Vascular Access Device (VAD) Management

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Access Device (VAD) Management Vascular Access Device (VAD) Management Page 1 of 21 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. TABLE OF CONTENTS Definitions………………………………....…………………………....………………………………………….. Page 3 CVAD Post-Insertion Dressing Care………….………………………………………………………………….. Page 4 VAD Maintenance Care………….………………………………………………………………………………... Pages 5-8 Dressing Care …………………………………………………………………………………………………. Page 5 Flush Management …………………………………………………………………………………………. Page 6 Needleless Connector Management………………………………………………………………………….. Page 7 Tubing Management………………....…………….……………………………...………………………….. Page 8 Implanted Venous Ports: Access and Management……….…………………………………………………….. Page 9 VAD Complications………………………………………………………………………….…………………….. Pages 10-13 Skin Impairment…….………………………………………………………………………………………… Page 10 Site Complication/Infection…………………………………………………………………………………… Page 11 Phlebitis …………………………....…………….……………………………...……………………………... Page 12 CVAD Device-Related …………………………....…………….……………………………...……………… Page 13 CVAD = central venous access device PICC = peripherally inserted central catheter CICC = centrally inserted central catheter Department of Clinical Effectiveness V4 Approved by The Executive Committee of the Medical Staff on 04/30/2019 Vascular Access Device (VAD) Management Page 2 of 21 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. TABLE OF CONTENTS - continued APPENDIX A: CLABSI Bundle……………….....…………………………………………….………................ Page 14 APPENDIX B: Flush Panel .……………………………………………………………………………………… Page 15 APPENDIX C: Venous Access Procedure Orders……………………………………………………………….. Page 15 APPENDIX D: Pediatric Routine Catheter Flush……………………………………………………………….. Page 16 APPENDIX E: Skin Prep Allergy Recommendations..………………………………………………………….. Page 16 APPENDIX F: Alternative Adhesive Dressing Recommendations……………………………………………... Page 17 APPENDIX G: Infusion Nurses Society Phlebitis Scale ..…………………………………………….………..... Page 18 Suggested Readings …………...……………………………………………………………...…………………..... Pages 19-20 Development Credits ……………...………………………………………………………………...……………… Page 21 CLABSI = central line-associated blood stream infection Department of Clinical Effectiveness V4 Approved by The Executive Committee of the Medical Staff on 04/30/2019 Vascular Access Device (VAD) Management Page 3 of 21 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. DEFINITIONS Acute Care Procedure Team: A team comprised of specialized Advanced Practice Providers (APP) that are trained in placement, management, and removal of central venous access devices. Apheresis catheter: A large bore CVAD that is typically greater than 10 French or more in size that is used for apheresis procedures as well as other infusions as indicated. Central Venous Access Device (CVAD): Includes peripherally inserted central catheter (PICC) and all centrally inserted catheters including non-tunneled, tunneled, or implanted catheter with the catheter tip ending in the vena cava, such as a subclavian, femoral, and internal jugular. Centrally Inserted Central Catheter (CICC) [also known as central venous catheter (CVC)]: Includes tunneled or non-tunneled central venous catheters. Infusion Therapy Team (ITT): A team comprised of registered nurses who are skilled and educated in the management and care of central and peripheral venous access devices. Implanted venous port: A surgically placed central venous catheter that is attached to a reservoir located under the skin. Non-Tunneled Centrally Inserted Catheter (Non-Tunneled CICC): A catheter inserted by direct venous puncture through the skin in the subclavian, jugular or femoral areas without tunneling. Peripherally Inserted Central Catheter (PICC): A central venous catheter inserted into an upper extremity vein that is threaded within the superior vena cava. Tunneled Centrally Inserted Catheter (Tunneled CICC): A catheter that is tunneled under the skin before entering the venous system which can either be cuffed or non-cuffed. Cuffed indicates that the catheter has a small cuff promoting tissue growth for catheter adherence. Vascular Access Device (VAD): Any device utilized for venous access regardless of location. These include peripheral intravenous catheter (PIV), peripherally inserted central catheter (PICC), centrally inserted central catheter (CICC), and implanted venous port. Vascular Access Team (VAT): A team that is comprised of the Acute Care Procedure Team and the Infusion Therapy Team engaged in the planning and management of patients requiring vascular access. Department of Clinical Effectiveness V4 Approved by The Executive Committee of the Medical Staff on 04/30/2019 Vascular Access Device (VAD) Management Page 4 of 21 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. CVAD POST INSERTION DRESSING CARE1 