2 共通表記編(Pdf:1518Kb)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guideline for Technical Regulation on Hydropower Civil Works
SOCIALIST REPUBLIC OF VIETNAM Ministry of Construction (MOC) Guideline for Technical Regulation on Hydropower Civil Works Design and Construction of Civil Works and Hydromechanical Equipment Final Draft June 2013 Japan International Cooperation Agency Electric Power Development Co., Ltd. Shikoku Electric Power Co., Inc. West Japan Engineering Consultants, Inc. IL CR(2) 13-096 Guideline for QCVN xxxx : 2013/BXD Table of Contents 1. Scope of application .................................................................................................. 1 2. Reference documents ............................................................................................... 1 3. Nomenclatures and definitions ................................................................................. 1 4. Classification of works .............................................................................................. 1 4.1 General stipulation ................................................................................................. 1 4.2 Principles for the classification of hydropower works .............................................. 2 5. Guarantee of serving level of hydropower works .................................................... 7 6. Safety coefficient of hydropower civil works ........................................................... 7 7. Construction of hydropower civil works ................................................................ 26 7.1 General requirements ......................................................................................... -
Dams in Japan Overview 2018
Dams in Japan Overview 2018 Tokuyama Dam JAPAN COMMISSION ON LARGE DAMS CONTENTS Japan Commission on Large Dams History … …………………………………………………………………… 1 Operation … ………………………………………………………………… 1 Organization… ……………………………………………………………… 1 Membership… ……………………………………………………………… 1 Publication…………………………………………………………………… 2 Annual lecture meeting… …………………………………………………… 2 Contribution to ICOLD… …………………………………………………… 2 Dams in Japan Development of dams … …………………………………………………… 3 Major dams in Japan… ……………………………………………………… 4 Hydroelectric power plants in Japan… ……………………………………… 5 Dams completed in 2014 − 2016 in Japan … ……………………………… 6 Isawa Dam… ……………………………………………………………… 7 Kyogoku Dam … ………………………………………………………… 9 Kin Dam…………………………………………………………………… 11 Yubari-Shuparo Dam… …………………………………………………… 13 Tokunoshima Dam………………………………………………………… 15 Tsugaru Dam… …………………………………………………………… 17 Introduction to Dam Technologies in Japan Trapezoidal CSG dam … …………………………………………………… 19 Sediment bypass tunnel (SBT)… …………………………………………… 19 Preservation measures of dam reservoirs… ………………………………… 19 Advancement of flood control operation… ………………………………… 20 Dam Upgrading Vision… …………………………………………………… 21 Utilization of ICT in construction of dam… ………………………………… 22 Papers in ICOLD & Other Technical Publications Theme 1 Safety supervision and rehabilitation of existing dams…………… 23 Theme 2 New construction technology … ………………………………… 26 Theme 3 Flood, spillway and outlet works… ……………………………… 29 Theme 4 Earthquakes and dams… ………………………………………… 30 Theme 5 Reservoir sedimentation and sustainable development…………… -
汽水域=Estuarine Region
Estimation of Potential Sediment Yield by integrating USLE with GIS -A case study at Tenryu Watershed in Central Japan- Kazutoshi HOSHIKAWA, Masashi KAWABATA, Madhusudan B. SHRESTHA and Jun SUZUKI Faculty of Agriculture, Shinshu University 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan, [email protected] Abstract: The Japanese archipelago has high potentiality in producing huge sediments due to its topographical and hydro-meteorological conditions. Of all, Tenryu basin, having its headwater sources in the highest mountain ranges, the Japanese Alps in Central Japan, is one of the highest sediment yield river. Frequent fluctuation of channel beds and deposition of huge sediments in the reservoirs have been a severe problem. In order to control flood and manage river system, an integrated management of entire watershed is considered to be a desirable strategy; therefore, estimation of potential sediment yield in a large watershed, has been an important issue. This study was attempted to estimate the sediment yield at eight sub-watersheds: Yokokawa, Katagiri, Matsukawa, Shintoyone, Minowa, Miwa, Koshibu and Misakubo watersheds of the Tenryu basin using USLE model incorporated with GIS techniques, and validated the estimated sediment yield with the actual sedimentation measured from their corresponding reservoirs. From the study, it was found that the variation of observed annual sedimentation at reservoirs has showed similar trend with the estimated USLE values within the studied watershed. This outcome suggests the reliability and adaptability of the USLE method that is integrated with GIS in estimating annual potential sediment yield in the large watershed having complex topography and geology. Keywords: USLE, GIS, Sediment production, Tenryu River sub watershed 1. -
Thank You Very Much for Your Kind Attention !
