Phlebotomy Venipuncture Procedure PRINCIPLE: This Policy Establishes Criteria for the Correct Collection of Blood Specimens by Venipuncture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handout Page 1 of 8
MLT 112: Principles of Phlebotomy Learning Unit 3: Handout Specimen Collection – Venipuncture Procedure I. Collecting and Processing of Specimens A. Blood 1. Venipuncture Procedure (arm + dorsal/hand) – vacutainer, syringe, butterfly a. Approaching the Patient Correct patient identification Wash hands Have patient recite his/her name Wrist identification – mandatory must match requisition check ankle on babies and peds Out-patients – ask patient to spell name In-patients – see wrist ID Unconscious patient – see wrist ID Unidentified patient – emergency – use temporary I.D. band non-emergency – wait for I.D. Explanation and Reassurance – Inspire confidence Conversation Ensure that patient has complied with test requirements, such as fasting (only water), NPO (nothing per oral), etc. Check for any allergies, such as to latex, adhesive bandages, etc. b. Positions Positioning the patient Vein accessibility Sitting vs. lying down Phlebotomist position – always in front in case of fainting. c. Applying the Tourniquet See previous lecture Page 1 of 8 MLT 112: Principles of Phlebotomy Learning Unit 3: Handout d. Veins Used - Antecubital Fossa Cephalic Median Cephalic Median Basilic Median Cubital Vein – vein of choice, anchored best Other Structures – avoid Brachial artery – apply pressure 5 minutes Cutaneous nerve – very painful Tendon for the biceps muscle – always draw below crease e. Other Vein Sites Wrist (never palm side) Hand Ankle Foot f. Preparing Equipment Syringes Assembly – always work plunger before procedure. Plunger position – must -
The Incidence of Microemboli to the Brain Is Less with Endarterectomy Than with Percutaneous Revascularization with Distal filters Or flow Reversal
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector From the Southern Association for Vascular Surgery The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal Naren Gupta, MD, PhD,a Matthew A. Corriere, MD, MS,a,c Thomas F. Dodson, MD,a Elliot L. Chaikof, MD, PhD,a Robert J. Beaulieu, BS,b James G. Reeves, MD,a Atef A. Salam, MD,a and Karthikeshwar Kasirajan, MD,a Atlanta, Ga Background: Current data suggest microembolization to the brain may result in long-term cognitive dysfunction despite the absence of immediate clinically obvious cerebrovascular events. We reviewed a series of patients treated electively with carotid endarterectomy (CEA), carotid artery stenting (CAS) with distal filters, and carotid stenting with flow reversal (FRS) monitored continuously with transcranial Doppler scan (TCD) during the procedure to detect microembolization rates. Methods: TCD insonation of the M1 segment of the middle cerebral artery was conducted during 42 procedures (15 CEA, 20 CAS, and 7 FRS) in 41 patients seen at an academic center. One patient had staged bilateral CEA. Ipsilateral microembolic signals (MESs) were divided into three phases: preprotection phase (until internal carotid artery [ICA] cross-shunted or clamped if no shunt was used, filter deployed, or flow reversal established), protection phase (until clamp/shunt was removed, filter removed, or antegrade flow re-established), and postprotection phase (after clamp/ shunt was removed, filter removed, or antegrade flow re-established). Descriptive statistics are reported as mean ؎ SE for continuous variables and N (%) for categorical variables. -
Vacutainer Tubes
Vacutainer Tube Guide - Order of Draw for routine volumes See separate guide for micro-tainers Number of Tube Inversions at Label Blood Collection Volume Tubes/Bottles Abbrev. Additive (Do Not Shake) General Laboratory Use Draw 1 Aerobic and 1 5 Blood Culture / requires Adapter 20 mL Anaerobic Culture Note: A separate venipuncture for trace BLCLT Bottles metal analysis is required if blood cultures are ordered at the same time. NAYYP Clot activator 8 Trace Element serum tube for Copper 6 mL Royal Trace Element whole blood for Aluminum, NAVYE 2 Call 2-5002 Blue K EDTA Lead, Zinc, Selenium, Manganese, Mercury, 8 for tubes Cadmium, Arsenic Discard tube or secondary sterile specimen 