Transport Phenomena Co07 Diffusion—Macroscopic View Co07

Total Page:16

File Type:pdf, Size:1020Kb

Transport Phenomena Co07 Diffusion—Macroscopic View Co07 1/18 2/18 Transport phenomena co07 Diffusion—macroscopic view co07 Transport (kinetic) phenomena: : Flux ~J of compound (units: mol m 2 s 1) First Fick Law − − diffusion, electric conductivity, viscosity, heat conduction . For mass ~ J = D∇~c concentration Flux of mass, charge, momentum, heat, . − in kg m 3, ~J = amount (of quantity) transported per unit area (perpendicular is proportional to the concentration gradient − the flux is in to the vector of flux) within time unit ∂ ∂ ∂ ∂c ∂c ∂c 2 1 2 1 2 kg m s Units: energy/heat flux: J m s = W m , ∇~c = grad c = , , c = , , − − − − − ∂ ∂y ∂z ∂ ∂y ∂z current density: A m 2 − 2 1 D = diffusion coefficient (diffusivity) of molecules , unit: m s Cause = (generalized, thermodynamic) force − ~ = gradient of a potential Example. A U-shaped pipe of lenght = 20 cm and cross section F − 0.3 cm2. One end is in Coca-Cola (11 wt.% of sugar), other (chemical potential/concentration, electric potential, tempera- A = ture) end in pure water. How much sugar is transported by diffusion in 6 2 1 mg 0.74 one day? Dsucrose(25 C) = 5.2 10 cm s . Small forces—linearity ◦ × − − × × × × × × ~ ~ A − − − − J const − = = = kg 10 4 . 7 s 60 24 m 10 3 . 0 s m kg 10 56 . 2 t J = m × 7 2 2 4 1 2 F 7 − − − = · = grad s m kg 10 56 . 2 c D J × × 1 2 7 − − − − = In gases we use the kinetic theory: molecules (simplest: hard spheres) fly through = s m 10 2 . 5 s cm 10 2 . 5 D 1 2 10 1 2 6 − grad 5 gm kg 550 = / c = c space and sometimes collide 4 − − = = gm kg 110 dm g 110 c L: 1 in sucrose g 110 3 3 3/18 [blend -g che/sucrose] 4/18 Diffusion—microscopic view co07 Einstein–Stokes equation co07 Flux is given by the mean velocity of molecules ~: Colloid particles or large spherical molecules of radius R in a solvent of viscosity η it holds (Stokes formula) ƒ ~J = ~c Difference of chemical poten- Arrhenius law for vis- Thermodynamic force = grad ~ = 6πηR. ~ tials = reversible work needed F cosity (decreases with of the chemical potential:− to move a particle (mole) from Einstein–Stokes equation: increasing T), diffusiv- ⇒ μ kBT one state to another ity (increases with in- ~ = ∇~ = ∇~c kBT kBT F − NA − c D = D = creasing T ƒ 6πηR st ⇒ where formula μ = μ e + RT ln(c/c ) for infinity dillution was used. Opposite reasoning—hydrodynamic (Stokes) radius defined as: Friction force acting against molecule moving by velocity ~ through a medium is: kBT ~fr ~ R = = ƒ 6πηD F − where ƒ is the friction coeficient. Both forces are in equilibrium: effective molecule size (incl. solvation shell) ~ ≈ fr fr J kBT Example. Estimate the size of the sucrose molecule. Wa- ~ + = 0 i.e. ~ = ƒ~ = ƒ = = ∇~c F F F c F c ter viscosity is 0.891 10 3 m 1 kg s 1 at 25 C. − − − − − ◦ = nm 47 . 