Guideline for Technical Regulation on Hydropower Civil Works

Total Page:16

File Type:pdf, Size:1020Kb

Guideline for Technical Regulation on Hydropower Civil Works SOCIALIST REPUBLIC OF VIETNAM Ministry of Construction (MOC) Guideline for Technical Regulation on Hydropower Civil Works Design and Construction of Civil Works and Hydromechanical Equipment Final Draft June 2013 Japan International Cooperation Agency Electric Power Development Co., Ltd. Shikoku Electric Power Co., Inc. West Japan Engineering Consultants, Inc. IL CR(2) 13-096 Guideline for QCVN xxxx : 2013/BXD Table of Contents 1. Scope of application .................................................................................................. 1 2. Reference documents ............................................................................................... 1 3. Nomenclatures and definitions ................................................................................. 1 4. Classification of works .............................................................................................. 1 4.1 General stipulation ................................................................................................. 1 4.2 Principles for the classification of hydropower works .............................................. 2 5. Guarantee of serving level of hydropower works .................................................... 7 6. Safety coefficient of hydropower civil works ........................................................... 7 7. Construction of hydropower civil works ................................................................ 26 7.1 General requirements .......................................................................................... 26 7.2 Reservoir ............................................................................................................. 49 7.3 Dams ................................................................................................................... 53 7.4 Spillways .............................................................................................................. 83 7.5 Waterway ............................................................................................................. 90 7.6 Intakes ................................................................................................................. 95 7.7 Settling basins ...................................................................................................... 98 7.8 Head tanks and surge tanks ............................................................................... 101 7.9 Penstocks .......................................................................................................... 103 7.10 Tailraces ............................................................................................................ 106 7.11 Outlets ............................................................................................................... 107 7.12 Hydropower plants (Powerhouse) ...................................................................... 107 7.13 Daily storage reservoir ....................................................................................... 110 7.14 Bottom discharge ............................................................................................... 110 7.15 Protective works of reservoirs, headwork area and downstream of headwork .... 112 7.16 Observation device system of the work .............................................................. 112 8. Hydromechanical equipments .............................................................................. 132 8.1 General requirements ........................................................................................ 132 8.2 Valve gates ........................................................................................................ 142 8.3 Trash rack .......................................................................................................... 149 8.4 Steel penstock ................................................................................................... 150 9. Stipulation of management ................................................................................... 154 10. Organization for implementation .......................................................................... 154 Appendix A ...................................................................................................................... 155 Appendix B ...................................................................................................................... 155 Appendix C ...................................................................................................................... 156 Appendix D ...................................................................................................................... 171 i Guideline for QCVN xxxx : 2013/BXD List of Tables Table 4.2-1 Criteria for Project Ranking ............................................................................................. 3 Table 4.2-2 Size Classification............................................................................................................ 3 Table 4.2-3 Hazard Potential Classification ........................................................................................ 3 Table 4.2-4 Criteria for Hazardous Level ........................................................................................... 4 Table 6.1-1 Loads imposed on dam body ........................................................................................... 8 Table 6.1-2 Loads imposed on dam bodies ......................................................................................... 8 Table 6.1-3 Basic definition of loads .................................................................................................. 9 Table 6.1-4 Design seismic coefficient ............................................................................................. 10 Table 6.1-5 Uplift under various conditions ..................................................................................... 10 Table 7.1-1 Criteria for Project Ranking ........................................................................................... 33 Table 7.1-2 Criteria of Design and Check Flood (Return Period to be Applied) .............................. 34 Table 7.1-3 Size Classification.......................................................................................................... 