I.2.3 First Examples of Linear Transport Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

I.2.3 First Examples of Linear Transport Phenomena 14 Thermodynamics of irreversible processes I.2.3 First examples of linear transport phenomena Following the example set by Onsager in his original articles [4, 5], we now enumerate several phenomenological linear transport laws formulated in the 19th century and re-express them in terms of relations between fluxes and affinities as formalised in section I.2.1. We shall begin with a few “direct” transport phenomena—for heat, particle number, or electric charges. Next, we turn to a case in which indirect transport plays a role, namely that of thermoelec- tric effects. These first examples will be studied in the respective rest frames of the systems under eq: study, so that the equilibrium fluxes Jj will vanish. Eventually, we describe the various transport phenomena in a simple fluid, which will allow us to derive the classical laws of hydrodynamics. In most of this section, we shall for the sake of brevity drop the (t;~r)-dependence of the various physical quantities under consideration. ::::::I.2.3 a :::::::::::::::Heat transport In an insulating solid with a temperature gradient, heat is transported through the vibrations of the underlying crystalline structure—whose quantum mechanical description relies on phonons— rather than through particle transport. Traditionally, this transport of energy is expressed in the form of Fourier’s(g) law (1822) J~E = −κ r~ T; (I.36a) with κ the heat conductivity of the insulator. Using the general formalism of linear irreversible thermodynamic processes, the relationship between the energy flux density and the conjugate affinity, in the case when there is no gradient of the ratio µ/T ,(8) reads in the linear regime (8)Phonons are massless and carry no conserved quantum number, so that their chemical potential vanishes every- where. (f)H. Casimir, 1909–2000 (g)J. Fourier, 1768–1830 I.2 Linear irreversible thermodynamic processes 15 1 J~ = L · r~ ; (I.36b) E EE T (9) with LEE a tensor of rank 2 of (first-order) kinetic coefficients. If the medium is isotropic, this tensor is for symmetry reasons proportional to the identity LEE = LEE13: The comparison between Eqs. (I.36a) and (I.36b) then gives the identification 1 κ = L : (I.36c) T 2 EE Since LEE ≥ 0 to ensure the positivity of the entropy production rate, κ is also nonnegative. The flux (I.36a) thus transports energy from the regions of higher temperatures to the colder ones. Combining Fourier’s law (I.36a) with the continuity equation (I.18a) applied to the energy density e yields @e = −r~ · J~ = r~ · κ r~ T @t E Assuming that the heat conductivity is uniform in the medium under study, κ can be taken out of the divergence, so that the right-hand side becomes κ4T , with 4 the Laplacian. According to a well known thermodynamic relation, at fixed volume the change in the internal energy equals the heat capacity at constant volume multiplied by the change in the temperature, which results in de = cV dT with cV the heat capacity per unit volume. If the latter is independent of temperature, one readily obtains the evolution equation @T κ = 4T: (I.37) @t cV This is the generic form of a diffusion equation [see Eq. (I.39) below], with diffusion coefficient κ/cV . ::::::I.2.3 b::::::::::::::::::Particle diffusion Consider now “particles” immersed in a motionless and homogeneous medium, in which they can move around—microscopically, through scatterings on the medium constituents—without affecting the medium characteristics. Examples are the motion of dust in the air, of micrometer-scale bodies in liquids, but also of impurities in a solid or of neutrons in the core of a nuclear reactor. Let n denote the number density of the particles. The transport of particles can be described by Fick’s(h) law (1855) [7] ~ ~ JN = −D rn; (I.38a) with J~N the flux density of particle number and D the diffusion coefficient. Remark: Relation (I.38a) is sometimes referred to as Fick’s first law, the second one being actually the diffusion equation (I.39). In the absence of temperature gradient and of collective motion of the medium, the general relation (I.31) yields for the particle number flux density µ J~ = L r~ − : (I.38b) N NN T (9). which is strictly speaking never the case at the microscopic level in a crystal, since the lattice structure is incompatible with local invariance under the whole set of three-dimensional rotations. Nevertheless, for lattices with a cubic elementary mesh, isotropy holds, yet at the mesoscopic level. (h)A. Fick, 1829–1901 16 Thermodynamics of irreversible processes Relating the differential of chemical potential to that of number density with @µ dµ = dn; @n T the identification of Fick’s law (I.38a) with formula (I.38b) yields 1 @µ D = LNN ; (I.38c) T @n T where the precise form of the partial derivative depends on the system under study. Diffusion equation If the number of diffusing particles is conserved—which is for instance not the case for neutrons in a nuclear reactor(10)—and if the diffusion coefficient is independent of position, the associated continuity equation (I.18a) leads to the diffusion equation @n(t;~r) = D 4n(t;~r): (I.39) @t To tackle this partial differential equation (considered on R3), one can introduce the Fourier transform with respect to space coordinates Z ~ n~(t;~k) ≡ n(t;~r) e−ik·~r d3~r of the number density. This transform then satisfies for each ~k the ordinary differential equation @n~(t;~k) = −D ~k 2n~(t;~k); @t where we assumed that the number density and its spatial derivatives vanish at infinity at every instant. These assumptions respectively guarantee the finiteness of the overall particle number and the absence of particle flux at infinity. ~ 2 The solution to the differential equation reads n~(t;~k) = e−Dk t n~(0;~k), with n~(0;~k) the initial condition at t = 0 in Fourier space. An inverse Fourier transform then yields 3 Z ~ 2 ~ d ~k n(t;~r) = e−Dk t n~(0;~k) eik·~r : (2π)3 (3) If the initial condition is n(0;~r) = n0 δ (~r)—which physically amounts to introducing a particle ~ density n0 at the point ~r = ~0 at time t = 0—then the Fourier transform is trivially n~(0; k) = n0, so that the inverse Fourier transform above is simply that of a Gaussian, which gives n0 2 n(t;~r) = e−~r =4Dt: (4πDt)3=2 p The typical width of the particle number density increases with t. ::::::I.2.3 c ::::::::::::::::::::::Electrical conduction Another example of particle transport is that of the moving charges in an electrical conductor in the presence of an electric field E~ = −r~ Φ, with Φ the electrostatic potential. The latter is assumed to vary very slowly at the mesoscopic scale, so as not to spoil the local equilibrium assumption. If q (10)There, one should also include various source and loss terms, to account for the production of neutrons through fission reactions, or their “destruction” through reactions with the nuclear fuel, with the nuclear waste present in the reactor, or with the absorber bars that moderate the chain reaction, or their natural decay. I.2 Linear irreversible thermodynamic processes 17 denotes the electric charge of the carriers, then the electric charge flux density, traditionally referred to as current density, is simply related to the number flux density of the moving charges through J~el: = qJ~N : (I.40a) The relation between electric field and current density in a microscopically isotropic conductor at constant temperature in the absence of magnetic field is (the microscopic version of) Ohm’s(i) law ~ J~el: = σel:E (I.40b) with σel: the (isothermal) electrical conductivity. To relate the electrical conductivity to the kinetic coefficients of Sec. I.2.1, and more specifically to LNN since J~el: is proportional to J~N , one needs to determine the intensive variable conjugate to particle number—or equivalently, thanks to the local equilibrium assumption, conjugate to particle number density. Now, if e denotes the (internal) energy density in the absence of electrostatic potential, then the energy density in presence of Φ becomes e + nqΦ: meanwhile, the particle number density n remains unchanged. The entropy per unit volume then satisfies—as can most easily be checked within the grand-canonical ensemble of statistical mechanics—the identity s(e; n; Φ) = s(e − nqΦ; n; 0); which yields @s µ + qΦ µ = − ≡ − Φ ; (I.41) @n T T with µ the chemical potential at vanishing electric potential. µΦ is referred to as electrochemical potential. Assuming a uniform temperature in the conductor, the linear relation (I.31) for the flux of particle number then reads µ + qΦ J~ = L r~ − : (I.42) N NN T Using again the uniformity of temperature, this gives ~ 1 @µ ~ q ~ JN = − LNN rn − LNN rΦ; T @n T T where the first term is the same as in Sec. I.2.3 b, while the second can be rewritten with the help of the electric field. If the density is uniform, the first term vanishes, and the identification with Eqs. (I.40a) and (I.40b) yields the electrical conductivity q2 σ = L : (I.43) el: T NN Einstein relation Equations (I.38c) and (I.43) show that the diffusion coefficient D and the electrical conductivity σ are both related to the same kinetic coefficient LNN , so that they are related with each other: σel: @µ D = 2 : (I.44) q @n T Let µel: denote the electrical mobility of the charge carriers, which is the proportionality factor ~ between the mean velocity ~vav: they acquire in an electric field E and this field ~ ~vav: = µel:E : (I.45) Obviously, the determination of µel: requires a microscopic model for the motion of the charges.
