bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.133546; this version posted June 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Linking CHMP2B to pTDP-43 via CK1_Sun et al 1 CHMP2B regulates TDP-43 phosphorylation and proteotoxicity via modulating 2 CK1 turnover independent of the autophagy-lysosomal pathway 3 Xing Sun1,2,5, Xue Deng1,2,5, Rirong Hu1,2, Yongjia Duan1, Kai Zhang1,2, Jihong Cui1, Jiangxia Ni1,2, 4 Qiangqiang Wang1, Yelin Chen1,2, Ang Li3,4*, and Yanshan Fang1,2*. 5 1Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic 6 Chemistry, Chinese Academy of Sciences, Shanghai 201210, China 7 2University of Chinese Academy of Sciences, Beijing 100049, China 8 3Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Joint International Research 9 Laboratory of CNS Regeneration Ministry of Education, Jinan University, Guangzhou 510632, 10 China 11 4Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, 12 China 13 5These authors contributed equally 14 *Correspondence to: 15 Ang Li:
[email protected] 16 Yanshan Fang:
[email protected] 17 Tel: +86-21-6858.2510 18 ORCID: https://orcid.org/0000-0002-4123-0174 19 Short title: Linking CHMP2B to pTDP-43 via CK1 20 Keywords (5~10): ALS, FTD, ESCRT, CHMP2B, TDP-43, phosphorylation, CK1, UPS 21 This PDF file includes: 22 Main text: ~7,500 words (excluding the title page and references) 23 Figures 1 to 6 24 Supplemental Figures S1 to S6 25 Page 1 / 34 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.133546; this version posted June 5, 2020.