34 Table 7.1-4 Hazard Potential Classification ...................................................................................... 34 Table 7.1-5 Recommended Safety Standards ................................................................................... 34 Table 7.1-6 Criteria for Hazardous Level ......................................................................................... 35 Table 7.1-7 Tanaka’s rock classification method used for dam foundation ...................................... 40 Table 7.3-1 Crest elevation of non-overflow section of dam ............................................................ 55 Table 7.3-2 Wave heights by fetch and wind velocity ...................................................................... 57 Table 7.3-3 Normal freeboard and minimum freeboard ................................................................... 57 Table 7.3-4 Crest elevation of non-overflow section of dam ............................................................ 73 Table 7.3-5 Wave heights by fetch and wind velocit ........................................................................ 76 Table 7.3-6 Normal freeboard and minimum freeboard ................................................................... 76 Table 7.3-7 Lugeon values and infiltration factors according to dam height .................................... 82 Table 7.4-1 Criteria for Project Ranking ........................................................................................... 85 Table 7.4-2 Criteria of Design and Check Flood (Return Period to be Applied) .............................. 85 Table 7.4-3 Size Classification.......................................................................................................... 85 Table 7.4-4 Hazard Potential Classification ...................................................................................... 86 Table 7.4-5 Recommended Safety Standards ................................................................................... 86 Table 7.4-6 Criteria for Hazardous Level ......................................................................................... 86 Table 8.1 Classification of forces on gates .................................................................................. 140 Table 8.2 Classification of forces on penstocks ........................................................................... 141 ii Guideline for QCVN xxxx : 2013/BXD List of Figures Fig.6.1-1 Typical loads acting on dam body ................................................................................... 9 Fig.6.1-2 Expected function of drains ........................................................................................... 10 Fig.7.1-1 Process for decision of environmental flow rate ............................................................ 28 Fig 7.1-2 Hydraulic analyses of discharge facilities ...................................................................... 31 Fig 7.1-3 Area of grouting ............................................................................................................. 43 Fig.7.1-4 Estimation of Lugeon value ..........................................................................................
Recommended publications
  • The University of Bradford Institutional Repository
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bradford Scholars The University of Bradford Institutional Repository http://bradscholars.brad.ac.uk This work is made available online in accordance with publisher policies. Please refer to the repository record for this item and our Policy Document available from the repository home page for further information. To see the final version of this work please visit the publisher’s website. Access to the published online version may require a subscription. Link to publisher’s version: https://doi.org/10.1007/s11069-018-3168-4 Citation: Hanmaiahgari PR, Gompa NR, Pal D et al (2018) Numerical modelling of the Sakuma Dam reservoir sedimentation. Natural Hazards. 91(3): 1075-1096. Copyright statement: © Springer Science+Business Media B.V., part of Springer Nature 2018. Reproduced in accordance with the publisher's self-archiving policy. This is a post-peer- review, pre-copyedit version of an article published in Natural Hazards. The final authenticated version is available online at: https://doi.org/10.1007/s11069-018-3168-4. Numerical modeling of the Sakuma Dam reservoir sedimentation Prashanth R. Hanmaiahgari*, Nooka Raju Gompa, Debasish Pal, Jaan H Pu *Prashanth Reddy Hanmaiahgari, Assistant Professor, Dept. of Civil Eng., Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India 721302. E-mail: [email protected] (corresponding author) Nooka Raju Gompa, Graduate student, Dept. of Civil Eng., Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India 721302. E-mail: [email protected] Debasish Pal, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India, Present Address: Engineering Systems and Design Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
    [Show full text]
  • PROLOGUE If I Die, It Will Be in the Most Glorious Place That Nobody
    PROLOGUE 2001 If I die, it will be in the most glorious place that nobody has ever seen. I can no longer feel the fingers in my left hand. The glacial Antarctic water has seeped through a tiny puncture in my formerly waterproof glove. If this water were one-tenth of a degree colder, the ocean would become solid. Fighting the knife-edged freeze is depleting my strength, my blood vessels throbbing in a futile attempt to deliver warmth to my extremities. The archway of ice above our heads is furrowed like the surface of a golf ball, carved by the hand of the sea. Iridescent blue, Wedgwood, azure, cerulean, cobalt, and pastel robin’s egg meld with chalk and silvery alabaster. The ice is vibrant, bright, and at the same time ghostly, shadowy. The beauty contradicts the danger. We are the first people to cave dive inside an iceberg. And we may not live to tell the story. It’s February, in the middle of what passes for summer in Antarctica. My job, for National Geographic, is to lead an advanced technical diving team in search of underwater caves deep within the largest moving object on earth, the B-15 iceberg. I had known that diving into tunnels inside this giant piece of ice would be difficult, but I hadn’t calculated that getting out would be nearly impossible. The tidal currents accelerated so quickly that they’ve caged us inside the ice. We’re trapped in this frozen fortress, and I have to figure out how to escape.