MANAGEMENT 2 Yes Dressing change should occur 7 days post insertion or if clinically indicated Is a sterile Post-CICC/ transparent dressing PICC with CHG impregnated insertion disc used? 3,4 No To ensure gauze dressing is removed , initiate dressing change within 2 days post-insertion or as clinically indicated1 For post-procedure Apply sterile transparent Dressing and needle must be changed after 7 days or patient education, dressing with CHG if clinically indicated2,5 refer to patient Yes 6 impregnated disc education materials Post-implanted Is port accessed venous with needle in port insertion place? Steri-Strips™ or surgical glue should not physically Yes be removed during the first two weeks post-surgery No Is site open to air? If a sterile transparent or non-transparent dressing is No present, remove after 2 days and leave open to air 1 See Appendix A for Central Line-Associated Blood Stream Infection (CLABSI) Bundles 2 Immediate dressing change is required when dressing is soiled, damp, reinforced, or no longer intact. Refer to CVAD Maintenance Dressing Change on Page 5. 3 Best practice indicates that gauze should only be used when clinically appropriate; sterile transparent dressing with CHG impregnated disc is recommended post-insertion 4 If unable to determine if gauze is present, initiate CVAD Dressing Care: Maintenance Dressing Change within 2 days post-insertion or as clinically indicated 5 Needle change is only required if port has been accessed greater than 7 days 6 Central Line (CVC/PICC) Patient Checklist (https://www.mdanderson.org/patient-education/Infusion-Therapy/Central-Line-(CVC-PICC)-Patient-Checklist-Infusion-Therapy_docx_pe.pdf) Department of Clinical Effectiveness V4 Approved by The Executive Committee of the Medical Staff on 04/30/2019 Vascular Access Device (VAD) Management Page 5 of 21 Disclaimer: This algorithm has been developed for MD Anderson using a multidisciplinary approach considering circumstances particular to MD Anderson’s specific patient population, services and structure, and clinical information. This is not intended to replace the independent medical or professional judgment of physicians or other health care providers in the context of individual clinical circumstances to determine a patient's care. VAD MAINTENANCE CARE: DRESSING CARE1 DRESSING TYPE AT PRESENTATION MANAGEMENT Transparent chlorhexidine gluconate (CHG) impregnated dressing or transparent dressing with CHG impregnated disc2 4 5 ● Change dressing using institutional standard dressing change process at least every 7 days or as clinically indicated ● If skin or site related complications are noted, refer to Pages 10-11 for management Note: Non-transparent dressing with ● For patients with CHG allergy, follow CHG allergy standard of care dressing deviation protocol: CHG impregnated disc3 Patient presents ○ First line: alternative bordered transparent dressing with equivalent skin prep; change every 7 days or as clinically for dressing indicated change ○ Second line: non-transparent dressing with equivalent skin prep; change every 2 days or as clinically indicated Transparent dressing without CHG impregnated disc Gauze dressing (i.e., any non-transparent 5 4 ● Change dressing using institutional standard dressing
Recommended publications
  • Pictures of Central Venous Catheters
    Pictures of Central Venous Catheters Below are examples of central venous catheters. This is not an all inclusive list of either type of catheter or type of access device. Tunneled Central Venous Catheters. Tunneled catheters are passed under the skin to a separate exit point. This helps stabilize them making them useful for long term therapy. They can have one or more lumens. Power Hickman® Multi-lumen Hickman® or Groshong® Tunneled Central Broviac® Long-Term Tunneled Central Venous Catheter Dialysis Catheters Venous Catheter © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Implanted Ports. Inplanted ports are also tunneled under the skin. The port itself is placed under the skin and accessed as needed. When not accessed, they only need an occasional flush but otherwise do not require care. They can be multilumen as well. They are also useful for long term therapy. ` Single lumen PowerPort® Vue Implantable Port Titanium Dome Port Dual lumen SlimPort® Dual-lumen RosenblattTM Implantable Port © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Non-tunneled Central Venous Catheters. Non-tunneled catheters are used for short term therapy and in emergent situations. MAHURKARTM Elite Dialysis Catheter Image provided courtesy of Covidien. MAHURKAR is a trademark of Sakharam D. Mahurkar, MD. © Covidien. All rights reserved. Peripherally Inserted Central Catheters. A “PICC” is inserted in a large peripheral vein, such as the cephalic or basilic vein, and then advanced until the tip rests in the distal superior vena cava or cavoatrial junction.
