Vascular Access Devices

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Access Devices VASCULAR ACCESS DEVICES Andrea Lemmo RN, BSN VA-BC Assistant Nurse Manager Vascular Access Team Sutter Medical Center Sacramento Vascular Access Practice Criteria Preserving venous access is essential Establishing and maintaining appropriate reliable access is vital Appropriate device selection and vascular access planning prevents intravenous related problems and complications for the patient Collaborative process among the inter-professional team Vascular Access Practice Standards Device Selection Collaborative process among the inter-professional team Accommodates the vascular access needs Prescribed therapy/treatment Duration of therapy Vascular characteristics Patient comorbidities Smallest diameter device, fewest lumens, least invasive 2 Types of Vascular Access Devices PERIPHERAL IV CENTRAL VENOUS ACCESS DEVICE Short catheters (less than 3 inches) Placed in IJ, subclavian, femoral Placed in the veins of the upper Long catheter whose tip extremities terminates in a great vessel Used for therapy less than 6 days in duration 3 Types of CVAD’s Contraindicated for use with Non-tunneled Continuous vesicants Tunneled Parenteral nutrition Implanted Infusates >900 mOsmL Midline Peripheral IV (PIV) Short catheters generally placed in forearm, hand, scalp vein and lower extremity Short term therapy (less than 6 days) when infusate is non-irritating Peripheral Sites Veins of the Forearm 1. Cephalic vein 2. Median Cubital vein 3. Accessory Cephalic vein 4. Basilic vein 5. Cephalic vein 6. Median antebrachial vein Peripheral Sites Veins of the Hand 1. Digital Dorsal veins 2. Dorsal Metacarpal vein 3. Dorsal venous network 4. Cephalic vein 5. Basilic vein Midline Complications of Peripheral IV’s Complications of Peripheral IV’s Local Complications Systemic Infiltration Thrombophlebitis Phlebitis Blood Stream Infection Extravasation Air Embolus Hematoma Infiltration Phlebitis Extravasation Cellulitis Hematoma Central Venous Access Devices (CVAD) What Is A Central Venous Access Device An intravascular access device that terminates in one of the great vessels Radiographic Anatomy of Tip Position According to INS Standards- position of the tip of a CVAD in the lower segment of the superior vena cava at or near the caval- atrial junction in adults and children Carina Carina is often used as a landmark to determine proper position of catheter tip Central Venous Access Devices 3 Types Non- tunneled Tunneled Implanted Types of CVAD’s Non-Tunneled Percutaneous-subclavian, IJ, femoral Peripherally Inserted (PICC) Non-Tunneled Percutaneous Direct venipuncture through the skin into the internal jugular, subclavian or femoral To minimize CLABSI/risk of thrombotic occlusion subclavian vein is favored Hx chronic kidney disease (CKD) the internal jugular is vein of choice Infants/children-no preferred vein selection to reduce CLABSI Use ultrasound for vein identification/cannulation failure Non Tunneled Percutaneous Central Venous Access Ultrasound guided Central Venous Access Ultrasound guided Percutaneous Subclavian Insertion Site Percutaneous Insertion Site Internal Jugular Percutaneous Insertion Site Femoral Non-Tunneled CVAD Peripherally Inserted Central Catheter PICC PICC • Long catheter inserted into the cephalic, brachial or basilic vein of the upper arm • Inserted by specialty trained nurses and physicians • Can be inserted at the bedside • 1-3 lumen configuration • Most are power injectable • Optimal dwell time is unknown • Lower rate of CLABSI Non-tunneled CVAD’s Pros Cons Rapid insertion/removal Easily dislodged Inexpensive May be uncomfortable or Dwell time unsightly Can be comfortable Maintenance required depending on site Some activity limitations Available in 1-4 lumen Higher risk of infection configurations depending on type, site Types of CVAD’s Tunneled Hickman Broviac Permacath TUNNELED CATHETERS ▪ Surgically inserted ▪ Tunnel made through subcutaneous tissue (usually b/t clavicle and nipple) ▪ Tip inserted through cephalic, internal or external jugular and threaded into superior vena cava ▪ Held in place with Dacron cuff under skin ▪ Placement verified