    [Show full text]
  • Underwater Speleology
    ... _.__ ._._ ........ _- ..... _---------------. UNDERWATER SPELEOLOGY OFFICIAL NEWSLmER OF THE CAVE DIVING SECTION OF THE NATIONAL SPELEOLOGICAL SOCIETY VOLUME 8 NUMBER 1 Underwater Speleology, vol.8, N9.1 UNDERWATER SPELEOLOGY ON THE COVER ............... Published Bimonthly Beginning in February Sheck Exley (NSS 13146) begins an extensive by exploration of one of the many clear first The Cave Diving Section of magnitude springs in Florida. These springs The National Speleological Society include nine of the ten longest caves in Florida. Photo by John Zumrick (NSS 187B8). c/o Stephen Maegeriein, P. O. Box 60 Williams, Indiana 47470 CALENDAR Deadline for publication is the second Friday of the preceeding month. Send exchange publications and editorial correspondence to the editor: July 12-18 5th International Cave Diving John Zumrick Camp. Contact Sheck Exley, 10259 120 Rusty Gans Dr. Panama City Beach, Florida 32407 Crystal Sprgs Rd., Jacksonvil Ie, Florida 32221 Section membership, including a subscription to un· derwater speleology is open to all members in good stan· July 18-24 8th International Congress of ding of the National Speleological Society at $3.00 per Speleology, Bowling Green, Ky. year. Subscription to non-members is $5.00 per year. Make checks payabie to the NSS Cave Diving Section in For information write Eighth care of the Treasurer. Opinions expresSed in Underwater International Congress of Speleology are not necessarily those of the section or the Speleology, Secretariat, Dept of NSS. Geography and Geology, Western Kentucky Unlv., Bowling Green, Kentucky 42101. EXECUTIVE COMMITTEE ***************RENEWAL TIME?****************** CHAIRPERSON VICE-CHAI RPERSON Dennis Williams (N55 182&11 Karen E.
    [Show full text]
  • 2 共通表記編(Pdf:1518Kb)
    長野県案内サイン整備指針 2 共通表記編 令和2年6月 目 次 第1章 基本的事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 1 目 的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 2 指針の対象範囲 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 第2章 言語表記 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 1 表記する言語 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 2 日本語の表記方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1 3 外国語の表記方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2 (1)英語表記 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2 (2)英語表記例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7 第3章 ピクトグラム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21 1 ピクトグラムの活用 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21 (1)使用するピクトグラム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21 (2)ピクトグラム使用上の注意 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21 (3)ピクトグラムの推奨度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21 2 ピクトグラム一覧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 22 第1章 基本的事項 1 目 的 外国人観光客等が安心して目的地へ移動できるよう、わかりやすい案内サインの整備を行う にあたって、統一した言語及びピクトグラムの表記が行えるよう、必要な情報を提供する。 2 指針の対象範囲 車両や歩行者を対象とした公共案内サイン(文字、絵などの視覚的要素を媒体として、公共 的な性格の強い情報を伝達する案内サインで、市町村等が設置するもの)を対象とする。 ただし、法令等により別途定めがあるもの、表記を見直した場合、混乱が生じる可能性があ るものは除く。 第2章 言語表記 1 表記する言語 日本語及び英語の併記を基本とする。 施設特性や地域特性の観点から、中国語(簡体字、繁体字)又は韓国語等の表記が必要とさ れる場合は、視認性に配慮した上で併せて記載を検討する。 2 日本語の表記方法 日本語の表記方法は、「観光活性化標識ガイドライン」に準じるものとする。 表‐1 日本語表記の基準 表記の基準 表記の例 原則として国文法、現代仮名遣いによる表記を行う。ただし、固 有名詞においてはこの限りではない。 正式名称の他に通称がある施設名は地域において統一した名称 を使用する。 表示面の繁雑化を防ぐために、明確に理解される範囲内で省略で 長野県立若里公園 きる部分を省略する。 ⇒若里公園 アルファベットによる名称が慣用化されている場合は、それを用 東日本旅客鉄道(株) いても良い。 ⇒JR東日本 数字の表記は、原則として算用数字を用いる。ただし、固有名詞 5月5日 として用いる場合はこの限りではない。また、○丁目のように地 第二別館 名として用いる場合は漢数字を使用する。 一番町二丁目 地名、歴史上の人名など読みにくい漢字にはふりがなを付記する 等の配慮を行う。 紀年は西暦により表記する。必要に応じて日本年号を付記しても 2020年 良い。 2020年(令和2年) 参考資料:観光活性化標識ガイドライン(平成17年6月、国土交通省総合政策局)