    [Show full text]
  • Piccs, Ports and Lines: Clarifying the Options
    Current Concepts in Vascular Therapies 2011 Mid-Atlantic Conference PICCs, Ports and Lines: Clarifying the Options Babatunde Almaroof, MD April 2, 2011 Objectives • State the indications for central venous access • Discuss types of central venous catheters • “Clarifying the options”/indications for each kind of catheter. Need for central vascular access • There is an increasing need for vascular access as medical care has become more complex. • Most inpatients are able to get their needs served by a peripheral i.v access • Sometimes however, a central access will be needed due to limitations of a peripheral access – Infiltration, extravasation, thrombosis – Infection and sclerosis • This makes central venous access, the preferred choice for long term use as they allow a higher flow and tolerate hyperosmolar solutions not tolerated by peripheral veins Indications for central venous access • TPN • Chemotherapy • Long term antibiotics – Osteomyelitis, endocarditis, fungal infections • Patients with difficult peripheral vein access • Hemodynamic monitoring • Temporary hemodialysis access • Plasmapheresis Historical Background • The first i.v infusion was performed using a cannula made from quill in 1657 • First successful human blood transfusion was performed in 1667 • Seldinger described his technique for catheter insertion in 1953 • Percutaneous placement of a subclavian vein catheter was reported in 1956 Sites of central venous access • Internal Jugular vein • Subclavian vein – Higher risk of pneumothorax • Femoral vein – Higher risk of
    [Show full text]
  • Vein Preservation and Alternative Venous Access Exploring the Options for Patients with Chronic Kidney Disease
    AV/DIALYSIS ACCESS UPDATE Vein Preservation and Alternative Venous Access Exploring the options for patients with chronic kidney disease. BY THEODORE F. SAAD, MD ince the inception of chronic hemodialysis and the in most cases, although some patients with adequate collat- introduction of the Brescia-Cimino arteriovenous fis- eral venous outflow may develop a functional arteriovenous tula,1 there has been a strong culture favoring vein fistula despite ipsilateral central vein stenosis or occlusion. preservation in the nephrology and hemodialysis Nondominant versus dominant arm: The nondominant Scommunity. During the past 3 decades, there has been con- arm is generally preferred for construction of arteriovenous tinuous growth in the patient population with chronic kid- access. However, depending upon individual patient anato- ney disease (CKD), as well as advances in many medical my and circumstance, the dominant arm is frequently used therapies requiring venous access devices. Many alternatives for hemodialysis access. Therefore, all the same considera- for venous access now exist, including conventional periph- tions apply. eral intravenous catheters, peripherally inserted central catheters (PICCs), nontunneled central venous catheters, DAMAGE CONTROL tunneled central venous catheters (with or without a subcu- Venous access devices damage veins. This is true for any taneous cuff), and subcutaneously implanted ports utilizing intravenous device that is introduced into any peripheral or either central or peripheral veins. As a result, there is consid- central vein. This damage may involve direct trauma to the erable pressure on the limited venous “real estate” available actual puncture site of the vessel, or there may be damage for placement of these devices and creation of arteriove- induced by contact of the device and the vein wall at points nous access.
    [Show full text]
  • Infusaport Insertion in Patients with Haemophilia
    Infusaport insertion in patients with haemophilia PURPOSE This guideline is designed to assist medical and nursing staff in the management of children with haemophilia having an infusaport inserted at the Royal Children’s Hospital. DEFINITIONS Infusaport or portacath is an implantable Central Venous Access Device. BACKGROUND Most children with severe haemophilia (<1% Factor VIII or IX) will require prophylactic intravenous clotting factor administration 2-3 times per week to prevent spontaneous bleeding. Accessing peripheral veins can be difficult and traumatic for children and in particular infants/toddlers where veins are often difficult to identify. A number of boys develop significant behavioural issues around treatment after traumatic experiences in their early years. Approximately 80% of children with severe haemophilia treated at the Royal Children’s Hospital will require an infusaport for venous access. Most families report that insertion of a “port” dramatically improves their quality of life in that venous access is no longer fearful and difficult and parents are able to administer clotting factor to their child at home for both prevention and treatment of bleeds. Ports are removed as soon as parents are able to administer clotting factor peripherally. In general ports are removed prior to commencement of primary school. PROCEDURE Once the need for a port has been identified and discussed with the family a referral is made. Mr Joe Crameri performs the majority of infusaport surgery in haemophilia patients at the Royal Children’s Hospital. Many families appreciate the opportunity to see a port (there is one in the haemophilia centre) and to speak with a family whose child is established on home prophylaxis via a port.
