Redalyc.Biodiversidad De Arthropoda (Chelicerata: Arachnida Ex Acari

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Biodiversidad De Arthropoda (Chelicerata: Arachnida Ex Acari Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Francke, Oscar F. Biodiversidad de Arthropoda (Chelicerata: Arachnida ex Acari) en México Revista Mexicana de Biodiversidad, vol. 85, 2014, pp. 408-418 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42529679019 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad, Supl. 85: S408-S418, 2014 408 Francke, O.- BiodiversidadDOI: 10.7550/rmb.31914 de arácnidos Biodiversidad de Arthropoda (Chelicerata: Arachnida ex Acari) en México Biodiversity of Arthropoda (Chelicerata: Arachnida ex Acari) in Mexico Oscar F. Francke Colección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, México 04510, D. F., México. [email protected] Resumen. Se exploran brevemente la morfología, talla, ciclo de vida, clasificación y diversidad de la clase Arachnida (excl. Acari) y de los 10 órdenes presentes en México. México se considera megadiverso en el nivel de clase puesto que es uno de 6 países en el mundo donde todos los órdenes de arácnidos se encuentran representados. Actualmente para México se han reportado 3 127 especies, que es tan sólo el 6.2% de la diversidad mundial de 50 607 especies. Si se considera que México debe tener el 10% de la diversidad mundial esperada de arácnidos, se esperaría encontrar 12 129 especies; es decir que hasta ahora conocemos el 25.8% de la diversidad esperada/predicha para el país. Palabras clave: México, biodiversidad de arácnidos, porcentaje mundial, diversidad esperada. Abstract. The morphology, size, life cycle, classification and diversity of the Class Arachnida (excl. Acari) and the 10 orders present in Mexico are briefly reviewed. Mexico is considered megadiverse at the class level because it is one of 6 countries where all the orders have been reported. From Mexico 3 127 species have been reported, which represents 6.2% of the global diversity presently known of 50 607 species. Assuming that Mexico has 10% of the expected global diversity we would anticipate finding 12 129 species; thus, we only know 25.8% of the expected/ predicted diversity in Mexico. Key words: Mexico, biodiversity of arachnids, global percentage, expected diversity. Introducción de apéndices: quelíceros (2-3 segmentos), pedipalpos (máximo 6 segmentos) y 4 pares de patas ambulatorias La clase Arachnida pertenece al phylum Arthropoda (7 segmentos que pueden estar subdivididos o fusionados que son organismos protostomados, esquizocelomados, dependiendo del orden). La parte dorsal del prosoma está triploblásticos, segmentados metaméricamente, generalmente cubierto por un escudo o caparazón, que con simetría bilateral y con apéndices uniramios carece de antenas y donde se encuentran los ocelos, que multisegmentados. Un par de apéndices tiene como pueden ser desde cero en el caso de especies troglobias o función primaria la alimentación y de acuerdo con el que habitan en cuevas, 2, 4, 6 y hasta 8 ocelos, siempre en origen y forma de tales apéndices, el phylum es dividido números pares. El opistosoma puede estar o no segmentado en 2: el subphylum Mandibulata, para aquellos que y generalmente carece de apéndices segmentados (o están poseen mandíbulas (insectos, crustáceos y miriápodos) y muy modificados); además, en esta región se encuentran el subphylum Chelicerata, aquellos que poseen quelíceros las estructuras reproductivas y respiratorias. para alimentarse (arácnidos, picnogónidos y cacerolitas de Tallas. La longitud total (prosoma+opistosoma) varía de mar o xifosúros), y los extintos euriptéridos. 0.1 mm hasta 20 cm en las especies actuales; aunque existe Morfología. El cuerpo está dividido en 2 regiones o un escorpión fósil, Brontoscorpius anglicus Kjellesvig- tagmatas: el prosoma (anterior) y el opistosoma (posterior), Waering 1972, con una longitud estimada de más de 90 unidos por una estructura llamada pedicelo, que puede cm. ser una marcada constricción en algunos órdenes de Hábitats. Los arácnidos han explotado gran diversidad arácnidos (unión caulogaster, ej. arañas y amblipígidos), de nichos ecológicos, siendo de vida libre o parásitos; o una unión amplia de ambos tagmas (unión hologaster, depredadores, herbívoros (fitófagos), omnívoros