    [Show full text]
  • Deep Sea Dive Ebook Free Download
    DEEP SEA DIVE PDF, EPUB, EBOOK Frank Lampard | 112 pages | 07 Apr 2016 | Hachette Children's Group | 9780349132136 | English | London, United Kingdom Deep Sea Dive PDF Book Zombie Worm. Marrus orthocanna. Deep diving can mean something else in the commercial diving field. They can be found all over the world. Depth at which breathing compressed air exposes the diver to an oxygen partial pressure of 1. Retrieved 31 May Diving medicine. Arthur J. Retrieved 13 March Although commercial and military divers often operate at those depths, or even deeper, they are surface supplied. Minimal visibility is still possible far deeper. The temperature is rising in the ocean and we still don't know what kind of an impact that will have on the many species that exist in the ocean. Guiel Jr. His dive was aborted due to equipment failure. Smithsonian Institution, Washington, DC. Depth limit for a group of 2 to 3 French Level 3 recreational divers, breathing air. Underwater diving to a depth beyond the norm accepted by the associated community. Limpet mine Speargun Hawaiian sling Polespear. Michele Geraci [42]. Diving safety. Retrieved 19 September All of these considerations result in the amount of breathing gas required for deep diving being much greater than for shallow open water diving. King Crab. Atrial septal defect Effects of drugs on fitness to dive Fitness to dive Psychological fitness to dive. The bottom part which has the pilot sphere inside. List of diving environments by type Altitude diving Benign water diving Confined water diving Deep diving Inland diving Inshore diving Muck diving Night diving Open-water diving Black-water diving Blue-water diving Penetration diving Cave diving Ice diving Wreck diving Recreational dive sites Underwater environment.
    [Show full text]
  • Extending the Life of Reservoirsextending the Life Sustainable Sediment for Dams Management DIRECTIONS in DEVELOPMENT DIRECTIONS in Energy and Mining Energy
    Extending the Life of ReservoirsExtending the Life DIRECTIONS IN DEVELOPMENT Energy and Mining Annandale, Morris, and KarkiAnnandale, Extending the Life of Reservoirs Sustainable Sediment Management for Dams and Run-of-River Hydropower George W. Annandale, Gregory L. Morris, and Pravin Karki Extending the Life of Reservoirs DIRECTIONS IN DEVELOPMENT Energy and Mining Extending the Life of Reservoirs Sustainable Sediment Management for Dams and Run-of-River Hydropower George W. Annandale, Gregory L. Morris, and Pravin Karki © 2016 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved 1 2 3 4 19 18 17 16 This work is a product of the staff of The World Bank with external contributions. The findings, interpreta- tions, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved. Rights and Permissions This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) http:// creativecommons.org/licenses/by/3.0/igo.
