Sodiomyces Alkalinus, a New Holomorphic Alkaliphilic Ascomycete Within the Plectosphaerellaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Case of Centaurea Stoebe (Spotted Knapweed)
Endophytic fungi as a biodiversity hotspot: the case of Centaurea stoebe (spotted knapweed) Alexey Shipunov Department of Forest Resources University of Idaho Spotted knapweed Spotted knapweed (Centaurea stoebe L., also known as C. maculosa, C. micrantha, C. biebersteinii) is a noxious, invasive plant which was introduced into North America from Eurasia in 1890s. Plant fungal endophytes • Grow inside plant, but do not cause any symptoms • Cryptic symbionts, inhabiting all plants • Play lots of different roles, include host tolerance to stressful conditions, plant defense, plant growth, and plant community biodiversity • One example of the economic importance of endophytes is taxol, well-known anticancer drug, which is not a product of Taxus brevifolia (yew) tree, but of its endophyte Taxomyces andreana Anamorphs and teleomorphs More than 1/3 of fungi do not normally express any sexual characters. They are anamorphs. Sometimes, some anamorphic fungi develop into sexual teleomorphs which have “more morphology” and can be properly classified. Before molecular era, all anamorphic fungi have been treated as Alternaria (anamorph, above), “Deuteromycota”. and Lewia (teleomorph, below) Most of knapweed endophytes are are the same organism. anamorphic ascomycetes. BLAST search usually reveals mixed lists of ana- and teleomorph names Pleomorphic fungi (with variable anamorph/teleomorph relationships) are one of the most painful problem for fungal taxonomy. The weakness of morphology From Jeewon et al. (2003), and Hu et al. (2007) Pestalotiopsis example: morphology chosen as the only identification tool leads to highly tangled molecular tree. “Identify, then sequence” does not work for novel isolates. Thus, the identification of fungi depends on either high level of expertise, or on proper barcoding. -
Illuminating Type Collections of Nectriaceous Fungi in Saccardo's
Persoonia 45, 2020: 221–249 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.09 Illuminating type collections of nectriaceous fungi in Saccardo’s fungarium N. Forin1, A. Vizzini 2,3,*, S. Nigris1,4, E. Ercole2, S. Voyron2,3, M. Girlanda2,3, B. Baldan1,4,* Key words Abstract Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ancient DNA ITS2 sequences were successfully obtained from 24 specimens identified as ‘Nectria’ sensu Saccardo (including Ascomycota 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis Hypocreales only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural Illumina combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. ribosomal sequences reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, Sordariomycetes N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classifi- cation is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names. Article info Received: 25 June 2020; Accepted: 21 September 2020; Published: 23 November 2020. INTRODUCTION to orange or brown perithecia which do not change colour in 3 % potassium hydroxide (KOH) or 100 % lactic acid (LA) Nectria, typified with N. -
No Evidence That Homologs of Key Circadian Clock Genes Direct Circadian Programs of Development Or Mrna Abundance in Verticillium Dahliae
No evidence that homologs of key circadian clock genes direct circadian programs of development or mRNA abundance in Verticillium dahliae Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Cascant-Lopez, E., Crosthwaite, S. K., Johnson, L. J. and Harrison, R. J. (2020) No evidence that homologs of key circadian clock genes direct circadian programs of development or mRNA abundance in Verticillium dahliae. Frontiers in Microbiology, 11 (1977). ISSN 1664-302X doi: https://doi.org/10.3389/fmicb.2020.01977 Available at http://centaur.reading.ac.uk/92562/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01977/full To link to this article DOI: http://dx.doi.org/10.3389/fmicb.2020.01977 Publisher: Frontiers All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online fmicb-11-01977 August 26, 2020 Time: 16:49 # 1 ORIGINAL RESEARCH published: 28 August 2020 doi: 10.3389/fmicb.2020.01977 No Evidence That Homologs of Key Circadian Clock Genes Direct Circadian Programs of Development or mRNA Abundance in Verticillium dahliae Emma Cascant-Lopez1, Susan K. Crosthwaite1, Louise J. Johnson2 and Richard J. Harrison1,3* 1 Genetics, Genomics and Breeding, NIAB EMR, East Malling, United Kingdom, 2 The School of Biological Sciences, University of Reading, Reading, United Kingdom, 3 National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom Many organisms harbor circadian clocks that promote their adaptation to the rhythmic environment. -
How Transposons Drive Evolution of Virulence in a Fungal Pathogen