through x-ray ▪ Can be single, double or triple lumen TUNNELED CATHETERS Hickman Tunneled versus Non-tunneled Tunneled Non-tunneled TUNNELED CATHETERS Pros Cons Long lasting Special training Comfortable required to insert, remove Useful for most therapies Imaging needed for insertion Available in 1,2,3 lumen Maintenance required Some activity limit Tunneled Line Placement Hickman Tunneled Line IMPLANTED PORT IMPLANTED PORT Power vs. Non-Power Implanted Ports Pros Cons Long lasting Most invasive to insert/remove Minimal maintenance Needle stick required to access Cosmetically desirable Not appropriate for all Rx 1, 2 lumen configurations Port Placement Procedure Port Placement Guide wire introduced under fluoroscopy Port Placement Skin anesthesia Incision Made Port Placement Create the tunnel Port Placement Insert device into pocket Implanted Port Ports aren’t just placed in the chest Complications Related to CVAD’s ▪ Phlebitis ▪ Infiltration/Extravasation ▪ Catheter Occlusion ▪ Venous Thrombosis ▪ Infection ▪ Air Embolism ▪ Malposition ▪ Fracture Phlebitis • An inflammation of the vein • Endothelial cells of vein wall irritated • Cell walls roughen-platelets adhere • Inflamation induced phlebitis Infiltration/Extravasation Infiltration Leakage of non vesicants into surrounding tissue Extravasation Leakage of vesicants into surrounding tissue Catheter Occlusion Accumulation of fibrin within, surrounding or at the tip of a CVAD that interferes with patency Venous Thrombosis Blood clot formation in 1 or more deep veins Infection Central Line Associated Bloodstream Infection is a laboratory confirmed bloodstream infection in a patient who has had a central line in place within the 48 hour period before the development of the Blood Stream Infection (BSI) and that is not related to an infection at another site Malposition A central line inserted into the right subclavian vein has migrated “UP” into the right internal jugular vein Pinch-off Syndrome Implanted port Compression between the clavicle and rib Let’s test your skills Questions?? References Berenholtz SM, et al. Eliminating catheter-related bloodstream infection Journal of Infusion Nursing. January/February 2016. Vol. 39. Number 1S Centers for Disease Control and Prevention. (2002) Guideline for hand hygiene in health-care setting: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. MMWR Recommendations and Reports, 51(RR-16), 1-45. March 2016 Hamblin, Richelle. CLABSI Maintenance Bundles: How Nurses Can Lead Practice Change in Any Health Care Setting. Newsline. Vol 38, No 6. Nov-Dec 2016 Humphrey, Joy S. Improving the Registered Nurses’ Knowledge of Evidence Based Practice Guidelines to Decrease the Incidence of Central Line- Related Bloodstream Infections: An Educational Intervention. Association for Vascular Access. 2015 Infusion Therapy Standards of Practice. Journal of Infusion Nursing. January/February 2016. Vol. 39. Number1S Kuter, David. Thrombotic Complications of Central Venous Catheters in Cancer Patients. November 24, 2003. Marshall et al. Strategies to Prevent Central Line-Associated Bloodstream Infections in Acute Care Hospitals: 2014 Update. Infection Control and Hosptal Epidemiology. July 2014. Vol. 35, No. S2 O’Grady NP, et al.; Healthcare Infection Control Practices Advisory Committee (HICPAC). Guidelines for the prevention of intravascular catheter- related infections. Clin Infect Dis.2011 May; 52(9):e162–193. Epub 2011 Apr 1. R.S. Boersma; K.-S. G. Kie; A. Verbon; E.C.M. van Pampus; H.C. Schouten. Thrombotic and infections Oncology (2008) Vol. 19. (pg.433-442). 2007 Ryder, Marcia. Catheter-Related Infections: It’s All About Biofilm. Topics in Advanced Practice Nursing eJournal. 2005; 5(3) Ryder, Marcia. The Role of Biofilm in Vasculature Catheter-Related Infections. Physicians and Scientists Publishing Co. 2001. US Centers for Disease Control and Prevention. Reduction in central line–associated bloodstream infections among patients in intensive care units— Pennsylvania, April 2001–March2005. MMWR Morb Mortal Wkly Rep. 2005 Oct 14; 54(40):1013–1016. www.edc.gov/hicpac/bsi-guidelines-2011.html Guidelines for the Prevention of Intravascular Catheter-Related Infections.