0 × R kBT On comparing with ~J = D∇~c we get the Einstein equation: D = − ƒ (also Einstein–Smoluchowski equation) 5/18 [plot/cukr.sh] 6/18 Second Fick Law co07 Second Fick Law co07 Non-stationary phenomenon (c changes with time). Example. Coca-Cola in a cylinder (height 10 cm) + pure water (10 cm). What time The amount of substance increases within is needed until the surface concentration = half of bottom concentration? months 4 time dτ in volume dV = ddydz: Fourier method: 2 [J() J( + d)] dydz ∂c ∂ c c0 < /2 = D c(, 0) = ,y,z − ∂τ ∂2 0 > /2 X § ∂J 2 J {J d} dydz c0 2c0 π π = [ ( ) ( ) + )] c , τ cos exp Dτ ,y,z − ∂ ( ) = + 2 X 2 π − ! ∂J = ddydz = ∇~ ~J dV = ∇~ ( D∇~c) dV − ,y,z ∂ − · − · − 2 2 2 2 X 1 3π 3 π 1 5π 5 π ∂2 ∂2 ∂2 cos exp Dτ + cos exp Dτ 2 3 2 5 2 = D∇~ c dV = D + + c dV − − ! − ! ··· ∂2 ∂y2 ∂z2 ! This type of equation is called ∂c 2 “equation of heat conduction”. = D∇ c ∂τ It is a parrabolic partial differ- ential equation [traj/brown.sh] 7/18 [show/galton.sh] 8/18 Diffusion and the Brownian motion co07 Brownian motion as a random walk + co07 Instead of for c(r,~ τ), let us solve the 2nd Fick (Smoluchowski, Einstein) law for the probability of finding a particle, start- 0.5 t=0 t=1 within time Δτ, a particle moves randomly ing from origin at τ = 0. We get the Gaussian 0.4 t=2 – by Δ with probability 1/2 with half-width ∝ distribution t=3 – by Δ with probability 1/2 2 0.3 t=4 − 1/2 c(x,t) t=5 1D: c(, τ) = (4πDτ)− exp − 4Dτ! 0.2 Using the central limit theorem: 2 2 2 in one step: Var Δ r 0.1 = = 3D: c r,~ τ 4πDτ 3/2 exp 〈 〉 ( ) = ( )− in n steps (in time τ nΔτ): Var nΔ2 − 4Dτ! = = 0.0 2 −3 −2 −1 0 1 2 3 Gaussian normal distribution with σ = nΔ = τ/ΔτΔ: x ⇒ p p 2 1 2 2 1 pΔτ Δτ 2 200 e /2σ exp 1D: = 2Dτ − = − 2 〈 〉 p2πσ p2πτ Δ − 2τ Δ Last example – order-of-magnintude which is for 2D Δ2/Δτ the same as c , τ 2 y y 0 = ( ) τ /2D = 4 months ≈ (for = 0.1 m) 0 def. 2 2 NB: Var = ( ) , for = 0, then Var = 〈 − 〈 〉 〉 〈 〉 〈 〉 2 1/6 3D: r = 6Dτ 0 0 Example. Calculate Var , where is a random number from interval ( 1, 1) 〈 〉 x x − 9/18 10/18 Electric conductivity co07 Electric conductivity co07 Ohm Law (here: U = voltage, U = ϕ2 ϕ1): substance κ/ S m 1 − ( − ) U 1 graphene 1 108 R = = U 1/R = conductivity, [1/R] = 1/Ω = S = Siemens × R silver 63 106 × (Specific) conductivity (conductance) κ is 1/resistance of a unit cube sea water 5 1 Ge 2.2 1 = κ A = area, = layer thickness, [κ] = S m R A − tap water 0.005 to 0.05 Si 1.6 10 3 − ~ ~ ~ × Vector notation: j = κ = κ∇ϕ distilled water (contains CO ) 7.5 10 5 E − 2 − × 6 ~j = el. current density, j = / , ~ = el. field intensity, = U/ deionized water 5.5 10 A E E × − glass 1 10 15–1 10 11 × − × − teflon 1 10 25–1 10 23 × − × − 11/18 12/18 Molar conductivity co07 Mobility and molar conductivity co07 Strong electrolytes: conductivity proportional to concentration. Mobility of an ion = averaged velocity in a unit electric field: Molar conductivity λ: = = U/ = el. intensity, U = voltage κ E λ = E c Charges ze of velocity and concentration c cause the current density “κ ” Units: κ S m 1, λ S m2 mol 1. [ ] = − [ ] = − Watch units—best convert c to mol m 3! ! . − j = czF = czF = λc λ = zF = molar conductivity of ion E E ⇒ Example. Conductivity of a 0.1 M solution of HCl o is 4 S m 1. Calculate the molar Ions (in dilute solutions) migrate independently (Kohlrausch law), for electrolyte − − z zA mol .4Sm S 0.04 + 1 conductivity. 2 Cννν⊕ Aννν −: here we define zA > 0 ⊕ j j j λ c λ c λ ννν λ ννν c = A + C = ( A A + C C)E = ( A A + C C) E Mathematically κ λ = = νννλ c X [cd pic;mz grotthuss.gif]13/18 14/18 Nothing is ideal co07 Conductivity of weak electrolytes co07 Limiting molar conductivity = molar conductivity at infinite dilution We count ions only, not unionized acid ∞ λ = lim λ c 0 In the limiting concentration: Departure from the limiting linear behavior→ (cf. Debye–Hückel theory): ∞ ∞ ∞ ∞ def. exptl 0.04 λ = λ(c) = λ constpc nebo λ = λ const c κ = λ cions = λ αc = λ c − − HCl Typical values: Æ λexptl cation λ∞/ S m2 mol 1 anion λ∞/ S m2 mol 1 α = 0.03 ( − ) ( − ) λ∞ + H 0.035 OH 0.020 /mol − 2 Na+ 0.0050 Cl 0.0076 Ostwald’s dilution law: NaOH − 2 exptl 2 0.02 Ca2+ 0.012 SO 2 0.016 c α c (λ ) / S m 4 λ − K = = cst 1 α cst λ∞ λ∞ λexptl Mobility and molar conductivity decreases with the ion size (Cl is slow), solva- ( ) − − − + tion (small Li + 4 H2O is slow) 0.01 AgNO3 H+, OH are fast movie credit: Matt K. Petersen, Wikipedia − CuSO4 CH3COOH 0 0 0.2 0.4 0.6 0.8 1 1.2 c1/2 / (mol/L)1/2 → 15/18 [pic/nernstovavrstva.sh]16/18 Conductivity and the diffusion coefficient co07 Transference numbers co07 Einstein (Nernst–Einstein) equation: microscopically: Transference number (transport number) of an ion is the fraction of the total z e k T k T k T k T RT current that is carried by that ion during migration (electrolysis). B B B B = D D = = = = = kBT = velocity ƒ / ze /( ) ze/ zF t F E E here z is with sign = = + ννν = stechiom. coeff. 2 2 ⊕ z F z + z zFD = RT λ = zF = D Ions move at different speeds under the same field. For Kννν⊕ Aννν − (electroneutrality: RT ⇒ z c = z c ; here z > 0) ⊕ ⊕ ⊕ diffusion: caused by a gradient of concentration/chemical potential c z z D ννν λ t = = = = = D c z + c z + + z D + z D ννν λ + ννν λ ~J = D∇~c = c ∇~μ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ − − RT t ze zFD Properties: t + t = 1, = = , = D, λ = zF ~j = c ∇~μ = c∇~μ ⊕ t E kBT − RT − ⊕ ⊕ Example. Electrolysis of CuSO : t 2+ 40 %, t 2 60 %. 4 Cu = SO4 = migration: caused by el.