e incluso ej. escorpiones y opiliones). El prosoma tiene 6 pares necrófagos; de hábitos diurnos y nocturnos; terrestres (epigeos y hipogeos) y acuáticos; siendo además habitantes comunes dentro de cuevas y grutas (trogloxenos, troglófilos Recibido: 16 mayo 2012; aceptado: 26 noviembre 2012 y troglobios). Revista Mexicana de Biodiversidad, Supl. 85: S408-S418, 2014 DOI: 10.7550/rmb.31914 409 Ciclo de vida. Los estadios más comunes entre los arácnidos sexual se alcanza en unos 2 años. Los amblipígidos, y (ex Acari) son: huevo, larva, varios estadios ninfales y algunas tarántulas, son los únicos arácnidos que continúan adulto. Dichos ciclos pueden ser completados desde unas mudando y por ende creciendo en tamaño después de cuantas semanas hasta tener una duración de varios años. alcanzar la madurez sexual. En el mundo se conocen 5 La vida del estadio adulto también varía de semanas hasta familias, con una distribución pantropical. muchos años. Existen especies ovíparas, ovovivíparas y Araneae. Caparazón entero, de 0 a 8 pares de ojos cuya vivíparas; también existe la partenogénesis (facultativa y distribución es muy útil en la taxonomía del grupo. obligatoria) en algunas especies de diferentes órdenes de Quelíceros bisegmentados; uncados, el colmillo con un arácnidos. conducto para la inyección del veneno utilizado para Clasificación. La clase Arachnida esta dividida en 11 inmovilizar a sus presas, excepto en la familia Uloboridae. órdenes, que en orden alfabético son: Acari (ácaros y Los pedipalpos de los machos adultos están modificados garrapatas), Amblypygi (arañas látigo, arañas corazón, para realizar la transferencia espermática al epiginio de tendarapos o canclos), Araneae (arañas y tarántulas), la hembra y ambos pedipalpos y epiginio son utilizados Opiliones (patones, papaítos piernas largas o segadores), en la taxonomía del grupo. El opistosoma carece de Palpigradi (palpígrados), Pseudoscorpionida (falsos segmentación aparente y está unido al prosoma por un escorpiones o escorpiones de los libros), Ricinulei pedicelo angosto. Ventralmente, en el opistosoma se (ricinúlidos o garrapatas encapuchadas), Schizomida encuentran las hileras, donde secretan la seda producida (esquizómidos, mini-vinagrillos o escorpión látigo de cola por glándulas especiales que caracterizan al grupo y que corta), Scorpiones (escorpiones o alacranes), Solifugae son utilizadas para diferentes fines: reproducción, refugio, (matavenados, arañas sol o arañas camello, madres de caza, protección para depredación. La longitud corporal alacrán) y Thelyphonida (uropígidos, vinagrillos, madres varía desde 0.4 mm hasta 15 cm. de escorpión, vinagreras o escorpiones látigo) (Brusca y Terrestres, de vida libre, depredadoras, de hábitos Brusca, 2005; Savory, 1964; Wheeler y Hayashi, 1998; diurnos y nocturnos. Muchas tejen telas especializadas Harvey, 2002; Beccaloni, 2009; Francke, 2011). para capturar diversos tipos de insectos voladores, otras A continuación se presenta una breve caracterización son errantes, o pueden ser sedentarias y ocupar la misma de cada uno de los órdenes. galería o refugio de por vida. Amblypygi. Cuerpo aplanado. Caparazón entero, con 8 La transferencia espermática es indirecta: el macho ojos: 1 par medio y 3 pares laterales. Quelíceros con 2 “carga” los pedipalpos de esperma directamente de la segmentos, uncados (terminando en una uña o colmillo). apertura genital o utilizando una tela de seda construida Pedipalpos muy desarrollados, raptoriales, prensores, específicamente para esa función, deposita la esperma armados con numerosas espinas fuertes para sujetar a sus sobre dicha tela y la succiona con las estructuras presas. Primer par de patas muy largos y delgados, con modificadas en el ápice de los pedipalpos. El cortejo funciones sensoriales. Prosoma y opistosoma unidos por puede ser muy elaborado y concluye con la inserción del un pedicelo delgado. Opistosoma con 12 segmentos y sin ápice de los pedipalpos en el epiginio de la hembra. La telson. El cuerpo varía de 5 a 45 mm; el primer par de cópula puede durar de unos cuantos segundos hasta 2 o 3 patas extendidas abarcan hasta 40 cm. horas dependiendo de la especie. Son ovíparos y la hembra Terrestres, de vida libre, depredadores de otros deposita los huevos en un ovisaco hecho de seda y en artrópodos; usualmente de hábitos nocturnos; muchas especies hay cuidado maternal. En algunas familias frecuentemente hallados en cuevas y algunas especies (ej. Araneidae, Theridiidae), existe un marcado dimorfismo presentan modificaciones troglomórficas. En general sexual, generalmente los machos son más chicos que las tienden a ser raros en colecciones y sus densidades hembras y requieren de menos mudas para alcanzar la generalmente son bajas, ocasionalmente en ciertas cuevas madurez sexual. Las especies de menor talla requieren de hay poblaciones grandes. menos mudas para madurar y tienden a ser univoltinas, En su ciclo de vida la transferencia