6 mL Clear None 0 tube 3 mL 2.7 mL Light (Blue) BLUE Sodium Citrate (3.2%) Coagulation Testing on Plasma Blue 3-4 1.8 mL (Blue/clear) Serum determinations where a gel-barrier is 6 mL Red RED Clot Activator 5 contraindicated; Therapeutic Drug 4 mL Monitoring (TDM) Clot Activator and gel SST - Serum determinations in Chemistry, Gold SST 5 5 mL for serum separation Immunology, Serology; HLA Ab screen, DSA Light Lithium heparin and PST PST - Plasma determinations in Chemistry 4.5 mL Green gel - plasma separation 8 GLI Lithium heparin 8 Whole Blood Plasma: Troponin, Lactic Acid, Ion. Ca+ 6 mL Dark 4 mL Green GNA Sodium heparin 8 Whole Blood Plasma: Tissue typing, plasma hemoglobin, plasma catecholamine, chromosome analysis Pink PINK Dry K2EDTA 8 Blood Bank / Transfusion; HLA Typing 6 mL Tan TAN K2EDTA 8 Lead Testing only 3 mL LAV 4 Whole Blood Hematology; some Flow, 4 mL Lavender Dry K2EDTA 8 Molecular, and Genetic tests; HIV Viral 2 mL LAV6 Load Whole Blood tube with Glycolytic inhibitor Potassium Oxalate / for GTT, Gray 6 mL GRAY Sodium fluoride 8 Post-Prandial Glucose, D-Xylose, and Volatiles panel ACDA ACD Whole Blood tube for Flow Yellow (Acid Citrate Dextrose 8 immunophenotyping; HLA cross matching; 8.5 mL ACDB Solution A) genetic and other referred tests ALWAYS Check Expiration Dates before use! If unsure of use, refer to the on-line “Lab User’s Guide” or call the lab at 25002 . -
Research Article Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation International Journal of Vascular Medicine Volume 2016, Article ID 3805380, 6 pages http://dx.doi.org/10.1155/2016/3805380 Research Article Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry Kimihiro Igari, Toshifumi Kudo, Takahiro Toyofuku, and Yoshinori Inoue Division of Vascular and Endovascular Surgery, Department of Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan Correspondence should be addressed to Kimihiro Igari; [email protected] Received 16 July 2016; Revised 17 September 2016; Accepted 27 September 2016 Academic Editor: Thomas Schmitz-Rixen Copyright © 2016 Kimihiro Igari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. Endothelial dysfunction plays a key role in atherosclerotic disease. Several methods have been reported to be useful for evaluating the endothelial dysfunction, and we investigated the endothelial dysfunction in patients with peripheral arterial disease (PAD) using peripheral arterial tonometry (PAT) test in this study. Furthermore, we examined the factors significantly correlated with PAT test. Methods. We performed PAT tests in 67 patients with PAD. In addition, we recorded the patients’ demographics, including comorbidities, and hemodynamical status, such as ankle brachial pressure index (ABI). Results. In a univariate analysis, the ABI value ( = 0.271, = 0.029) and a history of cerebrovascular disease ( = 0.208, = 0.143) were found to significantly correlatewithPATtest,whichcalculatedthereactivehyperemiaindex(RHI).Inamultivariateanalysis,onlytheABIvalue significantly and independently correlated with RHI ( = 0.254, = 0.041). -
New York State Surgical and Invasive Procedure Protocol (NYSSIPP)
State of New York Department of Health Office of Health Systems Management Division of Primary and Acute Care Services New York State Surgical and Invasive Procedure Protocol for Hospitals ~ Diagnostic and Treatment Centers Ambulatory Surgery Centers ~ Individual Practitioners Antonia C. Novello, M.D., M.P.H., Dr.P.H. Commissioner of Health Hon. George E. Pataki Governor – State of New York September 2006 Surgical and Invasive Procedure Protocol September 2006 NEW YORK STATE SURGICAL AND INVASIVE PROCEDURE PROTOCOL (FOR THE PREVENTION OF WRONG PATIENT, WRONG SITE, WRONG SIDE & WRONG INVASIVE PROCEDURE EVENTS) I. STATEMENT OF PURPOSE The State of New York is committed to providing its residents access to quality health care. Hon. George E. Pataki, Governor and Antonia C. Novello M.D., M.P.H., Dr.P.H., Commissioner of Health, continue to work toward a system that reduces medical and surgical errors by commitment to a safe and protected patient care environment. Key to achieving this goal is promoting a culture of safety and strengthening open communication among health care providers, individual