    [Show full text]
  • Venous Access and Ports
    Venous Access and Ports Helen Starosta Venous access and ports Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Jesse’s Story Charles’s Story Vein Training Why do we need venous access Treatment for bleeding disorders involves intravenous therapy Therefore reliable venous access is essential to make effective treatment possible The choices for IV access Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Peripheral Venous Access Butterfly & IV Short term (days) or intermittent therapy Short catheters generally placed in forearm, hand or scalp veins Arterio-Venous Fistula Can last many years Connects an artery directly to a vein → results in more blood flow to the vein → the vein grows larger and stronger Fistula takes a while after surgery to develop (as long as 24 months) Properly formed fistula is less likely than other kinds of vascular access to form clots or become infected Peripherally Inserted Central Catheters (PICC) Short term use (days to several weeks) Peripheral central venous catheter inserted at or above the antecubital space and the distal tip of the catheter is positioned
    [Show full text]
  • Prehosp Fluid
    PRACTICE MANAGEMENT GUIDELINES FOR PREHOSPITAL FLUID RESUSCITATION IN THE INJURED PATIENT EAST Practice Parameter Workgroup for Pre-hospital Fluid Resuscitation Bryan A. Cotton, MD, 1 Bryan R. Collier, DO, 1 Suneel Khetarpal, MD, 2 Michelle Holevar, MD, 3 Brian Tucker, DO, 4 Stan Kurek, DO, 4 Nathan T. Mowery, MD,1 Kamalesh Shah, MD, 5 William Bromberg, MD, 6 Oliver L. Gunter, MD, 7 William P. Riordan, Jr, MD, 1 1 Vanderbilt University Medical Center, Nashville, TN 2 Tampa General Hospital, Tampa, FL 3 Mount Sinai Hospital, Chicago, IL 4 University of Tennessee-Knoxville Medical Center, Knoxville, TN 5 Lehigh Valley Hospital and Health Network, Allentown, PA 6 Memorial Health University Medical Center, Savannah, GA 7 Washington University/Barnes Jewish Medical Center, St. Louis, MO Address for Correspondence and Reprints: Bryan A Cotton, MD VUMC-Trauma 1211 21st Ave South, 404 Medical Arts Building Nashville, TN 37212 Phone: (615)-936-0189 Fax: (615)-936-0185 E-mail: [email protected] ©2008 Eastern Association for the Surgery of Trauma 2 I. STATEMENT OF THE PROBLEM Over the past several decades, the scope of practice for emergency medical personnel has rapidly expanded. 1 Along with this, a dramatic increase in the number of pre-hospital procedures (especially intubation and central venous access) has been noted.2, 3 However, this dramatic change in the pre-hospital approach to the injured patient has occurred in the absence of data to support its adoption. Investigators from Los Angeles have noted no difference in survival when injured patients are transported by private vehicle or emergency medical services (EMS) transport.