Recommended publications
  • Pictures of Central Venous Catheters
    Pictures of Central Venous Catheters Below are examples of central venous catheters. This is not an all inclusive list of either type of catheter or type of access device. Tunneled Central Venous Catheters. Tunneled catheters are passed under the skin to a separate exit point. This helps stabilize them making them useful for long term therapy. They can have one or more lumens. Power Hickman® Multi-lumen Hickman® or Groshong® Tunneled Central Broviac® Long-Term Tunneled Central Venous Catheter Dialysis Catheters Venous Catheter © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Implanted Ports. Inplanted ports are also tunneled under the skin. The port itself is placed under the skin and accessed as needed. When not accessed, they only need an occasional flush but otherwise do not require care. They can be multilumen as well. They are also useful for long term therapy. ` Single lumen PowerPort® Vue Implantable Port Titanium Dome Port Dual lumen SlimPort® Dual-lumen RosenblattTM Implantable Port © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Non-tunneled Central Venous Catheters. Non-tunneled catheters are used for short term therapy and in emergent situations. MAHURKARTM Elite Dialysis Catheter Image provided courtesy of Covidien. MAHURKAR is a trademark of Sakharam D. Mahurkar, MD. © Covidien. All rights reserved. Peripherally Inserted Central Catheters. A “PICC” is inserted in a large peripheral vein, such as the cephalic or basilic vein, and then advanced until the tip rests in the distal superior vena cava or cavoatrial junction.
    [Show full text]
  • The Incidence of Microemboli to the Brain Is Less with Endarterectomy Than with Percutaneous Revascularization with Distal filters Or flow Reversal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector From the Southern Association for Vascular Surgery The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal Naren Gupta, MD, PhD,a Matthew A. Corriere, MD, MS,a,c Thomas F. Dodson, MD,a Elliot L. Chaikof, MD, PhD,a Robert J. Beaulieu, BS,b James G. Reeves, MD,a Atef A. Salam, MD,a and Karthikeshwar Kasirajan, MD,a Atlanta, Ga Background: Current data suggest microembolization to the brain may result in long-term cognitive dysfunction despite the absence of immediate clinically obvious cerebrovascular events. We reviewed a series of patients treated electively with carotid endarterectomy (CEA), carotid artery stenting (CAS) with distal filters, and carotid stenting with flow reversal (FRS) monitored continuously with transcranial Doppler scan (TCD) during the procedure to detect microembolization rates. Methods: TCD insonation of the M1 segment of the middle cerebral artery was conducted during 42 procedures (15 CEA, 20 CAS, and 7 FRS) in 41 patients seen at an academic center. One patient had staged bilateral CEA. Ipsilateral microembolic signals (MESs) were divided into three phases: preprotection phase (until internal carotid artery [ICA] cross-shunted or clamped if no shunt was used, filter deployed, or flow reversal established), protection phase (until clamp/shunt was removed, filter removed, or antegrade flow re-established), and postprotection phase (after clamp/ shunt was removed, filter removed, or antegrade flow re-established). Descriptive statistics are reported as mean ؎ SE for continuous variables and N (%) for categorical variables.