Recommended publications
  • CHEMICAL REACTION ENGINEERING* Current Status and Future Directions
    [eJij9iviews and opinions CHEMICAL REACTION ENGINEERING* Current Status and Future Directions M. P. DUDUKOVIC and petrochemical industry provided a fertile ground Washington University for further development of reaction engineering con­ St. Louis, MO 63130 cepts. The final cornerstone of this new discipline was laid in 1957 by the First Symposium on Chemical HEMICAL REACTIONS have been used by man­ Reaction Engineering [3] which brought together and C kind since time immemorial to produce useful synthesized the European point of view. The Amer­ products such as wine, metals, etc. Nevertheless, the ican and European schools of thought were not identi­ unifying principles that today we call chemical reac­ cal, but in time they converged into the subject matter tion engineering were not developed until relatively a that we know today as chemical reaction engineering, short time ago. During the decade of the 1940's (not or CRE. The above chronology led to the establish­ even half a century ago!) a transition was made from ment of CRE as an accepted discipline over the span descriptive industrial chemistry to the conceptual un­ of a decade and a half. This does not imply that all the ification of reaction processes and reactor types. The principles important in CRE were discovered then. pioneering work in this area of industrial practice was The foundation for CRE had already been established done by Denbigh [1] in England. Then in 1947, by the early work of Frank-Kamenteski, Damkohler, Hougen and Watson [2] published the first textbook Zeldovitch, etc., but at that time they represented in the U.S.
    [Show full text]
  • Transport Phenomena: Mass Transfer
    Transport Phenomena Mass Transfer (1 Credit Hour) μ α k ν DAB Ui Uo UD h h Pr f Gr Re Le i o Nu Sh Pe Sc kc Kc d Δ ρ Σ Π ∂ ∫ Dr. Muhammad Rashid Usman Associate professor Institute of Chemical Engineering and Technology University of the Punjab, Lahore. Jul-2016 The Text Book Please read through. Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena. 2nd ed. John Wiley & Sons, Inc. Singapore. 2 Transfer processes For a transfer or rate process Rate of a quantity driving force Rate of a quantity area for the flow of the quantity 1 Rate of a quantity Area driving force resistance Rate of a quantity conductance Area driving force Flux of a quantity conductance driving force Conductance is a transport property. Compare the above equations with Ohm’s law of electrical 3 conductance Transfer processes change in the quanity Rate of a quantity change in time rate of the quantity Flux of a quantity area for flow of the quantity change in the quanity Gradient of a quantity change in distance 4 Transfer processes In chemical engineering, we study three transfer processes (rate processes), namely •Momentum transfer or Fluid flow •Heat transfer •Mass transfer The study of these three processes is called as transport phenomena. 5 Transfer processes Transfer processes are either: • Molecular (rate of transfer is only a function of molecular activity), or • Convective (rate of transfer is mainly due to fluid motion or convective currents) Unlike momentum and mass transfer processes, heat transfer has an added mode of transfer called as radiation heat transfer.