Recommended publications
  • The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France)
    diversity Article The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France) Arnaud Faille 1,* and Louis Deharveng 2 1 Department of Entomology, State Museum of Natural History, 70191 Stuttgart, Germany 2 Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, EPHE, 75005 Paris, France; [email protected] * Correspondence: [email protected] Abstract: Located in Northern Pyrenees, in the Arbas massif, France, the system of the Coume Ouarnède, also known as Réseau Félix Trombe—Henne Morte, is the longest and the most complex cave system of France. The system, developed in massive Mesozoic limestone, has two distinct resur- gences. Despite relatively limited sampling, its subterranean fauna is rich, composed of a number of local endemics, terrestrial as well as aquatic, including two remarkable relictual species, Arbasus cae- cus (Simon, 1911) and Tritomurus falcifer Cassagnau, 1958. With 38 stygobiotic and troglobiotic species recorded so far, the Coume Ouarnède system is the second richest subterranean hotspot in France and the first one in Pyrenees. This species richness is, however, expected to increase because several taxonomic groups, like Ostracoda, as well as important subterranean habitats, like MSS (“Milieu Souterrain Superficiel”), have not been considered so far in inventories. Similar levels of subterranean biodiversity are expected to occur in less-sampled karsts of central and western Pyrenees. Keywords: troglobionts; stygobionts; cave fauna Citation: Faille, A.; Deharveng, L. The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France). Diversity 2021, 1. Introduction 13 , 419. https://doi.org/10.3390/ Stretching at the border between France and Spain, the Pyrenees are known as one d13090419 of the subterranean hotspots of the world [1].
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Arachnida: Araneae) from the Middle Eocene Messel Maar, Germany
    Palaeoentomology 002 (6): 596–601 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ Short PALAEOENTOMOLOGY Copyright © 2019 Magnolia Press Communication ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.2.6.10 http://zoobank.org/urn:lsid:zoobank.org:pub:E7F92F14-A680-4D30-8CF5-2B27C5AED0AB A new spider (Arachnida: Araneae) from the Middle Eocene Messel Maar, Germany PAUL A. SELDEN1, 2, * & torsten wappler3 1Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045, USA. 2Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany. *Corresponding author. E-mail: [email protected] The Fossil-Lagerstätte of Grube Messel, Germany, has Thomisidae and Salticidae (Schawaller & Ono, 1979; produced some of the most spectacular fossils of the Wunderlich, 1986). The Pliocene lake of Willershausen, Paleogene (Schaal & Ziegler, 1992; Gruber & Micklich, produced by solution of evaporites and subsequent collapse, 2007; Selden & Nudds, 2012; Schaal et al., 2018). However, has produced some remarkably preserved arthropod fossils few arachnids have been discovered or described from this (Briggs et al., 1998), including numerous spider families: World Heritage Site. An araneid spider was reported by Dysderidae, Lycosidae, Thomisidae and Salticidae (Straus, Wunderlich (1986). Wedmann (2018) reported that 160 1967; Schawaller, 1982). All of these localities are much spider specimens were known from Messel although, sadly, younger than Messel. few are well preserved. She figured the araneid mentioned by Wunderlich (1986) and a nicely preserved hersiliid (Wedmann, 2018: figs 7.8–7.9, respectively). Wedmann Material and methods (2018) mentioned six opilionids yet to be described, and figured one (Wedmann, 2018: fig.