Recommended publications
  • CHEMICAL REACTION ENGINEERING* Current Status and Future Directions
    [eJij9iviews and opinions CHEMICAL REACTION ENGINEERING* Current Status and Future Directions M. P. DUDUKOVIC and petrochemical industry provided a fertile ground Washington University for further development of reaction engineering con­ St. Louis, MO 63130 cepts. The final cornerstone of this new discipline was laid in 1957 by the First Symposium on Chemical HEMICAL REACTIONS have been used by man­ Reaction Engineering [3] which brought together and C kind since time immemorial to produce useful synthesized the European point of view. The Amer­ products such as wine, metals, etc. Nevertheless, the ican and European schools of thought were not identi­ unifying principles that today we call chemical reac­ cal, but in time they converged into the subject matter tion engineering were not developed until relatively a that we know today as chemical reaction engineering, short time ago. During the decade of the 1940's (not or CRE. The above chronology led to the establish­ even half a century ago!) a transition was made from ment of CRE as an accepted discipline over the span descriptive industrial chemistry to the conceptual un­ of a decade and a half. This does not imply that all the ification of reaction processes and reactor types. The principles important in CRE were discovered then. pioneering work in this area of industrial practice was The foundation for CRE had already been established done by Denbigh [1] in England. Then in 1947, by the early work of Frank-Kamenteski, Damkohler, Hougen and Watson [2] published the first textbook Zeldovitch, etc., but at that time they represented in the U.S.
    [Show full text]
  • Transport Phenomena: Mass Transfer
    Transport Phenomena Mass Transfer (1 Credit Hour) μ α k ν DAB Ui Uo UD h h Pr f Gr Re Le i o Nu Sh Pe Sc kc Kc d Δ ρ Σ Π ∂ ∫ Dr. Muhammad Rashid Usman Associate professor Institute of Chemical Engineering and Technology University of the Punjab, Lahore. Jul-2016 The Text Book Please read through. Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena. 2nd ed. John Wiley & Sons, Inc. Singapore. 2 Transfer processes For a transfer or rate process Rate of a quantity driving force Rate of a quantity area for the flow of the quantity 1 Rate of a quantity Area driving force resistance Rate of a quantity conductance Area driving force Flux of a quantity conductance driving force Conductance is a transport property. Compare the above equations with Ohm’s law of electrical 3 conductance Transfer processes change in the quanity Rate of a quantity change in time rate of the quantity Flux of a quantity area for flow of the quantity change in the quanity Gradient of a quantity change in distance 4 Transfer processes In chemical engineering, we study three transfer processes (rate processes), namely •Momentum transfer or Fluid flow •Heat transfer •Mass transfer The study of these three processes is called as transport phenomena. 5 Transfer processes Transfer processes are either: • Molecular (rate of transfer is only a function of molecular activity), or • Convective (rate of transfer is mainly due to fluid motion or convective currents) Unlike momentum and mass transfer processes, heat transfer has an added mode of transfer called as radiation heat transfer.
    [Show full text]
  • Chemical Engineering - CHEN 1
    Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030 or CHEM 1033) and (MATH 1610 or MATH 1613 or MATH 1617) and (P/C CHEM 1120 or P/C CHEM 1127 or P/C CHEM 1040 or P/ C CHEM 1043) and (P/C MATH 1620 or MATH 1623 or P/C MATH 1627) and (P/C PHYS 1600 or P/C PHYS 1607). Application of multicomponent material and energy balances to chemical processes involving phase changes and chemical reactions. CHEN 2110 CHEMICAL ENGINEERING THERMODYNAMICS (3) LEC. 3. Pr. (CHEM 1030 or CHEM 1033 or CHEM 1110 or CHEM 1117) and (MATH 1620 or MATH 1623 or MATH 1627) and (CHEN 2100) and (P/C PHYS 1600 or P/C PHYS 1607) and (P/C CHEN 2650). This course is intended to comprehensively introduce the thermodynamics of single- and multi-phase, pure systems, including the first and second laws of thermodynamics, equations of state, simple processes and cycles, and their applications in chemical engineering. CHEN 2610 TRANSPORT I (3) LEC. 3. Pr. (PHYS 1600 or PHYS 1607) and CHEN 2100 and (P/C MATH 2630 or P/C MATH 2637) and (P/C ENGR 2010 or P/C CHEN 2110). CHEN 2100 requires a grade of C or better. Introduction to fluid statics and dynamics; dimensional analysis; compressible and incompressible flows; design of flow systems, introduction to fluid solids transport including fluidization, flow through process media and multiphase flows. CHEN 2650 CHEMICAL ENGINEERING APPLICATIONS OF MATHEMATICAL TECHNIQUES (3) LEC.