    [Show full text]
  • Chemical Engineering - CHEN 1
    Chemical Engineering - CHEN 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030 or CHEM 1033) and (MATH 1610 or MATH 1613 or MATH 1617) and (P/C CHEM 1120 or P/C CHEM 1127 or P/C CHEM 1040 or P/ C CHEM 1043) and (P/C MATH 1620 or MATH 1623 or P/C MATH 1627) and (P/C PHYS 1600 or P/C PHYS 1607). Application of multicomponent material and energy balances to chemical processes involving phase changes and chemical reactions. CHEN 2110 CHEMICAL ENGINEERING THERMODYNAMICS (3) LEC. 3. Pr. (CHEM 1030 or CHEM 1033 or CHEM 1110 or CHEM 1117) and (MATH 1620 or MATH 1623 or MATH 1627) and (CHEN 2100) and (P/C PHYS 1600 or P/C PHYS 1607) and (P/C CHEN 2650). This course is intended to comprehensively introduce the thermodynamics of single- and multi-phase, pure systems, including the first and second laws of thermodynamics, equations of state, simple processes and cycles, and their applications in chemical engineering. CHEN 2610 TRANSPORT I (3) LEC. 3. Pr. (PHYS 1600 or PHYS 1607) and CHEN 2100 and (P/C MATH 2630 or P/C MATH 2637) and (P/C ENGR 2010 or P/C CHEN 2110). CHEN 2100 requires a grade of C or better. Introduction to fluid statics and dynamics; dimensional analysis; compressible and incompressible flows; design of flow systems, introduction to fluid solids transport including fluidization, flow through process media and multiphase flows. CHEN 2650 CHEMICAL ENGINEERING APPLICATIONS OF MATHEMATICAL TECHNIQUES (3) LEC.
    [Show full text]
  • Chemical Engineering (CH ENG) 1
    Chemical Engineering (CH_ENG) 1 Chemical Engineering CH_ENG 3233: Chemical Engineering Fluid Dynamics Introductory-level continuum mechanics of fluid flow (first in a two-course (CH_ENG) series on transport phenomena). Topics emphasized include buoyancy; stress; integral and differential conservation of mass, momentum, CH_ENG 1000: Introduction to Chemical Engineering and energy; the viscous stress equations of motion; Newtonian fluids, Orientation course for freshmen-level students. Introduction to careers viscosity, creeping flow, and the Navier-Stokes equations; turbulence; and opportunities in chemical engineering, basic engineering principles, dimensionless parameters and correlations; and solutions to partial simple calculations. differential equations. Graded on A-F basis only. Credit Hours: 2 Credit Hours: 3 Prerequisites or Corequisites: MATH 1500, CHEM 1320 Prerequisites or Corequisites: MATH 4100 Prerequisites: PHYSCS 2750, MATH 2300, and a grade of C- or better in CH_ENG 2225 CH_ENG 1000H: Introduction to Chemical Engineering - Honors Orientation course for freshmen-level students. Introduction to careers and opportunities in chemical engineering, basic engineering principles, CH_ENG 3234: Momentum, Heat, and Mass Transfer simple calculations. Fluid flow, heat and mass transfer. A comprehensive treatment of the transport processes related to chemical engineering operations, with Credit Hours: 2 focus on both theory and applications. Prerequisites or Corequisites: MATH 1500, CHEM 1320. Honors eligibility required Credit Hours:
    [Show full text]
  • Who Was Who in Transport Phenomena
    l!j9$i---1111-1111-.- __microbiographies.....::..._____:__ __ _ ) WHO WAS WHO IN TRANSPORT PHENOMENA R. B YRON BIRD University of Wisconsin-Madison• Madison, WI 53706-1691 hen lecturing on the subject of transport phenom­ provide the "glue" that binds the various topics together into ena, I have often enlivened the presentation by a coherent subject. It is also the subject to which we ulti­ W giving some biographical information about the mately have to tum when controversies arise that cannot be people after whom the famous equations, dimensionless settled by continuum arguments alone. groups, and theories were named. When I started doing this, It would be very easy to enlarge the list by including the I found that it was relatively easy to get information about authors of exceptional treatises (such as H. Lamb, H.S. the well-known physicists who established the fundamentals Carslaw, M. Jakob, H. Schlichting, and W. Jost). Attention of the subject, but that it was relatively difficult to find could also be paid to those many people who have, through accurate biographical data about the engineers and applied painstaking experiments, provided the basic data on trans­ scientists who have developed much of the subject. The port properties and transfer coefficients. documentation on fluid dynamicists seems to be rather plen­ tiful, that on workers in the field of heat transfer somewhat Doing accurate and responsible investigations into the history of science is demanding and time-consuming work, less so, and that on persons involved in diffusion quite and it requires individuals with excellent knowledge of his­ sparse.