bioRxiv preprint doi: https://doi.org/10.1101/038315; this version posted January 30, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 How transposons drive evolution of virulence in a fungal pathogen 2 Luigi Faino1#, Michael F Seidl1#, Xiaoqian Shi-Kunne1, Marc Pauper1, Grardy CM van den 3 Berg1, Alexander HJ Wittenberg2, and Bart PHJ Thomma1* 4 5 1Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB 6 Wageningen, The Netherlands 7 2Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands 8 9 #These authors contributed equally to this work 10 *Corresponding author: Prof. dr. Bart PHJ Thomma 11 Chair, Laboratory of Phytopathology 12 Wageningen University 13 Droevendaalsesteeg 1 14 6708 PB Wageningen 15 The Netherlands 16 Email: [email protected] 17 18 19 Running title: Genome evolution by transposable elements 20 Keywords: Genome evolution; Transposable element; Plant pathogen; Verticillium dahliae; 21 segmental genome duplication 1 bioRxiv preprint doi: https://doi.org/10.1101/038315; this version posted January 30, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 Genomic plasticity enables adaptation to changing environments, which is especially relevant 24 for pathogens that engage in arms races with their hosts. In many pathogens, genes 25 mediating aggressiveness cluster in highly variable, transposon-rich, physically distinct 26 genomic compartments. However, understanding of the evolution of these compartments, 27 and the role of transposons therein, remains limited. -
A Five-Gene Phylogeny of Pezizomycotina
Mycologia, 98(6), 2006, pp. 1018–1028. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 A five-gene phylogeny of Pezizomycotina Joseph W. Spatafora1 Burkhard Bu¨del Gi-Ho Sung Alexandra Rauhut Desiree Johnson Department of Biology, University of Kaiserslautern, Cedar Hesse Kaiserslautern, Germany Benjamin O’Rourke David Hewitt Maryna Serdani Harvard University Herbaria, Harvard University, Robert Spotts Cambridge, Massachusetts 02138 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Wendy A. Untereiner Department of Botany, Brandon University, Brandon, Franc¸ois Lutzoni Manitoba, Canada Vale´rie Hofstetter Jolanta Miadlikowska Mariette S. Cole Vale´rie Reeb 2017 Thure Avenue, St Paul, Minnesota 55116 Ce´cile Gueidan Christoph Scheidegger Emily Fraker Swiss Federal Institute for Forest, Snow and Landscape Department of Biology, Duke University, Box 90338, Research, WSL Zu¨ rcherstr. 111CH-8903 Birmensdorf, Durham, North Carolina 27708 Switzerland Thorsten Lumbsch Matthias Schultz Robert Lu¨cking Biozentrum Klein Flottbek und Botanischer Garten der Imke Schmitt Universita¨t Hamburg, Systematik der Pflanzen Ohnhorststr. 18, D-22609 Hamburg, Germany Kentaro Hosaka Department of Botany, Field Museum of Natural Harrie Sipman History, Chicago, Illinois 60605 Botanischer Garten und Botanisches Museum Berlin- Dahlem, Freie Universita¨t Berlin, Ko¨nigin-Luise-Straße Andre´ Aptroot 6-8, D-14195 Berlin, Germany ABL Herbarium, G.V.D. Veenstraat 107, NL-3762 XK Soest, The Netherlands Conrad L. Schoch Department of Botany and Plant Pathology, Oregon Claude Roux State University, Corvallis, Oregon 97331 Chemin des Vignes vieilles, FR - 84120 MIRABEAU, France Andrew N. Miller Abstract: Pezizomycotina is the largest subphylum of Illinois Natural History Survey, Center for Biodiversity, Ascomycota and includes the vast majority of filamen- Champaign, Illinois 61820 tous, ascoma-producing species. -
Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N. -
A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos
Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos Coordenadores | Coordinators Paulo A. V. Borges, Cristina Abreu, António M. Franquinho Aguiar, Palmira Carvalho, Roberto Jardim, Ireneia Melo, Paulo Oliveira, Cecília Sérgio, Artur R. M. Serrano e Paulo Vieira Composição da capa e da obra | Front and text graphic design DPI Cromotipo – Oficina de Artes Gráficas, Rua Alexandre Braga, 21B, 1150-002 Lisboa www.dpicromotipo.pt Fotos | Photos A. Franquinho Aguiar; Dinarte Teixeira João Paulo Mendes; Olga Baeta (Jardim Botânico da Madeira) Impressão | Printing Tipografia Peres, Rua das Fontaínhas, Lote 2 Vendas Nova, 2700-391 Amadora. Distribuição | Distribution Secretaria Regional do Ambiente e dos Recursos Naturais do Governo Regional da Madeira, Rua Dr. Pestana Júnior, n.º 6 – 3.º Direito. 9054-558 Funchal – Madeira. ISBN: 978-989-95790-0-2 Depósito Legal: 276512/08 2 INICIATIVA COMUNITÁRIA INTERREG III B 2000-2006 ESPAÇO AÇORES – MADEIRA - CANÁRIAS PROJECTO: COOPERACIÓN Y SINERGIAS PARA EL DESARROLLO DE LA RED NATURA 2000 Y LA PRESERVACIÓN DE LA BIODIVERSIDAD DE LA REGIÓN MACARONÉSICA BIONATURA Instituição coordenadora: Dirección General de Política Ambiental del Gobierno de Canarias Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos COORDENADO POR | COORDINATED BY PAULO A. V. BORGES, CRISTINA ABREU, -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
Comprehensive Analysis of Verticillium Nonalfalfae in Silico Secretome