    [Show full text]
  • Chemical Engineering (CH ENG) 1
    Chemical Engineering (CH_ENG) 1 Chemical Engineering CH_ENG 3233: Chemical Engineering Fluid Dynamics Introductory-level continuum mechanics of fluid flow (first in a two-course (CH_ENG) series on transport phenomena). Topics emphasized include buoyancy; stress; integral and differential conservation of mass, momentum, CH_ENG 1000: Introduction to Chemical Engineering and energy; the viscous stress equations of motion; Newtonian fluids, Orientation course for freshmen-level students. Introduction to careers viscosity, creeping flow, and the Navier-Stokes equations; turbulence; and opportunities in chemical engineering, basic engineering principles, dimensionless parameters and correlations; and solutions to partial simple calculations. differential equations. Graded on A-F basis only. Credit Hours: 2 Credit Hours: 3 Prerequisites or Corequisites: MATH 1500, CHEM 1320 Prerequisites or Corequisites: MATH 4100 Prerequisites: PHYSCS 2750, MATH 2300, and a grade of C- or better in CH_ENG 2225 CH_ENG 1000H: Introduction to Chemical Engineering - Honors Orientation course for freshmen-level students. Introduction to careers and opportunities in chemical engineering, basic engineering principles, CH_ENG 3234: Momentum, Heat, and Mass Transfer simple calculations. Fluid flow, heat and mass transfer. A comprehensive treatment of the transport processes related to chemical engineering operations, with Credit Hours: 2 focus on both theory and applications. Prerequisites or Corequisites: MATH 1500, CHEM 1320. Honors eligibility required Credit Hours:
    [Show full text]
  • Who Was Who in Transport Phenomena
    l!j9$i---1111-1111-.- __microbiographies.....::..._____:__ __ _ ) WHO WAS WHO IN TRANSPORT PHENOMENA R. B YRON BIRD University of Wisconsin-Madison• Madison, WI 53706-1691 hen lecturing on the subject of transport phenom­ provide the "glue" that binds the various topics together into ena, I have often enlivened the presentation by a coherent subject. It is also the subject to which we ulti­ W giving some biographical information about the mately have to tum when controversies arise that cannot be people after whom the famous equations, dimensionless settled by continuum arguments alone. groups, and theories were named. When I started doing this, It would be very easy to enlarge the list by including the I found that it was relatively easy to get information about authors of exceptional treatises (such as H. Lamb, H.S. the well-known physicists who established the fundamentals Carslaw, M. Jakob, H. Schlichting, and W. Jost). Attention of the subject, but that it was relatively difficult to find could also be paid to those many people who have, through accurate biographical data about the engineers and applied painstaking experiments, provided the basic data on trans­ scientists who have developed much of the subject. The port properties and transfer coefficients. documentation on fluid dynamicists seems to be rather plen­ tiful, that on workers in the field of heat transfer somewhat Doing accurate and responsible investigations into the history of science is demanding and time-consuming work, less so, and that on persons involved in diffusion quite and it requires individuals with excellent knowledge of his­ sparse.