practitioners and the patients they serve. One of the goals of Governor Pataki and Commissioner Novello, is the elimination of wrong patient, wrong site, wrong side and wrong invasive procedures, through the development of comprehensive systems that ensure the correct procedure is done on the correct patient on the correct site. Increased practitioner awareness combined with strong provider protocols and standardization will enhance the patient safety measures currently in place. The New York State Surgical and Invasive Procedure Protocol (NYSSIPP) developed by the Procedural and Surgical Site Verification Panel (PSSVP) is intended for all patient care settings and for all individual practitioners. -
Fluorescein Angiography: Preventing and Responding to Complications
Fluorescein Angiography: Preventing and Responding to Complications Jacqueline G. Jaffee, J.D. OMIC Risk Management Specialist PURPOSE OF RISK MANAGEMENT RECOMMENDATIONS OMIC regularly analyzes its claims experience to determine loss prevention measures that our insured ophthalmologists can take to reduce the likelihood of professional liability lawsuits. OMIC policyholders are not required to implement these risk management recommendations. Use your professional judgment in determining the applicability of a given recommendation to their particular patients and practice situation. These loss prevention documents may refer to clinical care guidelines such as the American Academy of Ophthalmology’s Preferred Practice Patterns, peer-reviewed articles, or to federal or state laws and regulations. However, our risk management recommendations do not constitute the standard of care nor do they provide legal advice. If legal advice is desired or needed, consult an attorney. Information contained here is not intended to be a modification of the terms and conditions of the OMIC professional and limited office premises liability insurance policy. Please refer to the OMIC policy for these terms and conditions. Version 1/24/08 Fluorescein angiography (FA) is a diagnostic procedure in which a rapid sequence of photographs is taken to document the blood circulation of the retina/choroid. The dye is usually injected into a vein in the arm, forearm, or hand. While generally well tolerated, angiography is an invasive procedure with associated risks, very rarely but notably of a life-threatening allergic reaction. The following risk management recommendations have been compiled to assist you and your staff so that you may both prevent and better respond to the risks of the procedure. -
Anti-Apolipoprotein A-1 Igg Influences Neutrophil Extracellular Trap
International Journal of Molecular Sciences Article Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques Rafaela F. da Silva 1,2 , Daniela Baptista 1, Aline Roth 1, Kapka Miteva 1 , Fabienne Burger 1, Nicolas Vuilleumier 3,4, Federico Carbone 5,6 , Fabrizio Montecucco 5,6 , François Mach 1 and Karim J. Brandt 1,* 1 Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; [email protected] (R.F.d.S.); [email protected] (D.B.); [email protected] (A.R.); [email protected] (K.M.); [email protected] (F.B.); [email protected] (F.M.) 2 Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil 3 Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; [email protected] 4 Department of Medical Specialities, Division of Laboratory Medicine, Faculty of Medicine, 1211 Geneva, Switzerland 5 First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; [email protected] (F.C.); [email protected] (F.M.) 6 IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy * Correspondence: [email protected]; Tel.: +41-2237-94-647 Received: 9 September 2020; Accepted: 13 October 2020; Published: 19 October 2020 Abstract: Background: Neutrophils accumulate in atherosclerotic plaques. Neutrophil extracellular traps (NET) were recently identified in experimental atherosclerosis and in complex human lesions. -
Laboratory-General Specimen Collection and Handling Guidelines