    [Show full text]
  • Piccs, Ports and Lines: Clarifying the Options
    Current Concepts in Vascular Therapies 2011 Mid-Atlantic Conference PICCs, Ports and Lines: Clarifying the Options Babatunde Almaroof, MD April 2, 2011 Objectives • State the indications for central venous access • Discuss types of central venous catheters • “Clarifying the options”/indications for each kind of catheter. Need for central vascular access • There is an increasing need for vascular access as medical care has become more complex. • Most inpatients are able to get their needs served by a peripheral i.v access • Sometimes however, a central access will be needed due to limitations of a peripheral access – Infiltration, extravasation, thrombosis – Infection and sclerosis • This makes central venous access, the preferred choice for long term use as they allow a higher flow and tolerate hyperosmolar solutions not tolerated by peripheral veins Indications for central venous access • TPN • Chemotherapy • Long term antibiotics – Osteomyelitis, endocarditis, fungal infections • Patients with difficult peripheral vein access • Hemodynamic monitoring • Temporary hemodialysis access • Plasmapheresis Historical Background • The first i.v infusion was performed using a cannula made from quill in 1657 • First successful human blood transfusion was performed in 1667 • Seldinger described his technique for catheter insertion in 1953 • Percutaneous placement of a subclavian vein catheter was reported in 1956 Sites of central venous access • Internal Jugular vein • Subclavian vein – Higher risk of pneumothorax • Femoral vein – Higher risk of
    [Show full text]
  • Prevalence, Clinical Characteristics, and Predictors of Peripheral Arterial Disease in Hemodialysis Patients: a Cross-Sectional Study Radislav R
    Ašćerić et al. BMC Nephrology (2019) 20:281 https://doi.org/10.1186/s12882-019-1468-x RESEARCH ARTICLE Open Access Prevalence, clinical characteristics, and predictors of peripheral arterial disease in hemodialysis patients: a cross-sectional study Radislav R. Ašćerić1* , Nada B. Dimković2,3, Goran Ž. Trajković4, Biljana S. Ristić5, Aleksandar N. Janković2, Petar S. Durić2 and Nenad S. Ilijevski3,6 Abstract Background: Peripheral arterial disease (PAD) is common in patients with end-stage renal disease on hemodialysis, but is frequently underdiagnosed. The risk factors for PAD are well known within the general population, but they differ somewhat in hemodialysis patients. This study aimed to determine the prevalence of PAD and its risk factors in patients on hemodialysis. Methods: This cross-sectional study included 156 hemodialysis patients. Comorbidities and laboratory parameters were analyzed. Following clinical examinations, the ankle-brachial index was measured in all patients. PAD was diagnosed based on the clinical findings, ankle-brachial index < 0.9, and PAD symptoms. Results: PAD was present in 55 of 156 (35.3%; 95% CI, 27.7–42.8%) patients. The patients with PAD were significantly older (67 ± 10 years vs. 62 ± 11 years, p = 0.014), more likely to have diabetes mellitus (p = 0.022), and anemia (p = 0.042), and had significantly lower serum albumin (p = 0.005), total cholesterol (p =0.024),and iron (p = 0.004) levels, higher glucose (p = 0.002) and C-reactive protein (p < 0.001) levels, and lower dialysis adequacies (p = 0.040) than the patients without PAD. Multivariate analysis showed higher C-reactive protein level (odds ratio [OR], 1.03; 95% confidence interval [CI], 1.00–1.06; p = 0.030), vascular access by Hickman catheter (OR, 4.66; 95% CI, 1.03–21.0; p = 0.045), and symptoms of PAD (OR, 5.20; 95% CI, 2.60–10.4; p <0.001) as independent factors associated with PAD in hemodialysis patients.
    [Show full text]
  • Research Article Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation International Journal of Vascular Medicine Volume 2016, Article ID 3805380, 6 pages http://dx.doi.org/10.1155/2016/3805380 Research Article Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry Kimihiro Igari, Toshifumi Kudo, Takahiro Toyofuku, and Yoshinori Inoue Division of Vascular and Endovascular Surgery, Department of Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan Correspondence should be addressed to Kimihiro Igari; [email protected] Received 16 July 2016; Revised 17 September 2016; Accepted 27 September 2016 Academic Editor: Thomas Schmitz-Rixen Copyright © 2016 Kimihiro Igari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. Endothelial dysfunction plays a key role in atherosclerotic disease. Several methods have been reported to be useful for evaluating the endothelial dysfunction, and we investigated the endothelial dysfunction in patients with peripheral arterial disease (PAD) using peripheral arterial tonometry (PAT) test in this study. Furthermore, we examined the factors significantly correlated with PAT test. Methods. We performed PAT tests in 67 patients with PAD. In addition, we recorded the patients’ demographics, including comorbidities, and hemodynamical status, such as ankle brachial pressure index (ABI). Results. In a univariate analysis, the ABI value ( = 0.271, = 0.029) and a history of cerebrovascular disease ( = 0.208, = 0.143) were found to significantly correlatewithPATtest,whichcalculatedthereactivehyperemiaindex(RHI).Inamultivariateanalysis,onlytheABIvalue significantly and independently correlated with RHI ( = 0.254, = 0.041).