    [Show full text]
  • ENCH - Engineering, Chemical 1
    ENCH - Engineering, Chemical 1 ENCH751 Turbulent and Multiphase Transport Phenomena (3 Credits) ENCH - ENGINEERING, Basic equations and statistical theories for transport of heat, mass, and momentum in turbulent fluids with applications to processing equipment. CHEMICAL Fundamental equations of multiphase flow for dilute systems with applications to particles, drops and bubbles. Current approaches for ENCH608 Research in Chemical Engineering (1 Credit) analysis of concentrated suspensions including deterministic models and Students gain experience in research through lab rotations and population balance approaches. experience presenting their findings. Prerequisite: ENCH620 and ENCH630. Restriction: Must be in the Chemical Engineering Doctoral or Master of ENCH781 Polymer Reaction Engineering (3 Credits) Science program. Advanced topics in polymerization kinetics, reactor design and Repeatable to: 8 credits. analysis; addition and step-growth polymerization; homogeneous and ENCH609 Graduate Seminar (1 Credit) heterogeneous polymerization; photopolymerization; reactor dynamics; ENCH610 Chemical Engineering Thermodynamics (3 Credits) optimal operation and control of industrial polymerization reactors. Advanced application of the general thermodynamic methods to Prerequisite: ENCH640; or permission of instructor. chemical engineering problems. First and second law consequences; ENCH799 Master's Thesis Research (1-6 Credits) estimation and correlation of thermodynamic properties; phase and ENCH818 Advanced Topics in Thermodynamics (3 Credits)
    [Show full text]
  • Introduction to Biological Transport Phenomena Transport Phenomena
    Introduction to Biological Transport Phenomena Adapted From: Transport Phenomena Byron Bird, Warren Stewart, and Edwin Lightfoot Chapter 3 Bioengineering Fundamentals Ann Saterbak, Ka-Yiu San, Larry McIntire Chapter 4 John P. Fisher © Copyright 2012, John P. Fisher, All Rights Reserved Transport Phenomena Introduction • Mass Transport • Solute diffusion through membrane bound channels • Renal separation of ionic components • Momentum Transport • Blood flow through the arterial system • Interstitial fluid flow • Energy Transport • Cardiac energy • Skeletal muscle energy © Copyright 2012, John P. Fisher, All Rights Reserved 1 Transport Phenomena Basic Laws and Connectivity Between Phenomena • Mass: Fick’s Law of Diffusion J = −D∇C • Momentum: Newton’s Law of Viscosity τ = −µ∇v • Energy: Fourier’s Law of Heat Conduction q = −k∇T © Copyright 2012, John P. Fisher, All Rights Reserved Transport Phenomena ∇ Operator • The vector differential operator, ∇, known as del, is a vector operator and it cannot stand on its own, but must operate on a scalar, vector, or tensor ∂ ∂ ∂ rectangular coordinates ∇ = δ +δ +δ x ∂x y ∂y z ∂z ∂ 1 ∂ ∂ cylindrical coordinates ∇ = δ +δ +δ r ∂r θ r ∂θ z ∂z ∂ 1 ∂ 1 ∂ spherical coordinates ∇ = δ +δ +δ r ∂r θ r ∂θ φ r sinθ ∂z © Copyright 2012, John P. Fisher, All Rights Reserved 2 Transport Phenomena ∇ Operator • The vector differential operator, ∇, known as del, is a vector operator and it cannot stand on its own, but must operate on a scalar, vector, or tensor ∂v ∂vy ∂v rectangular coordinates ∇ ⋅v = x + + z ∂x ∂y ∂z 1 1 v v cylindrical coordinates ∂ ∂ θ ∂ z ∇ ⋅v = (rvr )+ + r ∂r r ∂θ ∂z 1 1 1 ∂v spherical coordinates ∂ 2 ∂ φ ∇ ⋅v = 2 (r vr )+ (vθ sinθ )+ r ∂r r sinθ ∂θ r sinθ ∂φ © Copyright 2012, John P.