    [Show full text]
  • Wreck Diver Specialty Course Instructor Guide
    Instructor Wreck Diver Guide Wreck Diver Specialty Course Instructor Guide Product No. 70232 (Rev. 4/07) Version 2.0 Instructor Guide Wreck Diver PADI Wreck Diver Specialty Course Instructor Guide © PADI 2007 Portions of the Appendix of this guide may be reproduced by PADI Members for use in PADI-sanctioned training, but not for resale or personal gain. No other reproduction is allowed without the express written permission of PADI. Published and distributed by PADI 30151 Tomas Rancho Santa Margarita, CA 92688-2125 USA Printed in U.S.A. Product No. 70232 (04/07) Version 2.0 2 Specialty Course Instructor Guide Instructor Wreck Diver Guide Table of Contents Introduction How to Use this Guide .......................................................................................5 Course Philosophy and Goals .............................................................................5 Course Flow Options .........................................................................................6 Program Options ................................................................................................7 Section One: Course Standards Standards at a Glance .........................................................................................8 Instructor Prerequisites .......................................................................................9 Student Diver Prerequisites ...............................................................................9 Supervision and Ratios .......................................................................................9
    [Show full text]
  • WSF Freediver - Management
    WSF Freediver - Management World Series Freediving™ www.freedivingRAID.com MANAGEMENT WSF Freediver - Management THE 4 FREEDIVING ELEMENTS ....................................................................... 2 EQUALISATION .................................................................................................. 2 BREATHING FOR FREEDIVING ...................................................................... 7 RECOVERY BREATHING ................................................................................... 8 FREEDIVING TECHNIQUES ............................................................................. 9 FREEDIVING BUDDY SYSTEM ........................................................................ 12 PROPER BUOYANCY FOR DEPTH FREEDIVING ........................................... 14 ADVENTURE FREEDIVING & COMPETITION ................................................ 18 FREEDIVING ....................................................................................................... 18 TRAINING FOR FREEDIVING ........................................................................... 22 Section 4 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com THE 4 FREEDIVING ELEMENTS 1. Conserving Oxygen O2 2. Equalisation EQ 3. Flexibility FLX 4. Safety SFE The 5th Element that is key to success is you, the freediver! EQUALISATION EQ Objectives: 1. State 2 processes of equalisation for the eustachian tubes 2. Demonstrate the 5 steps of the Frenzel manoeuvre 3. State the main difference between the Valsalva and Frenzel manoeuvres
    [Show full text]
  • Post Grouting Drilled Shaft Tips Phase II
    Post Grouting Drilled Shaft Tips Phase II Principal Investigator: Gray Mullins Research Associate: Danny Winters Department of Civil and Environmental Engineering June 2004 DISCLAIMER The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation. ii CONVERSION FACTORS, US CUSTOMARY TO METRIC UNITS Multiply by to obtain inch 25.4 mm foot 0.3048 meter square inches 645 square mm cubic yard 0.765 cubic meter pound (lb) 4.448 Newtons kip (1000 lb) 4.448 kiloNewton (kN) Newton 0.2248 pound kip/ft 14.59 kN/meter pound/in2 0.0069 MPa kip/in2 6.895 MPa MPa 0.145 ksi kip-ft 1.356 kN-m kip-in 0.113 kN-m kN-m .7375 kip-ft iii PREFACE This research project was funded as a supplemental contract awarded to the University of South Florida, Tampa by the Florida Department of Transportation. Mr. Peter Lai was the Project Manager. Again, it is a pleasure to acknowledge his contribution to this study. This project was carried out in part with the cooperation and collaboration of Auburn University and the University of Houston. The contributions provided by these institutions are greatly appreciated with particular acknowledgment to Dr. Dan Brown and Dr. Michael O’Neill, respectively. Interest expressed by State and Federal Agencies such as Georgia DOT, Texas DOT, Mississippi DOT, South Carolina DOT, Arkansas DOT, Alabama DOT, Cal Trans, and the FHWA Eastern Federal Lands Bureau is sincerely appreciated. Likewise, the principal investigator is indebted to the vast interaction afforded by Applied Foundation Testing, Beck Foundation, and Trevi Icos South.