    [Show full text]
  • Vein Preservation and Alternative Venous Access Exploring the Options for Patients with Chronic Kidney Disease
    AV/DIALYSIS ACCESS UPDATE Vein Preservation and Alternative Venous Access Exploring the options for patients with chronic kidney disease. BY THEODORE F. SAAD, MD ince the inception of chronic hemodialysis and the in most cases, although some patients with adequate collat- introduction of the Brescia-Cimino arteriovenous fis- eral venous outflow may develop a functional arteriovenous tula,1 there has been a strong culture favoring vein fistula despite ipsilateral central vein stenosis or occlusion. preservation in the nephrology and hemodialysis Nondominant versus dominant arm: The nondominant Scommunity. During the past 3 decades, there has been con- arm is generally preferred for construction of arteriovenous tinuous growth in the patient population with chronic kid- access. However, depending upon individual patient anato- ney disease (CKD), as well as advances in many medical my and circumstance, the dominant arm is frequently used therapies requiring venous access devices. Many alternatives for hemodialysis access. Therefore, all the same considera- for venous access now exist, including conventional periph- tions apply. eral intravenous catheters, peripherally inserted central catheters (PICCs), nontunneled central venous catheters, DAMAGE CONTROL tunneled central venous catheters (with or without a subcu- Venous access devices damage veins. This is true for any taneous cuff), and subcutaneously implanted ports utilizing intravenous device that is introduced into any peripheral or either central or peripheral veins. As a result, there is consid- central vein. This damage may involve direct trauma to the erable pressure on the limited venous “real estate” available actual puncture site of the vessel, or there may be damage for placement of these devices and creation of arteriove- induced by contact of the device and the vein wall at points nous access.
    [Show full text]
  • Infusaport Insertion in Patients with Haemophilia
    Infusaport insertion in patients with haemophilia PURPOSE This guideline is designed to assist medical and nursing staff in the management of children with haemophilia having an infusaport inserted at the Royal Children’s Hospital. DEFINITIONS Infusaport or portacath is an implantable Central Venous Access Device. BACKGROUND Most children with severe haemophilia (<1% Factor VIII or IX) will require prophylactic intravenous clotting factor administration 2-3 times per week to prevent spontaneous bleeding. Accessing peripheral veins can be difficult and traumatic for children and in particular infants/toddlers where veins are often difficult to identify. A number of boys develop significant behavioural issues around treatment after traumatic experiences in their early years. Approximately 80% of children with severe haemophilia treated at the Royal Children’s Hospital will require an infusaport for venous access. Most families report that insertion of a “port” dramatically improves their quality of life in that venous access is no longer fearful and difficult and parents are able to administer clotting factor to their child at home for both prevention and treatment of bleeds. Ports are removed as soon as parents are able to administer clotting factor peripherally. In general ports are removed prior to commencement of primary school. PROCEDURE Once the need for a port has been identified and discussed with the family a referral is made. Mr Joe Crameri performs the majority of infusaport surgery in haemophilia patients at the Royal Children’s Hospital. Many families appreciate the opportunity to see a port (there is one in the haemophilia centre) and to speak with a family whose child is established on home prophylaxis via a port.