    [Show full text]
  • Transport Phenomena: Mass Transfer Procedure 1) Mass Balance Over A
    Transport Phenomena: Mass Transfer Procedure 1) Mass balance over a thin shell 2) Obtain 1st ODE 3) Insert the relation between mass flux and concentration gradient 4) Result in 2nd ODE 5) Integration 6) Apply BCs to determine the constants (from integration) 7) Obtain concentration distribution The law of conservation of mass of species A in a binary system is written over the volume of the shell in the form Rate of Rate of rate of production of Mass of - Mass of - mass of A by =0 A in A out homogeneous reaction Mass flux = the number of moles of A that go through a unit area in unit time. Combined molecular convective flux flux flux (Diffusive flow) (Due to Bulk motion of A) Boundary conditions 1) The concentration at surface can be specified; for example . 2) The mass flux at surface can be specified; for example, . 3) Solid surface substance A is lost to a surrounding stream 4) Rate of chemical reaction at the surface can be specified; for example, Example 1 Diffusivity through a stagnant gas (gas-air) Air flow B S: Cross sectional area z2 z1 A Loop A z 0 Figure 1 Steady-state diffusion of A through stagnant B with the liquid vapor interface maintained at a fixed position. Assumption 1) B does not dissolve in liquid A 2) A does not react to B 3) Temperature and pressure is constant Mole A balance around shell Divided by and taking limit we obtain Mass diffusion in binary system From Fick’s law; * is the molar flux of component A in the z direction due to molecular diffusion.
    [Show full text]
  • Chemical Engineering (CHEN) 1
    Chemical Engineering (CHEN) 1 Chemical Engineering (CHEN) CHEN 2371 Conservation Principles I 3 SCH (3-0) Applications of the conservation laws of mass to the solution of chemical engineering problems. Prerequisites: CHEM 1312 or PHYS 2325/PHYS 2125. CHEN 2372 Conservation Principles II 3 SCH (3-0) Applications of the conservation laws of energy to the solution of chemical engineering problems. Prerequisite: CHEN 2371. CHEN 3310 Heat Transport Phenomena 3 SCH (3-0) Fundamentals of energy transport and system applications involving this operation including computer applications to heat exchanger design. Prerequisites: CHEM 3323/CHEM 3123, CHEN 3392, CHEN 3347 or MEEN 3347. CHEN 3315 Chemical Process Design I 3 SCH (3-0) Basic principles and techniques of economic analysis and cost engineering with applications to problems in chemical process and equipment design. Prerequisites: CHEN 2372 and credit for or registration in CHEN 3310. CHEN 3321 Process Simulation 3 SCH (3-0) Basic numerical methods used in chemical process simulation. An introduction to the use of commercial process simulators, with hands-on applications. Prerequisite: MATH 3320, credit or registration in CHEN 3310. CHEN 3347 Chem Eng Thermodynamics I 3 SCH (3-0) Theory and applications of the first and second laws of thermodynamics to mechanical, chemical, magnetic and electrical interactions for both reversible and irreversible processes. Prerequisite: MATH 2414. Corequisites: PHYS 2326/PHYS 2126. CHEN 3371 Chemical Thermodynmcs II 3 SCH (3-0) Procedures for deciding when and to what extent chemical reactions and phase changes may be expected to occur according to the basic principles of physical chemistry and the laws of thermodynamics.
    [Show full text]
  • Transport Phenomena I
    Transport Phenomena I Andrew Rosen December 14, 2013 Contents 1 Dimensional Analysis and Scale-Up 4 1.1 Procedure . .4 1.2 Example . .4 2 Introduction to Fluid Mechanics 5 2.1 Definitions and Fundamental Equations . .5 2.2 Hydrostatics . .5 2.2.1 Pressure Changes with Elevation . .5 2.2.2 U-Tube Example . .6 2.2.3 Force on a Dam . .6 2.2.4 Archimedes’ Law . .7 2.2.5 Buoyancy Example . .7 3 Shear Stress and the Shell Momentum Balance 7 3.1 Types of Stress . .7 3.2 Shell Momentum Balance . .8 3.2.1 Procedure . .8 3.2.2 Boundary Conditions . .8 3.3 Flow of a Falling Film . .9 3.4 Flow Through a Circular Tube . 10 3.5 Flow Through an Annulus . 11 4 Mass, Energy, and Momentum Balances 13 4.1 Mass and Energy Balance . 13 4.2 Bernoulli Equation . 13 4.3 Momentum Balance . 14 5 Differential Equations of Fluid Mechanics 14 5.1 Vectors and Operators . 14 5.1.1 Dot Product . 14 5.1.2 Cross Product . 14 5.1.3 Gradient . 14 5.1.4 Divergence . 14 5.1.5 Curl . 15 5.1.6 Laplacian . 15 5.2 Solution of the Equations of Motion . 15 5.3 Procedure for Using Navier-Stokes Equation . 15 5.4 Flow Through a Circular Tube Using Navier-Stokes . 15 5.5 Flow Through a Heat-Exchanger . 16 1 6 Velocity Distributions with More Than One Variable 18 6.1 Time-Dependent Flow of Newtonian Fluids . 18 6.1.1 Definitions .