    [Show full text]
  • ENCH - Engineering, Chemical 1
    ENCH - Engineering, Chemical 1 ENCH751 Turbulent and Multiphase Transport Phenomena (3 Credits) ENCH - ENGINEERING, Basic equations and statistical theories for transport of heat, mass, and momentum in turbulent fluids with applications to processing equipment. CHEMICAL Fundamental equations of multiphase flow for dilute systems with applications to particles, drops and bubbles. Current approaches for ENCH608 Research in Chemical Engineering (1 Credit) analysis of concentrated suspensions including deterministic models and Students gain experience in research through lab rotations and population balance approaches. experience presenting their findings. Prerequisite: ENCH620 and ENCH630. Restriction: Must be in the Chemical Engineering Doctoral or Master of ENCH781 Polymer Reaction Engineering (3 Credits) Science program. Advanced topics in polymerization kinetics, reactor design and Repeatable to: 8 credits. analysis; addition and step-growth polymerization; homogeneous and ENCH609 Graduate Seminar (1 Credit) heterogeneous polymerization; photopolymerization; reactor dynamics; ENCH610 Chemical Engineering Thermodynamics (3 Credits) optimal operation and control of industrial polymerization reactors. Advanced application of the general thermodynamic methods to Prerequisite: ENCH640; or permission of instructor. chemical engineering problems. First and second law consequences; ENCH799 Master's Thesis Research (1-6 Credits) estimation and correlation of thermodynamic properties; phase and ENCH818 Advanced Topics in Thermodynamics (3 Credits)
    [Show full text]
  • Introduction to Biological Transport Phenomena Transport Phenomena
    Introduction to Biological Transport Phenomena Adapted From: Transport Phenomena Byron Bird, Warren Stewart, and Edwin Lightfoot Chapter 3 Bioengineering Fundamentals Ann Saterbak, Ka-Yiu San, Larry McIntire Chapter 4 John P. Fisher © Copyright 2012, John P. Fisher, All Rights Reserved Transport Phenomena Introduction • Mass Transport • Solute diffusion through membrane bound channels • Renal separation of ionic components • Momentum Transport • Blood flow through the arterial system • Interstitial fluid flow • Energy Transport • Cardiac energy • Skeletal muscle energy © Copyright 2012, John P. Fisher, All Rights Reserved 1 Transport Phenomena Basic Laws and Connectivity Between Phenomena • Mass: Fick’s Law of Diffusion J = −D∇C • Momentum: Newton’s Law of Viscosity τ = −µ∇v • Energy: Fourier’s Law of Heat Conduction q = −k∇T © Copyright 2012, John P. Fisher, All Rights Reserved Transport Phenomena ∇ Operator • The vector differential operator, ∇, known as del, is a vector operator and it cannot stand on its own, but must operate on a scalar, vector, or tensor ∂ ∂ ∂ rectangular coordinates ∇ = δ +δ +δ x ∂x y ∂y z ∂z ∂ 1 ∂ ∂ cylindrical coordinates ∇ = δ +δ +δ r ∂r θ r ∂θ z ∂z ∂ 1 ∂ 1 ∂ spherical coordinates ∇ = δ +δ +δ r ∂r θ r ∂θ φ r sinθ ∂z © Copyright 2012, John P. Fisher, All Rights Reserved 2 Transport Phenomena ∇ Operator • The vector differential operator, ∇, known as del, is a vector operator and it cannot stand on its own, but must operate on a scalar, vector, or tensor ∂v ∂vy ∂v rectangular coordinates ∇ ⋅v = x + + z ∂x ∂y ∂z 1 1 v v cylindrical coordinates ∂ ∂ θ ∂ z ∇ ⋅v = (rvr )+ + r ∂r r ∂θ ∂z 1 1 1 ∂v spherical coordinates ∂ 2 ∂ φ ∇ ⋅v = 2 (r vr )+ (vθ sinθ )+ r ∂r r sinθ ∂θ r sinθ ∂φ © Copyright 2012, John P.