    [Show full text]
  • Venous Access and Ports
    Venous Access and Ports Helen Starosta Venous access and ports Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Jesse’s Story Charles’s Story Vein Training Why do we need venous access Treatment for bleeding disorders involves intravenous therapy Therefore reliable venous access is essential to make effective treatment possible The choices for IV access Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Peripheral Venous Access Butterfly & IV Short term (days) or intermittent therapy Short catheters generally placed in forearm, hand or scalp veins Arterio-Venous Fistula Can last many years Connects an artery directly to a vein → results in more blood flow to the vein → the vein grows larger and stronger Fistula takes a while after surgery to develop (as long as 24 months) Properly formed fistula is less likely than other kinds of vascular access to form clots or become infected Peripherally Inserted Central Catheters (PICC) Short term use (days to several weeks) Peripheral central venous catheter inserted at or above the antecubital space and the distal tip of the catheter is positioned
    [Show full text]
  • Prehosp Fluid
    PRACTICE MANAGEMENT GUIDELINES FOR PREHOSPITAL FLUID RESUSCITATION IN THE INJURED PATIENT EAST Practice Parameter Workgroup for Pre-hospital Fluid Resuscitation Bryan A. Cotton, MD, 1 Bryan R. Collier, DO, 1 Suneel Khetarpal, MD, 2 Michelle Holevar, MD, 3 Brian Tucker, DO, 4 Stan Kurek, DO, 4 Nathan T. Mowery, MD,1 Kamalesh Shah, MD, 5 William Bromberg, MD, 6 Oliver L. Gunter, MD, 7 William P. Riordan, Jr, MD, 1 1 Vanderbilt University Medical Center, Nashville, TN 2 Tampa General Hospital, Tampa, FL 3 Mount Sinai Hospital, Chicago, IL 4 University of Tennessee-Knoxville Medical Center, Knoxville, TN 5 Lehigh Valley Hospital and Health Network, Allentown, PA 6 Memorial Health University Medical Center, Savannah, GA 7 Washington University/Barnes Jewish Medical Center, St. Louis, MO Address for Correspondence and Reprints: Bryan A Cotton, MD VUMC-Trauma 1211 21st Ave South, 404 Medical Arts Building Nashville, TN 37212 Phone: (615)-936-0189 Fax: (615)-936-0185 E-mail: [email protected] ©2008 Eastern Association for the Surgery of Trauma 2 I. STATEMENT OF THE PROBLEM Over the past several decades, the scope of practice for emergency medical personnel has rapidly expanded. 1 Along with this, a dramatic increase in the number of pre-hospital procedures (especially intubation and central venous access) has been noted.2, 3 However, this dramatic change in the pre-hospital approach to the injured patient has occurred in the absence of data to support its adoption. Investigators from Los Angeles have noted no difference in survival when injured patients are transported by private vehicle or emergency medical services (EMS) transport.
    [Show full text]
  • Preparing for Vascular Access Surgery
    Form: D-5134 Preparing for Vascular Access Surgery Information for patients and families Read this booklet to learn: • why you need vascular access for hemodialysis • what an AV graft and an AV fistula is • what to expect with this procedure • who to call if you have any questions Check in at: Toronto General Hospital Surgical Admission Unit (SAU), Peter Munk Building – 2nd Floor Date and time of my surgery: Date: Time: *Remember: You need to arrive at the hospital 2 hours before surgery Why do I need vascular access surgery? If you need hemodialysis, you need a vein that is easy to find and use. Vascular access surgery makes an access site for the hemodialysis. This is called an arteriovenous (AV) access. An AV access connects your artery directly to your vein. If this is not possible, a soft plastic tube will be used to connect your artery and vein. How does my AV access work during hemodialysis? Before hemodialysis (or dialysis), your nurse will put 2 needles into your AV access. One needle takes the blood from your body to the artificial kidney (dialyzer). This cleans your blood. The second needle returns the clean blood back to you. Only a small amount of blood (about 1 cup) is removed from your body at one time. At the end, your nurse removes both needles and puts bandages where the needles were put in. You can take the bandages off the next day. 2 Your AV access will usually be in your forearm or upper arm. There are 2 types of AV access your surgeon could give you.