    [Show full text]
  • 2017 the Science and Fundamentals of Intraosseous Vascular Access Including Frequently Asked Questions
    EZ-IO Intraosseous Vascular from TELEFLEX Access System Arrow® EZ-IO® Intraosseous Vascular Access System 2017 The Science and Fundamentals of Intraosseous Vascular Access including Frequently Asked Questions Teleflex Global Research and Scientific Services, a Division of Clinical and Medical Affairs 1 2 2017 Third Edition Introduction . 8 Indications/Contraindications and General Intraosseous (IO) Use . 10 When can the Arrow® EZ-IO® Intraosseous Vascular Access System from Teleflex be used? . 10 In what type of clinical scenarios is IO vascular access used? . 10 Can the Arrow® EZ-IO® Intraosseous Vascular Access System Device be used in the sternum? . 11 What is off-label use of the Arrow® EZ-IO® Device? . 11 Can nurses and medics perform IO device insertions? . 11 Do professional organizations support IO vascular access for clinical applications? . 11 Is special training or certification required prior to using the EZ-IO® Device? . 12 Anatomy and Physiology of the IO Space . .12 How does the IO vascular access route work? . 12 Which insertion site works best? . 12 Anatomy . 13 Physiology . 13 Intramedullary pressure . 14 During CPR: guidelines . 14 Preclinical studies . 15 Clinical studies . 17 Technique/Training . .21 How should the skin be prepared for IO insertion? . 21 Is a local anesthetic necessary for EZ-IO® Device insertion in an alert patient? . 21 How is appropriate EZ-IO® Needle Set length determined? Can the “pediatric” needle sets be used in adults, or “adult” needle sets in pediatric patients? . 21 How deep should the EZ-IO® Needle Set be inserted into the bone? . 22 3 What if the driver seems to be losing power and slows down? .
    [Show full text]
  • An Overview of Central Venous Access Devices
    NursingNursing ManagementManagement ofof VenousVenous AccessAccess Devices:Devices: AnAn OverviewOverview ofof CentralCentral VenousVenous AccessAccess DevicesDevices Mimi Bartholomay, RN, MSN, AOCN Denise Dreher, RN, CRNI, VA-BC Theresa Evans, RN, MSN Susan Finn, RN, MSN, AOCNS Debra Guthrie, RN, CRNI Hannah Lyons, RN, MSN, AOCN Janet Mulligan, RN, MS, VA-BC Carol Tyksienski, M.S.,R.N.,N.P CentralCentral VenousVenous AccessAccess DevicesDevices ((CVADsCVADs)) PeripherallyPeripherally InsertedInserted CentralCentral CathetersCatheters ((PICCsPICCs)) NonNon--tunneledtunneled catheters:catheters: SubclavianSubclavian // JugularJugular // FemoralFemoral LinesLines TunneledTunneled catheters:catheters: HickmansHickmans // BroviacsBroviacs // GroshongsGroshongs // SmallSmall BoreBore ImplantedImplanted ports:ports: PortPort--aa--cathscaths // PassportsPassports CentralCentral VADsVADs ““...first...first lineline ofof defense,defense, notnot aa devicedevice ofof lastlast resortresort”” Candidates:Candidates: Long-term therapies ( > one week) TPN Chemotherapy / vesicants Drugs with pH <5 or >9 Long term antibiotic therapy Hypertonic solutions (osmolality >600mOsm/L) ex.- 3% saline Limited venous access VerificationVerification ofof CentralCentral LinesLines ConfirmationConfirmation ofof typetype ofof centralcentral lineline andand lineline placementplacement MUSTMUST bebe verifiedverified beforebefore useuse UntilUntil verificationverification isis complete,complete, thethe cathetercatheter mustmust bebe markedmarked withwith aa
    [Show full text]
  • Central Venous Lines in Haemophilia. Ljung, Rolf
    Central venous lines in haemophilia. Ljung, Rolf Published in: Haemophilia DOI: 10.1046/j.1365-2516.9.s1.7.x 2003 Link to publication Citation for published version (APA): Ljung, R. (2003). Central venous lines in haemophilia. Haemophilia, 9(Suppl 1), 88-92. https://doi.org/10.1046/j.1365-2516.9.s1.7.x Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Haemophilia (2003), 9, (Suppl. 1), 88–93 Central venous lines in haemophilia R. LJUNG Departments of Paediatrics and Coagulation Disorders, Lund University, University Hospital, Malmoo,€ Sweden Summary. Infections and technical problems are the been seen in some but not in others.