bioRxiv preprint doi: https://doi.org/10.1101/237255; this version posted December 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion 1 Kristina Marton1, Marko Flajšman1, Sebastjan Radišek2, Katarina Košmelj1, Jernej Jakše1, 2 Branka Javornik1, Sabina Berne1* 3 1Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia 4 2Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia 5 * Correspondence: 6 Sabina Berne 7 [email protected] 8 Abstract 9 Background: The vascular plant pathogen Verticillium nonalfalfae causes Verticillium wilt in several 10 important crops. VnaSSP4.2 was recently discovered as a V. nonalfalfae virulence effector protein in 11 the xylem sap of infected hop. Here, we expanded our search for candidate secreted effector proteins 12 (CSEPs) in the V. nonalfalfae predicted secretome using a bioinformatic pipeline built on V. 13 nonalfalfae genome data, RNA-Seq and proteomic studies of the interaction with hop. 14 Results: The secretome, rich in carbohydrate active enzymes, proteases, redox proteins and proteins 15 involved in secondary metabolism, cellular processing and signaling, includes 263 CSEPs. Several 16 homologs of known fungal effectors (LysM, NLPs, Hce2, Cerato-platanins, Cyanovirin-N lectins, 17 hydrophobins and CFEM domain containing proteins) and avirulence determinants in the PHI 18 database (Avr-Pita1 and MgSM1) were found. The majority of CSEPs were non-annotated and were bioRxiv preprint doi: https://doi.org/10.1101/237255; this version posted December 21, 2017. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
MYCOTAXON Volume 91, Pp
MYCOTAXON Volume 91, pp. 497–507 January–March 2005 Heleococcum alkalinum, a new alkali-tolerant ascomycete from saline soda soils E. BILANENKO1, D. SOROKIN 2,3, M. IVANOVA1 & M. KOZLOVA1 [email protected], [email protected], [email protected] Department of Mycology, Moscow State University Leninskye Gory, Russia [email protected] Institute of Microbiology, Prosp. 60-letiya Oktyabrya, 7a, Russia 3 [email protected] Delft University of Technology Julianalaan 67, Delft, The Netherlands Abstract - A new ascomycete was isolated from saline soda soils in Central Asia (Kunkur steppe, Kulunda steppe of South Siberia, N-E Mongolia), and Africa (Kenya). It is described as Heleococcum alkalinum sp. nov. The species produces dark brown cleistothecial ascomata, where asci are disorganized and scattered and the ascus walls evanesce when mature. Ascospores are bicellular, brown, thick-walled, without any ornamentation and not constricted at the septum. The anamorph is placed in Acremonium sect. Nectrioidea. Heleococcum alkalinum was isolated on alkaline agar (pH 10-10.5) with carboxymethyl cellulose (CMC). It was a dominant species in samples of soda soils with pH >10 and relatively high salinity. Its radial growth rate was almost equal within the range of pH 6.7-10.8, demonstrating an alkali-tolerant adaptation. Key words - Bionectriaceae, Hypocreales, ascomycetes Introduction Saline alkaline soils represent unique extreme environments, similar to soda lakes. They contain high to extremely high concentrations of soluble sodium salts, such as sodium carbonate/bicarbonate, sodium chloride and sodium sulfate. Therefore halo- alkaliphilic microorganisms are expected to predominate in such soils. In soda lakes the microbial community is dominated by prokaryotic organisms, particularly anaerobes due to reducing conditions (Jones et al. -
REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus Bisporus E DE SUA INTERAÇÃO COM Lecanicillium Fungicola
JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola LAVRAS – MG 2014 JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Microbiologia Agrícola, área de concentração em Microbiologia Agrícola, para a obtenção do título de Doutora. Orientador Dr. Eduardo Alves Co-orientador Dr. Eustáquio Souza Dias Dr. Diego Cunha Zied LAVRAS – MG 2014 Ficha catalográfica JANAIRA SANTANA NUNES RIBEIRO REP-PCR, ULTRAESTRUTURA DE LINHAGENS DE Agaricus bisporus E DE SUA INTERAÇÃO COM Lecanicillium fungicola Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Microbiologia Agrícola, área de concentração em Microbiologia Agrícola, para a obtenção do título de Doutora. APROVADA em 17 de julho de 2014. Dr. Edson Ampélio Pozza UFLA Dr ª Patrícia Gomes Cardoso UFLA Dr ª Simone Cristina Marques UFLA Dr. Diego Cunha Zied UNESP Dr. Eduardo Alves Orientador Dr. Eustáquio Souza Dias Dr. Diego Cunha Zied Co-orientadores LAVRAS – MG 2014 A todos que contribuíram para a realização desse trabalho. DEDICO AGRADECIMENTOS A Deus que me guia e me dá forças para nunca desistir dos meus objetivos. A minha mãe (Maria Santana), irmãos (Francisco Junior, Edna Maria, Rosália Nunes e Jucélia Nunes) e meu marido (Fernando Barreto) ao apoio e incentivo para minha ascensão pessoal e principalmente pela inesgotável confiança nas minhas capacidades. Ao meu orientador Eduardo Alves e co-orientador Eustáquio Sousa Dias, pela confiança, orientação, paciência e ao conhecimento compartilhado durante a realização desse trabalho.