    [Show full text]
  • Transport Phenomena: Mass Transfer Procedure 1) Mass Balance Over A
    Transport Phenomena: Mass Transfer Procedure 1) Mass balance over a thin shell 2) Obtain 1st ODE 3) Insert the relation between mass flux and concentration gradient 4) Result in 2nd ODE 5) Integration 6) Apply BCs to determine the constants (from integration) 7) Obtain concentration distribution The law of conservation of mass of species A in a binary system is written over the volume of the shell in the form Rate of Rate of rate of production of Mass of - Mass of - mass of A by =0 A in A out homogeneous reaction Mass flux = the number of moles of A that go through a unit area in unit time. Combined molecular convective flux flux flux (Diffusive flow) (Due to Bulk motion of A) Boundary conditions 1) The concentration at surface can be specified; for example . 2) The mass flux at surface can be specified; for example, . 3) Solid surface substance A is lost to a surrounding stream 4) Rate of chemical reaction at the surface can be specified; for example, Example 1 Diffusivity through a stagnant gas (gas-air) Air flow B S: Cross sectional area z2 z1 A Loop A z 0 Figure 1 Steady-state diffusion of A through stagnant B with the liquid vapor interface maintained at a fixed position. Assumption 1) B does not dissolve in liquid A 2) A does not react to B 3) Temperature and pressure is constant Mole A balance around shell Divided by and taking limit we obtain Mass diffusion in binary system From Fick’s law; * is the molar flux of component A in the z direction due to molecular diffusion.
    [Show full text]
  • Chemical Engineering (CHEN) 1
    Chemical Engineering (CHEN) 1 Chemical Engineering (CHEN) CHEN 2371 Conservation Principles I 3 SCH (3-0) Applications of the conservation laws of mass to the solution of chemical engineering problems. Prerequisites: CHEM 1312 or PHYS 2325/PHYS 2125. CHEN 2372 Conservation Principles II 3 SCH (3-0) Applications of the conservation laws of energy to the solution of chemical engineering problems. Prerequisite: CHEN 2371. CHEN 3310 Heat Transport Phenomena 3 SCH (3-0) Fundamentals of energy transport and system applications involving this operation including computer applications to heat exchanger design. Prerequisites: CHEM 3323/CHEM 3123, CHEN 3392, CHEN 3347 or MEEN 3347. CHEN 3315 Chemical Process Design I 3 SCH (3-0) Basic principles and techniques of economic analysis and cost engineering with applications to problems in chemical process and equipment design. Prerequisites: CHEN 2372 and credit for or registration in CHEN 3310. CHEN 3321 Process Simulation 3 SCH (3-0) Basic numerical methods used in chemical process simulation. An introduction to the use of commercial process simulators, with hands-on applications. Prerequisite: MATH 3320, credit or registration in CHEN 3310. CHEN 3347 Chem Eng Thermodynamics I 3 SCH (3-0) Theory and applications of the first and second laws of thermodynamics to mechanical, chemical, magnetic and electrical interactions for both reversible and irreversible processes. Prerequisite: MATH 2414. Corequisites: PHYS 2326/PHYS 2126. CHEN 3371 Chemical Thermodynmcs II 3 SCH (3-0) Procedures for deciding when and to what extent chemical reactions and phase changes may be expected to occur according to the basic principles of physical chemistry and the laws of thermodynamics.
    [Show full text]
  • Transport Phenomena I
    Transport Phenomena I Andrew Rosen December 14, 2013 Contents 1 Dimensional Analysis and Scale-Up 4 1.1 Procedure . .4 1.2 Example . .4 2 Introduction to Fluid Mechanics 5 2.1 Definitions and Fundamental Equations . .5 2.2 Hydrostatics . .5 2.2.1 Pressure Changes with Elevation . .5 2.2.2 U-Tube Example . .6 2.2.3 Force on a Dam . .6 2.2.4 Archimedes’ Law . .7 2.2.5 Buoyancy Example . .7 3 Shear Stress and the Shell Momentum Balance 7 3.1 Types of Stress . .7 3.2 Shell Momentum Balance . .8 3.2.1 Procedure . .8 3.2.2 Boundary Conditions . .8 3.3 Flow of a Falling Film . .9 3.4 Flow Through a Circular Tube . 10 3.5 Flow Through an Annulus . 11 4 Mass, Energy, and Momentum Balances 13 4.1 Mass and Energy Balance . 13 4.2 Bernoulli Equation . 13 4.3 Momentum Balance . 14 5 Differential Equations of Fluid Mechanics 14 5.1 Vectors and Operators . 14 5.1.1 Dot Product . 14 5.1.2 Cross Product . 14 5.1.3 Gradient . 14 5.1.4 Divergence . 14 5.1.5 Curl . 15 5.1.6 Laplacian . 15 5.2 Solution of the Equations of Motion . 15 5.3 Procedure for Using Navier-Stokes Equation . 15 5.4 Flow Through a Circular Tube Using Navier-Stokes . 15 5.5 Flow Through a Heat-Exchanger . 16 1 6 Velocity Distributions with More Than One Variable 18 6.1 Time-Dependent Flow of Newtonian Fluids . 18 6.1.1 Definitions .