    [Show full text]
  • 2017 the Science and Fundamentals of Intraosseous Vascular Access Including Frequently Asked Questions
    EZ-IO Intraosseous Vascular from TELEFLEX Access System Arrow® EZ-IO® Intraosseous Vascular Access System 2017 The Science and Fundamentals of Intraosseous Vascular Access including Frequently Asked Questions Teleflex Global Research and Scientific Services, a Division of Clinical and Medical Affairs 1 2 2017 Third Edition Introduction . 8 Indications/Contraindications and General Intraosseous (IO) Use . 10 When can the Arrow® EZ-IO® Intraosseous Vascular Access System from Teleflex be used? . 10 In what type of clinical scenarios is IO vascular access used? . 10 Can the Arrow® EZ-IO® Intraosseous Vascular Access System Device be used in the sternum? . 11 What is off-label use of the Arrow® EZ-IO® Device? . 11 Can nurses and medics perform IO device insertions? . 11 Do professional organizations support IO vascular access for clinical applications? . 11 Is special training or certification required prior to using the EZ-IO® Device? . 12 Anatomy and Physiology of the IO Space . .12 How does the IO vascular access route work? . 12 Which insertion site works best? . 12 Anatomy . 13 Physiology . 13 Intramedullary pressure . 14 During CPR: guidelines . 14 Preclinical studies . 15 Clinical studies . 17 Technique/Training . .21 How should the skin be prepared for IO insertion? . 21 Is a local anesthetic necessary for EZ-IO® Device insertion in an alert patient? . 21 How is appropriate EZ-IO® Needle Set length determined? Can the “pediatric” needle sets be used in adults, or “adult” needle sets in pediatric patients? . 21 How deep should the EZ-IO® Needle Set be inserted into the bone? . 22 3 What if the driver seems to be losing power and slows down? .
    [Show full text]
  • Vascular Access Cannulation and Care
    Vascular Access Cannulation and Care A Nursing Best Practice Guide for Arteriovenous Fistula Editors Maria Teresa Parisotto Jitka Pancirova Vascular Access Cannulation and Care A Nursing Best Practice Guide for Arteriovenous Fistula This book is an initiative of Maria Teresa Parisotto (Director Nursing Care Management, NephroCare Coordination, Fresenius Medical Care Deutschland GmbH), Germany and Jitka Pancirova, (EDTNA/ERCA Executive Director), Czech Republic Authors of this best practice guide are: Alberto Garcia Iglesias RN, Spain Cristina Miriunis RN, B.Ec., Germany Dr. Francesco Pelliccia RN, MSc, Italy Iain Morris RN, United Kingdom Iris Romach RN, MA, Israel Joao Fazendeiro Matos RN, BSc, MBA (c), Portugal Mihai Preda RN, Dipl.-Ing., Romania Nicola Ward RN, United Kingdom Raffaella Beltrandi RN, Italy Ricardo Peralta RN, BSc, Portugal Theodora Kafkia RN, MSc, PhD (c), Clinical Lecturer, Greece Contributors to this best practice guide are: Jean Pierre Van Waeleghem RN, BSN, Belgium Victor Moscardó RN, Germany Dr. Frank Laukhuf MD, Nephrologist, Germany Volker Schoder M.Sc., Dipl. Statistician, Germany Prof. Dr. Daniele Marcelli MD, MBA, Nephrologist, Epidemiologist, Germany Dr. Adelheid Gauly PhD, MBA, Germany Dr. Stefano Stuard MD, PhD, Nephrologist, Germany Reviewers of this best practice guide are: Dr. Richard Fluck FRCP, MA (Cantab), MBBS, Nephrologist Immediate past President, British Renal Society, United Kingdom Dr. Maurizio Gallieni MD, FASN, Nephrologist, Researcher at University of Milan President, the Vascular Access Society, Italy Dr. Otto Arkossy MD, Nephrologist Board Member of the Hungarian Society of Nephrology, Hungary Emine Unal RN, Turkey Natalie Beddows RN, United Kingdom Marjelka Trkulja RN, EDTNA/ERCA Brand Ambassador, Croatia All rights are reserved by the author and publisher, including the rights of reprinting, reproduction in any form and translation.
    [Show full text]