Laboratory-General Specimen Collection and Handling Guidelines Contents: Microbiology continued. Orders/Requests Stool Patient Preparation Throat or Pharynx Specimen Containers Tuberculosis (TB) Specimen Quality Urine Order of Draw Viral Specimen Transport VRE Surveillance (Vancomycin- Resistant entercoccus) Specimen Rejection Wound General Lab Sample/Source: Whole Blood Cytology (Cytopathology) Plasma Aspiration, Fine Needle Serum Aspiration, Cyst Fluids Urine Submission of slide Fecal (Stool) Tips on making smears Body Fluid Body Cavity Fluids Cerebrospinal Spinal Fluid Breast Nipple Secretions Synovial Fluid Brushing Specimens Microbiology Cerebrospinal Fluid (CSF) Sample/Source: Ectocervix, Endocervical canal, Vaginal pool Abscess (Deep aspirate) Pap Smear, Conventional Abscess (superficial swab) Pap Smear, Liquid Base Acid Fast Bacillus (AFB) Sputum Specimens Anaerobic Surface Scrape Specimen (Tzanck Smear) Aspirate, drainage, cyst fluid, or pustule Vaginal Wall (Maturation Index) Biopsy, Bone, Tissue Washing Specimens Blood (Adult) Histology (Anatomic Pathology) Blood )Pediatric Routine Submission Blood for Acid Fast Bacillus (AFB) Fresh Specimen Body Fluids Surgical Specimen and Microbiology test(s) Bronchial Washing Lavage Breast Tissue Catheter Tip Brushing Specimens C. difficile Toxin B Bronchial Washing and Brushings Chlamydia/Gonorrhea Amplified Detection Muscle Biopsy Crytococcal Antigen Renal Biopsy (Kidney) Cerebral Spinal Fluid (CSF) Renal calculi (Kidney/Bladder Stones) Ear (outer) Bone Marrow Ear (inner) Cytogenics Eye -
The Cardiopulmonary Bypass, Hemolysis, and End Organ Function: an Integration of Political Science, Chemistry, and Zoology
The Cardiopulmonary Bypass, Hemolysis, and end organ function: an Integration of Political Science, Chemistry, and Zoology By Nathan V. Luce A capstone project submitted to the faculty of Weber State University in fulfillment of the requirements of the degree of Bachelor of Integrated Studies in the Department of Integrated Studies. Ogden, Utah (Date Approved) Approved by: Department Director Dr. Michael Cena Ph.D. Committee Members: Political Science Dr. Gary Johnson Ph.D. Clinical and Clinical Research: Chemistry and Zoology Dr. Peter C. Minneci M.D. Marie Hart Clayton MSN, RN TABLE OF CONTENTS PREFACE......................................................................................................................................... v INTRODUCTION............................................................................................................................... 1 HISTORY AND BASICS: CARDIAC SURGERY AND THE CPB.................................................... 3 Evolution of Cardiac Surgery............................................................................................ 3 Intraoperative........................................................................................................... 5 Effects of Cardiopulmonary Bypass................................................................................. 6 Mechanical............................................................................................................... 6 Physiological: Whole Body Inflammatory Response............................................... -
Research Article Comparison of Small-Volume Tubes and Vacuum
INTERNATIONAL JOURNAL OF MEDICAL BIOCHEMISTRY DOI: 10.14744/ijmb.2018.69188 Int J Med Biochem 2019;2(1):24-9 Research Article Comparison of small-volume tubes and vacuum blood tubes for complete blood count Kubranur Unal Department of Biochemistry, Polatlı Public Hospital, Ankara, Turkey Abstract Objectives: A complete blood count (CBC) is one of the most commonly requested clinical laboratory tests. Vacuum blood tubes are used routinely, and now, new small-volume tubes (SVTs) containing dipotassium ethylenediaminete- traacetic acid (K2EDTA) are also in use. The aim of this research was to compare SVTs with vacuum blood tubes for use in a CBC. Methods: Venous blood samples were taken from 40 healthy volunteers and were collected in BD Vacutainer (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) K2EDTA tubes and BD Microtainer (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) K2EDTA tubes. CBC parameters were analyzed using an ABX Pentra DF 120 device (Horiba, Ltd., Kyoto, Japan). Results: Red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean cor- puscular hemoglobin concentration (MCHC), and basophil (BASO) levels were found to be statistically significantly higher, while platelet (PLT) levels were determined to be statistically significantly lower in the SVT analyses compared with those of the vacuum blood tubes. When the percentage difference was compared with the total allowable error, RBC, HGB, HCT, MCH, MCHC, red cell distribution width, white blood cell count, neutrophil, lymphocyte, monocyte, eosinophil, and BASO values demonstrated a general trend of positive bias, while PLT values demonstrated a general trend of negative bias on a Bland-Altman bias plot. -