    [Show full text]
  • Understanding Your Implanted Port Adult Patient Information
    Understanding your Implanted Port Adult Patient Information What is the purpose of this information sheet? This information has been written by health professionals. We hope it will be useful for you, your family/Whanau, friends and carers in providing all the information you will need about the implanted port you are having inserted for treatment. It outlines: . What is a port? . Why do we use a port? . Do I have alternative options to a port? . Are there any risks if I have a port? . How is my port inserted? . Where is my port placed? . What should I expect after insertion of my port? . How do I care for my port? . What are my responsibilities? . Identifying and resolving problems with my port . Important phone numbers What is a Port? A port is an implanted device that provides access to your large central veins. It is placed under the skin’s surface in a surgically created pocket. The pocket is usually created in the upper chest or upper arm. The portal body has a catheter attached to it which is placed into a vein and feed along the vein to reach an area near your heart. There are no external catheter parts that are visible. The port is accessed using a special needle which is inserted through the silicon dome of the portal body.This allows you to have all your intravenous medication and IV fluid and blood samples taken. Ports are most suited to people who need regular, long term intravenous treatment. They are especially appropriate when physical characteristics, body image concerns, cosmetic factors or life style can impact on a person’s daily life.
    [Show full text]
  • IDF Guide for Nurses Imimmmunnoogglolboubliun Ltinhe Trahpeyr Faopr Y Fopr Rpirmimaarryy I Mimmumnoudneoficdieenfciyc Ideisnecasy Es Diseases IDF GUIDE for NURSES
    IDF Guide for Nurses ImImmmunnoogglolboubliun lTinhe Trahpeyr faopr y foPr rPirmimaarryy I mImmumnoudneoficdieenfciyc iDeisnecasy es Diseases IDF GUIDE FOR NURSES IMMUNOGLOBULIN THERAPY FOR PRIMARY IMMUNODEFICIENCY DISEASES THIRD EDITION COPYRIGHTS 2004, 2007, 2012 IMMUNE DEFICIENCY FOUNDATION Copyright 2012 by the Immune Deficiency Foundation, USA. PRINT: 12/2013 Readers may redistribute this publication to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The IDF Guide for Nurses may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 40 West Chesapeake Avenue, Suite 308, Towson, MD 21204, USA, or by telephone: 800.296.4433. This publication has been made possible through a generous grant from IDF Guide for Nurses Immunoglobulin Therapy for Primary Immunodeficiency Diseases Third Edition Immune Deficiency Foundation 40 West Chesapeake Avenue, Suite 308 Towson, MD 21204 800.296.4433 www.primaryimmune.org Editor: M. Elizabeth M. Younger CRNP, PhD Johns Hopkins, Baltimore, Maryland Vice Chair, Immune Deficiency Foundation Nurse Advisory Committee Associate Editors: Rebecca H. Buckley, MD Duke University School of Medicine, Durham, NC Chair, Immune Deficiency Foundation Medical Advisory Committee Christine M. Belser Immune Deficiency Foundation, Towson, Maryland Kara Moran Immune Deficiency
    [Show full text]
  • Lung Ventilation with Carbon Dioxide Insufflation
    Original Article Single-port thoracoscopic surgery for pneumothorax under two- lung ventilation with carbon dioxide insufflation Kook Nam Han1, Hyun Koo Kim1, Hyun Joo Lee1, Dong Kyu Lee2, Heezoo Kim2, Sang Ho Lim2, Young Ho Choi1 1Department of Thoracic and Cardiovascular Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; 2Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Seoul, Republic of Korea Contributions: (I) Conception and design: HK Kim; (II) Administrative support: HK Kim; (III) Provision of study materials or patients: HK Kim, YH Choi, DK Lee, H Kim, SH Lim; (IV) Collection and assembly of data: HK Kim, KN Han, HJ Lee; (V) Data analysis and interpretation: KN Han, HJ Lee; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Hyun Koo Kim, MD, PhD. 97 Guro-donggil, Guro-gu, Seoul 152-703, Republic of Korea. Email: [email protected]. Background: The development of single-port thoracoscopic surgery and two-lung ventilation reduced the invasiveness of minor thoracic surgery. This study aimed to evaluate the feasibility and safety of single-port thoracoscopic bleb resection for primary spontaneous pneumothorax using two-lung ventilation with carbon dioxide insufflation. Methods: Between February 2009 and May 2014, 130 patients underwent single-port thoracoscopic bleb resection under two-lung ventilation with carbon dioxide insufflation. Access was gained using a commercial multiple-access single port through a 2.5-cm incision; carbon dioxide gas was insufflated through a port channel. A 5-mm thoracoscope, articulating endoscopic devices, and flexible endoscopic staplers were introduced through a multiple-access single port for bulla resection.
    [Show full text]