    [Show full text]
  • Notes on Transport Phenomena
    NOTES ON TRANSPORT PHENOMENA R Shankar Subramanian UPDATED AUGUST 1, 2020 DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING, CLARKSON UNIVERSITY Potsdam, New York 13699-5705 Introductory Remarks These notes were developed to support an introductory graduate level course on transport phenomena at Clarkson University that I taught for many years, and later also used to supplement material from the textbook by R.B. Bird, W.E. Stewart, and E.N. Lightfoot titled “Transport Phenomena” in my undergraduate elective course on the subject. The notes should not be construed as complete in the sense of being useful as a textbook for any course. Rather, they contain a variety of sections that I wrote over the years to provide supplemental material for students taking my courses, and only reflect my style and bias in presenting topics. Because of the manner in which these notes were formulated and modified over the last three decades, the various parts were written nearly independently of each other, and each section contains its own set of references. In preparing and refining these notes, I have learned much from the students who took my courses as well as colleagues at Clarkson and elsewhere, to whom I shall remain grateful forever. Any errors in this document are entirely my responsibility. I can be reached at R. Shankar Subramanian Professor Emeritus Department of Chemical and Biomolecular Engineering Clarkson University Potsdam, New York 13699 [email protected] July 2020 Update 1, August 2020 (minor edits in Section II) 1 Table of Contents
    [Show full text]
  • Fundamentals of Transport Processes 1
    Fundamentals of Transport Processes 1 V. Kumaran, Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012. 1 Course outline and reading material: Subject Lectures Reading 1. Dimensional analysis. 1-4 2. Diffusion. 5-7 BSL 1,8,15, ELC 5 3. Unidirectional transport 8-15 BSL 2.1, 2.2, 4.1, 4.4, 9.6, Cartesian co-ordinates 11.1, 11.2, MNO 2. 4. Unidirectional transport. 16-24 BSL 2.3, 2.4, 2.6, 3.4, 3.5, Curvilinear co-ordinates. 9.6, 10.2, 10.5, 10.6, MNO 3,4. 5. Mass and energy conservation. 25-28 BSL 3,10,18 6. Transport due to diffusion. 29-35 MNO 2, 3, 4. 7. Transport at high Peclet number 36-39 LGL 9 G-L 8. Summary 40 1. Bird, Stewart and Lightfoot (BSL), Transport Phenomena, Wiley In- ternational, 1960. 2. L. G. Leal (LGL), Advanced Transport Phenomena, Cambridge Uni- versity Press, 2007. 3. E. L. Cussler (ELC), Diffusion: Mass transfer in fluid systems, Cam- bridge University Press, 1984. 4. M. N. Ozisik (MNO), Boundary Value Problems of Heat Conduction, Dover 2002. 1 2 Exercises: 2.1 Dimensional analysis: 1. The dimensionless groups for the heat flux in a heat exchanger were determined assuming that there is no inter-conversion between me- chanical and thermal energy. If mechanical energy can be converted to thermal energy, there would be one additional dimensionless group which would be relevant for the heat flux. What is this dimensionless group, and what is its significance? 2. The Maxwell equations in electrodynamics are, .E =(ρ /ǫ ) (1) ∇ s 0 .B =0 (2) ∇ ∂B E = (3) ∇× − ∂t ∂E B = µ J + µ ǫ (4) ∇× 0 0 0 ∂t where E and B are the electric and magnetic field vectors, ρs is the charge density, ǫ0 and µ0 are the permittivity and permeability of free space, and J is the current density.
    [Show full text]