode plant pests (Hockland et al. 2006). of burrowing nematode are not infective. As the mature females migrate through root tissue, they lay eggs that are Distribution produced through either sexual reproduction with males or by hermaphroditistim (Thorne 1961, Kaplan and Burrowing nematode is native to Australasia, but is found worldwide in tropical and subtropical regions of Africa, Opperman 2000). Once an egg hatches, the emergent Asia, Australia, North and South America, and many second-stage juvenile can migrate within the root and island regions.
    [Show full text]
  • Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S Rdna
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of February 1997 Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna University of Jordan, [email protected] Valerie M. Williamson University of California, Davis, [email protected] Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Al-Banna, Luma; Williamson, Valerie M.; and Gardner, Scott Lyell, "Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA" (1997). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 52. https://digitalcommons.unl.edu/parasitologyfacpubs/52 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Molecular Phylogenetics and Evolution (ISSN: 1055-7903), vol. 7, no. 1 (February 1997): 94-102. Article no. FY960381. Copyright 1997, Academic Press. Used by permission. Phylogenetic Analysis of Nematodes of the Genus Pratylenchus Using Nuclear 26S rDNA Luma Al-Banna*, Valerie Williamson*, and Scott Lyell Gardner1 *Department of Nematology, University of California at Davis, Davis, California 95676-8668 1H. W. Manter Laboratory, Division of Parasitology, University of Nebraska State Museum, W-529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0514; [email protected] Fax: (402) 472-8949.
    [Show full text]
  • Silencing Parasitism Effectors of the Root Lesion Nematode, Pratylenchus Thornei
    Silencing parasitism effectors of the root lesion nematode, Pratylenchus thornei. This thesis is presented for the degree of Doctor of Philosophy of Murdoch University by Sameer Dilip Khot B.Sc. (Botany) & M.Sc. (Plant Pathology & Mycology), University of Mumbai, India M.S. (Plant Pathology), North Dakota State University, USA Western Australian State Agricultural Biotechnology Centre School of Veterinary and Life Sciences Murdoch University Perth, Western Australia 2018 1 DECLARATION I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Signature: Sameer D. Khot Date: 22-01-2018 2 ABSTRACT The root lesion nematode (RLN), Pratylenchus thornei, is a biotrophic migratory pest of plant roots and its infestation causes losses in many economically important crops. RNA interference (RNAi) is a naturally occurring eukaryotic phenomenon and can be used to silence parasitism effector genes of P. thornei using host-mediated RNAi. This may be developed as an environmentally friendly and a cost-effective control strategy. The overall aims of this research were to investigate the effects of in vitro and in planta RNAi silencing of putative P. thornei parasitism effector genes, and their nematicidal effects in two host plants. Five putative target parasitism genes vital for nematode entry into roots (Pt-Eng-1, Pt- PL), feeding (Pt-CLP) and suppressing host defence responses (Pt-UEP, Pt-GST) were identified, validated in silico using comparative bioinformatics, cloned into suitable in vitro transcription and binary vectors, and advanced to RNAi studies.
    [Show full text]
  • Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
    Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract
    [Show full text]