    [Show full text]
  • The Study of Hidden Habitats Sheds Light on Poorly Known Taxa: Spiders of the Mesovoid Shallow Substratum
    A peer-reviewed open-access journal ZooKeys 841: 39–59 (2019)The study of hidden habitats sheds light on poorly known taxa... 39 doi: 10.3897/zookeys.841.33271 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum Enrique Ledesma1, Alberto Jiménez-Valverde1, Alberto de Castro2, Pablo Aguado-Aranda1, Vicente M. Ortuño1 1 Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Science, Faculty of Science, University of Alcalá, Alcalá de Henares, Madrid, Spain 2 Entomology Department, Aranzadi Science Society, Donostia - San Sebastián, Gipuzkoa, Spain Corresponding author: Enrique Ledesma ([email protected]); Alberto Jiménez-Valverde ([email protected]) Academic editor: P. Michalik | Received 22 January 2019 | Accepted 5 March 2019 | Published 23 April 2019 http://zoobank.org/52EA570E-CA40-453D-A921-7785A9BD188B Citation: Ledesma E, Jiménez-Valverde A, de Castro A, Aguado-Aranda P, Ortuño VM (2019) The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. ZooKeys 841: 39–59. https:// doi.org/10.3897/zookeys.841.33271 Abstract The scarce and biased knowledge about the diversity and distribution of Araneae species in the Iberian Peninsula is accentuated in poorly known habitats such as the Mesovoid Shallow Substratum (MSS). The aim of this study was to characterize the spiders inventory of the colluvial MSS of the Sierra de Guadar- rama National Park, and to assess the importance of this habitat for the conservation of the taxon. Thirty-three localities were selected across the high peaks of the Guadarrama mountain range and they were sampled for a year using subterranean traps specially designed to capture arthropods in the MSS.
    [Show full text]
  • A Stable Phylogenomic Classification of Travunioidea (Arachnida, Opiliones, Laniatores) Based on Sequence Capture of Ultraconserved Elements
    A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Derkarabetian, Shahan, James Starrett, Nobuo Tsurusaki, Darrell Ubick, Stephanie Castillo, and Marshal Hedin. 2018. “A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.” ZooKeys (760): 1-36. doi:10.3897/zookeys.760.24937. http://dx.doi.org/10.3897/zookeys.760.24937. Published Version doi:10.3897/zookeys.760.24937 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298544 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A peer-reviewed open-access journal ZooKeys 760: 1–36 (2018) A stable phylogenomic classification of Travunioidea... 1 doi: 10.3897/zookeys.760.24937 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements Shahan Derkarabetian1,2,7 , James Starrett3, Nobuo Tsurusaki4, Darrell Ubick5, Stephanie Castillo6, Marshal Hedin1 1 Department of Biology, San Diego State University, San
    [Show full text]
  • Optimal Climbing Speed Explains the Evolution of Extreme Sexual Size Dimorphism in Spiders
    doi: 10.1111/j.1420-9101.2009.01707.x Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders J. MOYA-LARAN˜ O,*D.VINKOVIC´ , C. M. ALLARDà &M.W.FOELLMER§ *Departamento de Ecologı´a Funcional y Evolutiva, Estacio´n Experimental de Zonas A´ ridas, Consejo Superior de Investigaciones Cientı´ficas, General Segura, Almerı´a, Spain Physics Department, University of Split, Split, Croatia àDepartment of Biological Sciences, Clemson University, Clemson, SC, USA §Department of Biology, Adelphi University, Garden City, NY, USA Keywords: Abstract Araneomorphae; Several hypotheses have been put forward to explain the evolution of extreme biomechanics; sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) dwarf males; explains that extreme SSD has evolved in spiders because smaller males have a gravity hypothesis; mating or survival advantage by climbing faster. However, few studies have mate search; supported this hypothesis thus far. Using a wide span of spider body sizes, we muscle physiology; show that there is an optimal body size (7.4 mm) for climbing and that scramble competition; extreme SSD evolves only in spiders that: (1) live in high-habitat patches and sexual size dimorphism; (2) in which females are larger than the optimal size. We report that the spiders; evidence for the GH across studies depends on whether the body size of stabilizing selection. individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing. range of SSD in spiders (Araneae) (Head, 1995; Vollrath, Introduction 1998; Hormiga et al., 2000; Foellmer & Moya-Laran˜ o, Understanding the evolution of different phenotypes in 2007).
    [Show full text]
  • Anatomically Modern Carboniferous Harvestmen Demonstrate Early Cladogenesis and Stasis in Opiliones
    ARTICLE Received 14 Feb 2011 | Accepted 27 Jul 2011 | Published 23 Aug 2011 DOI: 10.1038/ncomms1458 Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones Russell J. Garwood1, Jason A. Dunlop2, Gonzalo Giribet3 & Mark D. Sutton1 Harvestmen, the third most-diverse arachnid order, are an ancient group found on all continental landmasses, except Antarctica. However, a terrestrial mode of life and leathery, poorly mineralized exoskeleton makes preservation unlikely, and their fossil record is limited. The few Palaeozoic species discovered to date appear surprisingly modern, but are too poorly preserved to allow unequivocal taxonomic placement. Here, we use high-resolution X-ray micro-tomography to describe two new harvestmen from the Carboniferous (~305 Myr) of France. The resulting computer models allow the first phylogenetic analysis of any Palaeozoic Opiliones, explicitly resolving both specimens as members of different extant lineages, and providing corroboration for molecular estimates of an early Palaeozoic radiation within the order. Furthermore, remarkable similarities between these fossils and extant harvestmen implies extensive morphological stasis in the order. Compared with other arachnids—and terrestrial arthropods generally—harvestmen are amongst the first groups to evolve fully modern body plans. 1 Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK. 2 Museum für Naturkunde at the Humboldt University Berlin, D-10115 Berlin, Germany. 3 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Correspondence and requests for materials should be addressed to R.J.G. (email: [email protected]) and for phylogenetic analysis, G.G. (email: [email protected]).