The Study on Countermeasures for Sedimentaion Workshop IV, Surakarta, January 18, 2007 in The Wonogiri Multipurpose Dam Reservoir Master Plan on Sustainable Management of Wonogiri Reservoir in The Republic of Indonesia Mitigation Measures of Impacts Present Sediment N Discharge at Babat Basic Policy BENGAWAN SOLO Barrage (Ex.) Operation Rule “To minimize the Q, Turbidity Allowable limit of 22.9 million Impact to the d/s” m3/year concentration & m3/year by careful gate operation duration shall be defined N Combined operation BENGAWANbetween SOLO Wonogiri Dam and Colo Weir Sediment Discharge from Wonogiri Monitoring in Increase of sediment to be 0.8 million downstream reaches m3/year discharge to Solo River Operable period SCALE estuary will be approx. shall be strictly 5%0 15 30 45 60 75 90 km SCALE prohibited in dry 5% 0 15 30 45 60 75 90 km Flushing season Thank You very much for Your Kind Attention ! Japan International Cooperation Agency – JICA Ministry of Public Works The Republic of Indonesia Nippon Koei Co. Ltd. and Yachiyo Engineering Co. Ltd. 䋭㩷㪈㪉㪋㩷䋭 Page / 6 Estimating sediment volume into Brantas River after eruption of Kelud volcano on 1990 Mr. Takeshi Shimizu National Institute for Land and Infrastructure Management 䋭㩷㪈㪉㪌㩷䋭 IEstimating Sediment volume into Brantas River after eruption of Kelud Voncano on 1990 Takeshi SHIMIZU1, Nobutomo OSANAI1 and Hideyuki ITOU1 1National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure and Transport, Japan The Brantas River that flows through East Java Province, the Republic of Indonesia, is the second largest river. It has 11,800km2 catchment areas and total length of the river approximately 320km. -
Sustainable Infrastructure and Asset Management
SSustainableustainable IInfrastructurenfrastructure andand AAssetsset MManagementanagement KiyoshiKiyoshi KOBAYASHIKOBAYASHI WhatWhat isis AssetAsset Management?Management? TheThe optimaloptimal allocationallocation ofof thethe scarescare budgetbudget betweenbetween thethe newnew arrangearrange--mentment ofof infrastructureinfrastructure andand rehabilitation/maintenancerehabilitation/maintenance ofof thethe existingexisting infrastructureinfrastructure toto maximizemaximize thethe valuevalue ofof thethe stockstock ofof infrastructureinfrastructure andand toto realizerealize thethe maximummaximum outcomesoutcomes forfor thethe citizenscitizens AssetAsset managementmanagement Pavement management (highway, runway) Railway management Bridge management Facility management Tunnel management Water supply system management Port facility management Embankment management Slope management River facility/Dam facility management Forest management DamDam FacilityFacility ManagementManagement LongLong--termterm SustainableSustainable InfrastructureInfrastructure ComprehensiveComprehensive managementmanagement ofof sedimentationsedimentation systemssystems (( environmental change, ecological impacts, riverbed degradation, river morphology change, and coastal erosion ) LargeLarge--scalescale risksrisks (( socio-economic change, volatility in sedimentation, green house effects ) DamDam facilitiesfacilities basedbased onon renewalrenewal durationduration andand managementmanagement pointspoints Renewal Facilities Management Others duration