    [Show full text]
  • Notes on Transport Phenomena
    NOTES ON TRANSPORT PHENOMENA R Shankar Subramanian UPDATED AUGUST 1, 2020 DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING, CLARKSON UNIVERSITY Potsdam, New York 13699-5705 Introductory Remarks These notes were developed to support an introductory graduate level course on transport phenomena at Clarkson University that I taught for many years, and later also used to supplement material from the textbook by R.B. Bird, W.E. Stewart, and E.N. Lightfoot titled “Transport Phenomena” in my undergraduate elective course on the subject. The notes should not be construed as complete in the sense of being useful as a textbook for any course. Rather, they contain a variety of sections that I wrote over the years to provide supplemental material for students taking my courses, and only reflect my style and bias in presenting topics. Because of the manner in which these notes were formulated and modified over the last three decades, the various parts were written nearly independently of each other, and each section contains its own set of references. In preparing and refining these notes, I have learned much from the students who took my courses as well as colleagues at Clarkson and elsewhere, to whom I shall remain grateful forever. Any errors in this document are entirely my responsibility. I can be reached at R. Shankar Subramanian Professor Emeritus Department of Chemical and Biomolecular Engineering Clarkson University Potsdam, New York 13699 [email protected] July 2020 Update 1, August 2020 (minor edits in Section II) 1 Table of Contents
    [Show full text]
  • Fundamentals of Transport Processes 1
    Fundamentals of Transport Processes 1 V. Kumaran, Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012. 1 Course outline and reading material: Subject Lectures Reading 1. Dimensional analysis. 1-4 2. Diffusion. 5-7 BSL 1,8,15, ELC 5 3. Unidirectional transport 8-15 BSL 2.1, 2.2, 4.1, 4.4, 9.6, Cartesian co-ordinates 11.1, 11.2, MNO 2. 4. Unidirectional transport. 16-24 BSL 2.3, 2.4, 2.6, 3.4, 3.5, Curvilinear co-ordinates. 9.6, 10.2, 10.5, 10.6, MNO 3,4. 5. Mass and energy conservation. 25-28 BSL 3,10,18 6. Transport due to diffusion. 29-35 MNO 2, 3, 4. 7. Transport at high Peclet number 36-39 LGL 9 G-L 8. Summary 40 1. Bird, Stewart and Lightfoot (BSL), Transport Phenomena, Wiley In- ternational, 1960. 2. L. G. Leal (LGL), Advanced Transport Phenomena, Cambridge Uni- versity Press, 2007. 3. E. L. Cussler (ELC), Diffusion: Mass transfer in fluid systems, Cam- bridge University Press, 1984. 4. M. N. Ozisik (MNO), Boundary Value Problems of Heat Conduction, Dover 2002. 1 2 Exercises: 2.1 Dimensional analysis: 1. The dimensionless groups for the heat flux in a heat exchanger were determined assuming that there is no inter-conversion between me- chanical and thermal energy. If mechanical energy can be converted to thermal energy, there would be one additional dimensionless group which would be relevant for the heat flux. What is this dimensionless group, and what is its significance? 2. The Maxwell equations in electrodynamics are, .E =(ρ /ǫ ) (1) ∇ s 0 .B =0 (2) ∇ ∂B E = (3) ∇× − ∂t ∂E B = µ J + µ ǫ (4) ∇× 0 0 0 ∂t where E and B are the electric and magnetic field vectors, ρs is the charge density, ǫ0 and µ0 are the permittivity and permeability of free space, and J is the current density.
    [Show full text]