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • Dimensions of Biodiversity
    Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet.
    [Show full text]
  • The Values of Soil Animals for Conservation Biology
    Available online at www.sciencedirecl.com --" EUROPEAN JOURNAL Of -.;- ScienceDirect SOll BIOLOGY ELSEVIER European Journal of Soil Biology 42 (2006) S23-838 http://france.elsevier.comldirectlejsobi Original article The values of sail animaIs for conservation biology a b c b T. Decaëns ,*, II Jiménez , C. Gioia , G.J. Measeyb, P. Lavelle •Laboratoire d'écologie-ECOD/V, UPRES EA /293, université de Rouen, 76821 Mt Saint Aignan cedex, France b Laboratoire d'écologie des sols tropicaux, lRD, 32, Avenue Henri-Varagnat, 93143 Bondy cedex, France C Bureau d'élude AL/SE. 228, ZAC de la Forge-Seret, 76520 Boos, France Available online 21 July 2006 Abstract It has taken time for the international community to accept the idea of biodiversity values, a concept which had previously been restricted to the limited aesthetic and touristic aspects ofwildlife. This situation changed following the International Convention on Biodiversity in Rio de Janeiro (1992), which focussed on "the forgotten environmental problem" ofbiodiversity erosion and made the first clear reference to the values of living species. Biodiversity values refer to direct or indirect, economic or non-economic interest, a given species or ecosystem may represent for human populations. These values are generally split into intrinsic and instrumental (use) values, the last category itself being divided into direct and indirect economic values. Obviously, each of these values cames different weights, and cannot be considered as being weighted equally in terms of justification for species or ecosystem conservation. Soil is probably one ofthe most species-rich habitats of terrestrial ecosystems, especially if the defmition is extended to related habitats like vertebrate faeces, decaying wood, and humus ofhollow trees (i.e.
    [Show full text]
  • Opiliones: Laniatores: Epedanidae), a New Genus from Hainan Island, South China Sea
    RAFFLES BULLETIN OF ZOOLOGY 2015 Taxonomy & Systematics RAFFLES BULLETIN OF ZOOLOGY 63: 97–109 Date of publication: 15 May 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:447E26D1-ECC7-42AB-A9DB-D86888AA854E Gasterapophus (Opiliones: Laniatores: Epedanidae), a new genus from Hainan Island, South China Sea Chao Zhang1, Wei-Guang Lian2* & Feng Zhang1 Abstract. Gasterapophus, new genus (Opiliones: Laniatores: Epedanidae) and two species are newly described from Hainan Island, China, G. singulus, new species and G. binatus, new species. The genital characters dictate that the new genus should be placed in Epedanidae. The new genus is characterised by: (a) penis simple, ventral plate conspicuously extended, stylar lobe entirely surrounding the stylus, basal sac partly sinking into the truncus; (b) stigmatic area of male with large apophysis; (c) ocularium, scutum and free tergites unarmed; (d) coxa IV widened. Key words. Arachnida, taxonomy, harvestmen, genitalia INTRODUCTION distinguished from other genera by the eyes placed in two widely separated mounds (Kury, 2009). The family Epedanidae Sørensen, 1886 is endemic to Asia, with the greatest abundance in Southeast Asia, e.g., Acrobuninae contains six genera, i.e., Acrobunus Thorell, Philippines, Indonesia, Thailand, and Malaysia (Kury, 2007). 1891, Anacrobunus Roewer, 1927, Harpagonellus Roewer, Most genera and species were found and named by Roewer 1927, Heterobiantes Roewer, 1912, Metacrobunus Roewer, (1923, 1938) and much work has been done on this family in 1915 and Paracrobunus Suzuki, 1977. Members of this recent years (Suzuki, 1969, 1976, 1977, 1982, 1985a; Zhu & subfamily have dense scopulae in tarsi III–IV and eyes Lian, 2006; Kury, 2008; Lian et al., 2008; Zhang & Zhang, placed laterally at the base of a well-marked common 2010; Lian et al., 2011; Zhang & Zhang, 2012).
    [Show full text]