    [Show full text]
  • Dams in Japan Overview 2018
    Dams in Japan Overview 2018 Tokuyama Dam JAPAN COMMISSION ON LARGE DAMS CONTENTS Japan Commission on Large Dams History … …………………………………………………………………… 1 Operation … ………………………………………………………………… 1 Organization… ……………………………………………………………… 1 Membership… ……………………………………………………………… 1 Publication…………………………………………………………………… 2 Annual lecture meeting… …………………………………………………… 2 Contribution to ICOLD… …………………………………………………… 2 Dams in Japan Development of dams … …………………………………………………… 3 Major dams in Japan… ……………………………………………………… 4 Hydroelectric power plants in Japan… ……………………………………… 5 Dams completed in 2014 − 2016 in Japan … ……………………………… 6 Isawa Dam… ……………………………………………………………… 7 Kyogoku Dam … ………………………………………………………… 9 Kin Dam…………………………………………………………………… 11 Yubari-Shuparo Dam… …………………………………………………… 13 Tokunoshima Dam………………………………………………………… 15 Tsugaru Dam… …………………………………………………………… 17 Introduction to Dam Technologies in Japan Trapezoidal CSG dam … …………………………………………………… 19 Sediment bypass tunnel (SBT)… …………………………………………… 19 Preservation measures of dam reservoirs… ………………………………… 19 Advancement of flood control operation… ………………………………… 20 Dam Upgrading Vision… …………………………………………………… 21 Utilization of ICT in construction of dam… ………………………………… 22 Papers in ICOLD & Other Technical Publications Theme 1 Safety supervision and rehabilitation of existing dams…………… 23 Theme 2 New construction technology … ………………………………… 26 Theme 3 Flood, spillway and outlet works… ……………………………… 29 Theme 4 Earthquakes and dams… ………………………………………… 30 Theme 5 Reservoir sedimentation and sustainable development……………
    [Show full text]
  • Sabo Vignette Adaptive River Sediment Management in Upper Tenryu Reach
    SaboVignette Adaptiveriversedimentmanagement inUpperTenryuReach HiroakiNakaya Dr.Agr.,P.E. TenryuRiverUpperReachOffice ChubuRegionalDevelopmentBureau MinistryofLand,Infrastructure,TransportandTourism,JAPAN Sabo Vignette Adaptive river sediment management in Upper Tenryu* Reach *Note: The name of the river has appeared in various documents since as early as 8th century. It has shifted from Ara-Tama, through Hirose, to present Tenryu. Each has an implication of its own. Ara is a name of wild coastal ruling tribe whereas Tama is a title of a princess in upper reach. A metaphor of a marital bondage between two different tribal groups. Hirose is simpler, in that Hiro is an adjective wide while Se is shallow water. Chinese letters of Tenryu are made of two parts: Ten and Ryu. Ten is heaven (caelum in Latin, celestial/heavenly as adjective). Ryu is a flying entity, generally of good intention to proclaim prophetic messages. Therefore, cherubim river would be the literal translation in English. Folklore used Ookawa, or Kawa, each of which merely indicates big river or river itself respectively. The upper reach is also called under the name of Inadani, which is Ina valley, consisting of a basin. I. Scope Sabo work is a form of mass wasting management. It has also been transcribed as erosion and sediment control/management, but the Japanese noun “dosha” is more precisely mass in general than sediment, which may invoke a sense of material deposited in channels. Destabilization initiates mass movement. It sustains damages acutely and undesirable impacts latently upon the society in basin-wide scale, depending upon the timing and locality. The mass focused upon is chiefly the one destabilized by natural factors such as slope surface water and ground water produced by precipitation.
    [Show full text]
  • 汽水域=Estuarine Region
    Estimation of Potential Sediment Yield by integrating USLE with GIS -A case study at Tenryu Watershed in Central Japan- Kazutoshi HOSHIKAWA, Masashi KAWABATA, Madhusudan B. SHRESTHA and Jun SUZUKI Faculty of Agriculture, Shinshu University 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan, [email protected] Abstract: The Japanese archipelago has high potentiality in producing huge sediments due to its topographical and hydro-meteorological conditions. Of all, Tenryu basin, having its headwater sources in the highest mountain ranges, the Japanese Alps in Central Japan, is one of the highest sediment yield river. Frequent fluctuation of channel beds and deposition of huge sediments in the reservoirs have been a severe problem. In order to control flood and manage river system, an integrated management of entire watershed is considered to be a desirable strategy; therefore, estimation of potential sediment yield in a large watershed, has been an important issue. This study was attempted to estimate the sediment yield at eight sub-watersheds: Yokokawa, Katagiri, Matsukawa, Shintoyone, Minowa, Miwa, Koshibu and Misakubo watersheds of the Tenryu basin using USLE model incorporated with GIS techniques, and validated the estimated sediment yield with the actual sedimentation measured from their corresponding reservoirs. From the study, it was found that the variation of observed annual sedimentation at reservoirs has showed similar trend with the estimated USLE values within the studied watershed. This outcome suggests the reliability and adaptability of the USLE method that is integrated with GIS in estimating annual potential sediment yield in the large watershed having complex topography and geology. Keywords: USLE, GIS, Sediment production, Tenryu River sub watershed 1.
    [Show full text]