Cervical Epidural Anaesthesia for Carotid Artery Surgery
353 Cervical epidural Francis Bonnet MD,* Jean Paul Derosier MD,'i" anaesthesia for carotid Frederic Pluskwa MD,* Kou Abhay MD,* A. Gaillard MDt artery surgery A series of 394 patients (251 men, 143 women; mean age 70.0 +- C2 d D4-D8 a ainsi dtd obtenu. Les patients sont restds dveillds 8.4 yr) selected for carotid artery" surgery, (CAS) performed pendant la durde de l'acte opdratoire dans des conditions de under cervical epidural anaesthesia (CEA ) was analysed retro- confort acceptables. Les complications sdrieuses rencontrdes spectively. Carotid endarterectomy was performed in 326 ont dtd la survenue d'une brdche duremdrienne dans deux cas, patients and saphenous vein bypass in 68. The cervical epidural d'une brdche vasculaire dans six cas et d'une insuffisance administration of 15 ml 0.5 per cent bupivacaine or 0.37-0.40 respiratoire chez trois patients. Hypotension (10,9 pour cent et per cent bupivacaine plus fentanyl (50-100 Izg) resulted in an bradycardie (2,8 pour cent) dtaient les effets secondaires les effective sensory blockade from C2 to T4-Ts. Patients were plus frdquemment observds. Un accident neurologique transi- maintained awake during the surgical procedure in comfortable toire s'est produit chez 84 patients pendant I'intervention condition. Serious complications included dural puncture in two chirugicale. Un accident neurologique irrdversible est survenu patients, epidural venipuncture in six patients and respiratory chez 12 patients. Trois infarctus du myocarde ont dtE diagnos- muscle paralysis in three patients. Hypotension (10.9 per cent) tiquds dans les suites opdratoires. La mortalitE de cette sdrie and bradycardia (2.8 per cent) were the most frequent side- Eta# de 2,3 pour cent. -
Reviewing Approaches to Blood Draws
Reviewing Approaches to Blood Draws Pitou Devgon, MD 700-0015 Rev A © 2018 Introduction & Disclosures Pitou Devgon,MD,MBA • Chief Medical Officer, Co-Founder & PIVO Inventor • MICU Hospitalist Physician, Philadelphia VA Medical Center • Association of Vascular Access (AVA) Foundation Board Member * Employee, shareholder and board member of Velano Vascular, Inc. © 2018 Tonight’s Agenda 1. Suboptimal Blood Collection Practices 2. Hurdles of PIV Blood Aspiration 3. Vascular Anatomy and the Role in Access © 2018 A Ubiquitous Yet Suboptimal Procedure 1.6 – 2.2X Average daily draws 28% Adults, 43% Peds > 1 stick attempt ~450M 15-25% CONDUCTED EVERY YEAR 88% Nurses 3+ Draws Daily IN U.S. HOSPITALS (INPATIENT) Say sticks / re-sticks impact patient experience © 2018 * Internal Data on File Venous Depletion: Setting the Stage • Definition Attempt: Loss of suitable veins for cannulation, IV therapy or dialysis due to damage from existing or past VADs or venipuncture • Venous depletion, vein wasting and vein preservation are concepts gaining attention as a means to increase appropriate use of peripheral veins and reduce the need for central vascular access devices (CVADs) • Lynn Hadaway. Infusion Teams in Acute Care Hospitals. JIN. 2013 • Last few decades frequency & intensity of venous cannulations & venipunctures for hospitalized patients increased dramatically Category Volume Driving Factors: • PVD PIV 310,000,000 • • Previous vein injury Limitations on limbs by mastectomy, stroke or contractures CVC 5,000,000 • Phlebitis • Blood clots • Infiltrations • Hematomas • Hx of IV drug use PICC 2,000,000 • Use of certain medications • Prolonged bedrest (pH low/high) • Major surgery Midline ~400,000 • Hx of multiple venous • Obesity • Smoking Venipuncture ~400,000,000 cannulations • Some Cancers (Inpatient) © 2018 Pervasive Cannulations of Vessels Vascular Access Devices (VADs) are Ubiquitous DVA Population .